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Abstract— Predicting implantation outcomes of in-
vitro fertilization (IVF) embryos is critical for the suc-
cess of the treatment. We have applied Naive Bayes
classifier to an original IVF dataset in order to dis-
criminate embryos according to implantation poten-
tials. The dataset we analyzed represents an imbal-
anced distribution of positive and negative instances.
In order to deal with the problem of imbalance, we ex-
amined the effects of over sampling the minority class,
under sampling the majority class and adjustment
of the decision threshold on the classification perfor-
mance. We have used features of Receiver Operat-
ing Characteristics (ROC) curves in the evaluation of
experiments. Our results revealed that it is possi-
ble to obtain optimum True Positive and False Pos-
itive Rates simply by adjusting the decision thresh-
old. Under-sampling experiments show that we can
achieve same prediction performance with less data
as well as 736 embryo samples.

Keywords: Implantation prediction, in-vitro fertiliza-

tion, imbalance problem, Naive Bayes.

1 Introduction

Many real world machine learning applications repre-
sent an imbalanced distribution of positive and negative
classes where the number of instances in one class dom-
inates that of the other. In such cases, it is necessary
to overcome possible bias towards the majority class in
the learning and prediction tasks. Consequently, learn-
ing from imbalanced datasets has been an important re-
search interest in the last decade [1] [2]. Various sampling
strategies have been proposed to deal with the problem
of imbalance [3] [4] [5]. On the other hand, recent studies
show that adjusting the decision threshold of classifiers
produce similar results with artificially changing the dis-
tribution of the instances in the training set [6] [7].

In this study, we focus on a specific area of medical di-
agnosis, i.e. in-vitro fertilization (IVF), to estimate the
implantation potentials of embryos. When constructing
predictive models in IVF domain, the input data con-
sists of a set of prognostic factors obtained from retro-
spective clinical databases and generally contain fewer
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samples with positive outcomes. Any classifier built on
these datasets has much more information to identify un-
successful IVF treatments compared to successful ones.
Therefore, implantation prediction is handled as a typical
case of learning from imbalanced data problem. We ana-
lyze the effects of re-sampling the training data and de-
cision threshold optimization on imbalanced IVF dataset
using Naive Bayes classifier. Our results show that 0.3 is
the best threshold for classification of embryos.

We have also considered another research problem that
is the determination of the smallest amount of training
data required to build an effective predictor model. Data
collection is a costly and time-consuming process in medi-
cal applications. Analysis of under-sampling experiments
leaded to define sufficient size of embryo samples for im-
plantation prediction that would reduce the effort spent
for data collection in IVF domain.

The rest of the paper is organized as follows: Section 2
describes the IVF domain along with the emphasis on
implantation prediction and characteristics of the IVF
dataset. Brief definitions of Naive Bayes classifier, ROC
curves and sampling strategies are given in Section 3.
Section 4 represents the experiments and results. Finally,
we conclude in Section 5 with a discussion on the results.

2 In-Vitro Fertilization

Infertility is defined as couple’s biological inability to get
pregnant after at least 12 months of regular, well-timed
sexual intercourse without any birth control. It is re-
ported that almost 10% of couples cannot have baby
spontaneously. Once the infertility factor of a couple is
determined, an appropriate assisted reproduction treat-
ment is applied in order to conceive a successful preg-
nancy.

IVF [1] is a common infertility treatment method dur-
ing which female germ cells (oocytes) are inseminated
by sperm under laboratory conditions. Fertilized oocytes
are cultured between 2-6 days in special medical equip-
ments and embryonic growth is observed and recorded by
embryologists. (Figure 1 represents images to give em-
phasize on IVF procedure and embryo morphology.) Fi-
nally, selected embryo(s) are transferred into the woman’s
womb. Selection of the embryos with highest reproduc-
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Figure 1: Human germ cells, Intra-Cytoplasmic Sperm Injection (ICSI)(ICSI is a method during which a single sperm cell is injected
into the cytoplasm of the oocyte) and embryo growth day by day

tive potentials and the decision of number of embryos
to be transferred is crucial for achieving successful preg-
nancies. Predicting implantation (i.e. attachment of the
embryo to the inner layer of the womb) potentials of indi-
vidual embryos may expedite and enhance expert judge-
ment for these critical decisions.

2.1 Implantation Prediction

This study is concentrated on predicting implantation
outcomes of IVF embryos. At each cycle of treatment it
is possible to obtain many embryos, but generally at most
3 highest quality embryos are transferred to the woman’s
uterus. Multiple embryo transfers increase pregnancy
probability but also increase possible complications of
multiple pregnancies [8] [9]. Elective single embryo trans-
fer (eSET) has been favored as a solution to IVF multiple
pregnancy problem. To be applicable in clinical practice,
physicians need reliable eSET criteria depending on two
main issues: selection of the most viable embryos and
identification of patients suitable for eSET. Therefore,
objective predictor models are required to predict im-
plantation potentials of embryos related to both embryo
and patient characteristics. From the machine learning
point of view implantation prediction is considered as a
binary (2-class) classification problem where the classes
represent positive and negative implantation outcomes.

