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Abstract—Ratio rules mining in data streams is
a challenging problem in terms of two issues: con-
cept drifting and continuous large amount of data.
In this paper, we propose to estimate distribution of
each data stream as time progresses, and to detect
partially coagulated intervals in the distribution of
each data stream as emerging trends. Then we mine
ratio rules from subsequences data at these emerg-
ing trends. Traditional techniques cannot be applied
to process continuous large amount of data in data
streams because of time and space constraints. In this
paper, we propose an incremental Principle Compo-
nent Analysis method, as well as a multiple regres-
sion measurement to mine ratio rules incrementally
and adaptively. Methods are proposed to detect the
change of data trends and to mine ratio rules in a
single on-line scan of the data streams. Our exten-
sive experiments on synthetic and real datasets verify
efficiency and effectiveness of our proposed methods.
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1 Introduction

Different from association rule mining [1], ratio rule min-
ing is proposed to capture quantitative association knowl-
edge [2, 3, 4, 5]. A classical example is {bread : milk :
butter} = 1 : 2 : 1. This example attempts to character-
ize purchasing activity:“if a customer spends 1 amount
on bread, then s/he is likely to spend 2 amounts on milk
and 1 amount on butter“. Although techniques for min-
ing ratio rules in static database have been proved to be
effective, how to mine ratio rule in concept drifting data
streams is still a challenging problem.

Data streams environment imposes additional constraints
for the mining procedure: presence of concept drifting
and continuous large amount of data. Take the example
of market basket data streams. If purchasing activities
show an increasing trend in the number of customers with
a certain combination of demographic characteristics in
a short period, then the manager may be interested in
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mining ratio rules at this emerging trend in order to de-
scribe the purchasing behavior of this group. On the
other hand, traditional techniques cannot be applied to
process continuous large amount of data in data streams
because of time and space constraints.

In order to address the issues, we propose an approach to
mine ratio rules at emerging trends of data streams incre-
mentally and adaptively. In order to detect the emerging
trends of data streams, we estimate the distribution of
the continuous data in each data stream, and detect par-
tially coagulated intervals in the distribution of data as
the emerging trends. The emerging trends of all data
streams can be detected synchronously in a single on-line
scan of data. Then we mine ratio rules from subsequences
data at these emerging trends. Here, in addition to adopt
an automated incremental Principal Component Analysis
method for generating ratio rules, we also propose a gen-
eralized multiple regression measurement which attempts
to assess how good the generated ratio rules are at each
new arrival data point.

This paper is organized as follows. In Section 2, we dis-
cuss related work for mining ratio rules. Section 3 gives a
formal definition of ratio rules. In Section 4 and Section
5, we elaborate our proposed approaches for tackling two
issues of our ratio rules mining problem. In Section 6,
we present empirical results of synthetic and real data.
Finally, Section 7 concludes the paper.

2 Related Work

In [2], ratio rules are defined as eigenvectors of a database
(matrix) whose eigenvalues are the largest. This model
has the advantage to estimate missing values in the
database. While, it also limits the application of ra-
tio rules mining in data streams: first, the technique of
eigen-analysis cannot be applied to process large volume
of continuous data because of time and space constraints.
Second, because the mining results in [2] are very easy to
fall victim to noise, it is difficult to mine “local” ratio
rules which are derived from subsets of data. Third, it
is hard to quantify a ratio rule, such as how well does a
ratio rule fit to the data streams.

[3] and [4] select the ratio rules based on user-specified
support and confidence: these methods are able to mine
“local” ratio rules. Compared to [3] which is valid only for
2-dimensional data, [4] provide an efficient algorithm to
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mine ratio patterns from the multidimensional database.
However, for data streams, the traditional algorithms for
counting support in static database are not efficient.