2.2 Related Work

IVF treatment is a complex and costly process requiring
continuous observation and critical decisions of embryolo-
gists in certain stages. On the contrary to the importance
and emergence of intelligent decision support systems in
IVF process, the related literature is limited. As the pre-
liminary studies, a case-based reasoning system [10] and
neural networks have been constructed in predicting the
outcome of in-vitro fertilization [11]. Later, decision tree
models were applied for prediction of pregnancy outcome
from clinical IVF data [12][13]. The most recent study
on implantation prediction proposes a Bayesian classifica-
tion system for embryo selection [14]. Direct comparison
of the presented results is not possible due to variety of
research objectives, input feature sets of data, training
and testing strategies and performance measures.

Table 1: Selected dataset features for each embryo feature
vector

Dataset Features Data Type

Patient Characteristics

Woman age Numerical
Infertility factor Categorical
Treatment protocol Categorical
Follicular stimulating hormone dosage Numerical
Peak Estradiol level Numerical

Embryo Morphological Data

Early cleavage morphology Categorical
Early cleavage time Numerical
Number of cells Numerical
Nucleus characteristics Numerical
Fragmentation rate Numerical
Equality of blastomeres Numerical
Appearance of cytoplasm Categorical

Transfer Data

Transfer day Categorical
Physician performing embryo transfer Categorical
Difficulty of transfer Categorical

Most studies presenting predictive models in IVF domain
suffer from insufficient results [11][15][16][14]. One of the
reasons for poor prediction performance may be limited
number of data samples and it may be necessary to per-
form experiments on larger datasets. However, acquisi-
tion of complete and reliable medical data is a challenge
for machine learning researchers. Therefore, it is crucial
to determine minimum number of training samples in or-
der to prevent waste of effort spent on data collection.

2.3 Dataset

Because of social and ethical reasons in every country
some legislative rules have been defined related to IVF
treatment. Usually, the restrictions apply for donation,
embryo manipulation, number of embryos to be trans-
ferred in each cycle etc. Besides the legal procedures, each
IVF clinic applies different technologies and methodolo-
gies in practice. Because of this variety, IVF clinics have
distinctive databases and unfortunately there are no pub-
lic IVF datasets in the machine learning community. In
this study, we analyze the IVF procedure and related
database of IVF Unit of German Hospital in Istanbul.
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Initially, a dataset from an existing IVF database was
constructed which included individual embryo feature
vectors. Each embryo was represented with 15 variables
(Table 1) and a class label was assigned: +1 and -1 indi-
cating that implantation was successful or not-successful,
respectively. A positive implantation outcome was de-
fined as foetal cardiac activity at 12 weeks after embryo
transfer. Dataset features and data types are given in
Table I. The features have been selected depending on
experiences of senior embryologists in the clinic [17] and
related studies in the literature [14]. Apart from exist-
ing studies, we have also considered the effect of physi-
cian performing embryo transfer [18] and the difficulty
of transfer [19] as prognostic factors. Input data fea-
tures include both continuous (e.g. age, hormone levels
etc.) and categorical (infertility factor, treatment proto-
col etc.) variables. The IVF dataset includes 2275 fresh,
non-donor in-vitro human embryos transferred in day 2
or day 3 after ICSI. The dataset used in this study repre-
sented an imbalanced nature consisting of 1944 (85.4%)
negative implantation and 331 (14.6%) positive implan-
tation outcomes. Hence, implantation prediction is han-
dled as a typical case of learning from imbalanced data
problem.

3 Methodology

In a previous study, we have compared various classifiers
for implantation prediction of IVF embryos and shown
that Naive Bayes produce significantly better predictive
performance [20]. Therefore, we apply Naive Bayes algo-
rithm to imbalanced IVF dataset in order to investigate
the effect of sampling strategies and threshold optimiza-
tion. This section briefly describes the Naive Bayes clas-
sifier, performance measures related to ROC analysis and
the problem of learning from imbalanced datasets.

3.1 Naive Bayes Classification

Bayes theorem given below states that the posterior prob-
ability of a sample P (Ci|x) is related to prior distribution
P (x|Ci) and the likelihood P (Ci) [?].

P (Ci|x) = P (x|Ci)P (Ci)/P (x) (1)

According to Bayes decision theory, a sample x is said to
belong to class Cj with the highest posterior probability
Cj = maxi(P (Ci|x)).

3.2 ROC Analysis and Performance Criteria

In the machine learning community, after realization of
the weakness of simple error rate as a performance mea-
sure, the use of ROC curves have gained an increasing
attention [21]. In this study, we use ROC curves to evalu-
ate the discriminative performance of binary Naive Bayes
classifier where each instance I is mapped to one of the

positive and negative classes labeled as +1 and -1 respec-
tively. Given a classifier and an instance, the prediction
outcomes depending on actual class labels of instances
can be represented as a 2x2 confusion matrix as shown
in Table 2.

Table 2: Confusion Matrix
Predicted

Actual Case Positive Negative

Positive TP FN
Negative FP TN

Common classifier performance metrics have been de-
rived from the confusion matrix:

• TP rate (TPR) is a measure of accuracy for cor-
rectly detecting the positive instances and is equal to
the ratio of number of true positives (TP) over the
sum of true positives and false negatives (FN). TPR
(also called Hit Rate) corresponds to sensitivity in
medical diagnosis.

TPR = (TP )/(TP + FN) (2)

• FP Rate (FPR) represents the number of false
alarms that is the false positives (FP) over the sum
of true negative (TN) and false positives (FP). FPR
corresponds to (1 - specificity) in medical domain.

FPR = (FP )/(TN + FP ) (3)

It is necessary to mention critical points on the 2D ROC
curve. The lower left point (0,0) represents assigning all
instances to negative class. Hence, there are no positive
predictions yielding TPR and FPR to be 0. Conversely,
upper right corner (1,1) indicates positive prediction for
all instances. The upper left point (0,1) represents perfect
classification. Therefore, the threshold value that gives
the nearest point to (0,1) is accepted as the optimum
decision threshold (topt).

3.3 The Problem of Imbalanced Dataset

In classification tasks, when the aim of the classification
is to maximize the accuracy, imbalanced datasets pro-
duce unsatisfactory prediction performance. For exam-
ple, in the IVF dataset we used, any classifier labeling
every instance with the negative class will achieve 84.6%
accuracy, however, it will actually produce 0% TPR. In
such cases, the desired solution is to find an acceptable
tradeoff between TPR and FPR of classification.

3.3.1 Sampling

A common approach to overcome the problem of imbal-
ance is to re-balance the datasets artificially. Two main
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sampling strategies are over-sampling that replicates in-
stances from the minority class [4] and under-sampling
where some of the instances in the majority class is re-
moved [3]. The effects of sampling methods in prediction
performance have been investigated in machine learning
based medical decision making applications [22] [23] [24].
We have performed over-sampling and under-sampling
in different scales and examined the classification per-
formance on the re-balanced IVF data with the default
threshold of 0.5.

3.3.2 Threshold Optimization

It is also necessary to investigate the effect of adjustment
of the output threshold for a particular classifier. Many
machine learning algorithms (i.e. Naive Bayes) produce
an estimate of the probability of class membership for a
binary classification problem. When using Naive Bayes
classifier, TPR and FPR have been calculated for a sin-
gle decision threshold (default: 0.5) that maps to a single
point on the ROC curve. However, Provost clearly de-
fined that, it may be a critical mistake to apply the stan-
dard machine learning algorithms to imbalanced datasets
without adjusting the decision threshold [7]. Therefore,
it is necessary to evaluate the performance of classifica-
tion for different thresholds since it would be sufficient
to find the optimum threshold rather than changing the
balance ratio of dataset.

4 Experiments and Results

We have conducted experiments to investigate the effects
of over-sampling and under-sampling the IVF data and
moving the decisison threshold of Naive Bayes classifier
for implantation prediction problem. Classification ex-
periments have been performed using Weka data mining
tool [25].

4.1 Training and Testing Strategy

Two-thirds of the dataset was randomly selected for es-
tablishing a predictor model and the remaining one-third
was utilized for testing. This initial random splitting
has been performed using stratification principle in order
to ensure that the proportions of positive and negative
classes remain the same in both training and test sets
as in the original dataset. Then, the distribution of the
training data has been artificially changed.

For over sampling, we have constructed ten training sets
by replicating the positive instances while keeping the
number of negative instances constant. For the first over
sampling, we have created one more copy of positive in-
stances, for the second we created two copies and so on.
When constructing under sampled datasets, we have in-
cluded all of the positive instances and randomly selected
1/10, 2/10... of the negative instances for each fold.

For both sampling methods, the trained model was tested
on the separate 1/3 dataset including a total of 762 em-
bryo records with 649 negative and 113 positive implan-
tation outcomes. The random two-thirds, one-third par-
titioning of dataset into training and test sets has been
repeated 10 times in order to overcome sampling bias.
Over sampling and under sampling processes have been
repeated for each of the 10 hold out experiments. The
presented results are the mean of these 10 repetitions.

4.2 Results

Table 3 and Table 4 represent the distribution of the
training set and prediction results in terms of TPR and
FPR for over sampling and under sampling, respectively.
Results show that both TPR and FPR increase at each
fold of resampling. This can be interpreted as increasing
the number of positive embryo samples and reducing the
number of negative embryo samples raise the number of
positive predictions. The tradeoff between the TPR and
FPR can be adjusted by changing the ratio of classes.
Optimum (TPR, FPR) pair can be obtained as explained
in Section 3.2. These corresponds to (66.5%, 33.6%) and
(65.3%, 32.1%) for over sampling and under sampling,
respectively. Under sampling experiments show that, a
training set including 218 positive and 518 negative em-
bryo records is sufficient to characterize the implantation
outcome. This result is important in the sense of reducing
the time and cost of data collection in clinical practice.

The TPR and FPR values have also been calculated by
varying the decision thresholds in the range of [0:0.1:1].
The resulting set of (TPR, FPR) pairs are given in Table
5.

The results of over-sampling, under-sampling and thresh-
old variation have been plotted as a single 2D ROC curve
(Figure 2). Both sampling methods and adjustment of
the decision threshold produce almost the same ROC
curves demonstrating the similarity of the effects of these
methods on prediction performance.

Figure 2: ROC curves demonstrating the effect of sampling and
threshold variation of Naive Bayes based IVF implantation predic-
tion
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Table 3: Distribution of classes and prediction results after over sampling the training data.
Dataset No 1 2 3 4 5 6 7 8 9 10
Number of Positive Instances 218 436 654 872 1090 1308 1526 1744 1962 2180
Number of Negative Instances 1295 1295 1295 1295 1295 1295 1295 1295 1295 1295
True Positive Rate 0.508 0.630 0.665 0.692 0.705 0.723 0.741 0.749 0.760 0.768
False Positive Rate 0.180 0.287 0.336 0.372 0.404 0.429 0.449 0.461 0.473 0.488

Table 4: Distribution of classes and prediction results after under sampling the training data.
Dataset No 1 2 3 4 5 6 7 8 9 10
Number of Positive Instances 218 218 218 218 218 218 218 218 218 218
Number of Negative Instances 1295 1165 1036 906 777 647 518 388 259 129
True Positive Rate 0.508 0.542 0.554 0.581 0.611 0.637 0.653 0.682 0.726 0.791
False Positive Rate 0.180 0.202 0.22 0.245 0.262 0.298 0.321 0.360 0.414 0.513

Classification with the default decision threshold, i.e. 0.5,
produce 50.8% TPR and 18.0% FPR, whereas with topt =
0.3 TPR increased to 64.4% and FPR also increased to
30.6%. Choosing a point on the left-hand side of the topt

on the ROC curve reduce FPR, but often have lower TPR
as well. Thresholds on the right hand-side increase both
TPR and FPR.

4.3 Threats to Validity

In machine learning applications, it is crucial to deal
with possible biases arising from sampling procedure and
training-testing strategies. In order to overcome sam-
pling bias, we have applied ten repetitions of the random
train/test set partitioning. In terms of construct validity,
our observations are well translated into measures such
as TPR and FPR measures that are clear and widely ac-
cepted by researchers for imbalanced datasets. The data
comes from a single source challenging the external va-
lidity of the results. However, in this domain there are
no public datasets nor different labs are willing to share
their data.

5 Conclusions

Each real world application of standard machine learn-
ing algorithms require careful analysis of the input data
and utilized methods. Selecting the most appropriate
pre-processing or post-processing tasks provides better
recognition performance. This is crucial for providing re-
liable decision support to domain experts especially in
medical decision making applications.

Most of the medical datasets represent an imbalanced
distribution of positive and negative samples. This study
has investigated the problem of learning from imbalanced
dataset for the specific IVF domain. We examined the
effects of sampling and threshold optimization in Naive
Bayes classification and presented a comparative analy-
sis of these methods for implantation prediction of IVF
embryos.

Experimental results revealed that both over sampling
the minority class, under sampling the majority class and

varying the decision threshold of Naive Bayes classifier
produce similar prediction performance. Therefore, we
conclude that, it is not necessary to artificially rebalanc-
ing the distribution of class samples in IVF dataset. The
easier and effective way is to find the optimum decision
threshold that produce required TPR and FPR values
depending on cost of misclassifications. Assuming equal
cost of false positive and false negative errors, the opti-
mum decision threshold is found to be 0.3 resulting in
64.4% TPR and 30.6% FPR in implantation prediction.
Furthermore, analysis of the classification results on re-
balanced datasets provided the minimum number of data
instances required to train a predictor model in implan-
tation prediction problem.
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