The authors of [5] proposed an integrated method to mine
ratio rules from distributed and changing data source.
Similar to our adopted method for mining ratio rules
incrementally, a novel robust and adaptive one-pass al-
gorithm (RARR) is proposed. However, in our proposed
approach, we declare the ratio rules at emerging trends of
data, and give a measurement to evaluate the goodness-
of-fit of the ratio rules. In our experimental results, we
compare the quality of our algorithm with that of RARR.

3 Problem Definition

Let A = {a1, a2, · · · , am} be a set of attributes which
are also the names of the multiple data streams. An m-
dimensional data point Ti arrives at i-th time point, and
the value of attribute aj is represented by v(aj).

We define a ratio rule P is a set of emerging trend in
terms of a reference attribute and a ratio among at-
tributes which is generated from data points at the emerg-
ing trend. For example,

P = {(a1 : a2 : a3) = (1 : 2 : 3) at a1 ∈ [1, 3]}

represents that at the emerging trend of attribute a1 as
[1, 3], ratio relationships among attributes a1, a2 and a3

are v(a2)/v(a1) = 2 : 1, and v(a3)/v(a1) = 3 : 1. Here,
the attribute a1 is called reference attribute whose values
appear an emerging trend. We omit the attributes whose
values are very close to 0, and attributes are ordered in
alphabetic order.

In the following sections, we will elaborate the methods
to detect emerging trends and to mine ratio rules at the
emerging trends incrementally and adaptively.

4 Detection of Emerging Trends

Based on the technique proposed in [6] for diagnosing
evolution of data streams, we detect partially coagulated
intervals in the distribution of data as emerging trend
intervals.

4.1 Change Diagnosis of Data Streams

When a data stream shows high level of evolution, it is
expected that the relative data concentrations at various
spatial locations may change over time. The work of [6] is
able to capture such changes using the concept of velocity
density which measures the rate of change of data con-
centration at a given spatial location over a user-defined
time horizon ht.

Let T be the current instant and S be the set of data
points which have arrived in the time window (T −ht, T ).

(1)min max(2)min max(3)min max(4)min max

(7)min max

(5)min max(6)min max
(8)min max

(1)min max(2)min max(3)min max(4)min max

(7)min max

(5)min max(6)min max
(8)min max

Figure 1: The possible relative positions of coagulation
intervals at t and (t − 1), and dissolution interval at t.

We intend to estimate the rate of increase in density at
spatial location X and time T by using two estimations:
forward time slice density estimation F(hs,ht)(X,T ) and
reverse time slice density estimation R(hs,ht)(X, T ). In-
tuitively, F(hs,ht)(X, T ) measures the density function for
all spatial locations at a given time t based on the set of
data points which have arrived in the past time window
(T−ht, T ). Similarly, R(hs,ht)(X, T ) measures the density
function at a given time t based on the set of data points
which will arrive in the future time window (T, T + ht).
Note that both functions can be calculated using the same
data points from the interval (T −ht, T ), except that one
is calculated assuming time runs forward, whereas the
other is calculated assuming time runs in reverse.

Therefore, velocity density estimation V(hs,ht)(X, T ) at a
given location X and time T is defined as:

V(hs,ht)(X, T ) =
F(hs,ht)(X, T ) − R(hs,ht)(X, T − ht)

ht

Note that the velocity density is positive, if in the inter-
val (T −ht, T ) a greater number of data points which are
closer to X have arrived at the end of the interval. On
the other hand, when a greater number of data points
which are closer to X are at the beginning of the interval
(T − ht, T ), then the velocity density is negative. If the
trends have largely remained unchanged, then the veloc-
ity density at the location X will be almost zero.

4.2 Emerging Trends Intervals

After discussing change diagnosis of continuous data, we
define specific trends in given spatial locations.

Definition 1 A data coagulation for time point t and
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user-defined threshold mincoag is defined to be a con-
nected region R in the data space, so that for each point
X ∈ R, V(hs,ht)(X, t) > mincoag > 0.

Definition 2 A data dissolution for time point t and
user-defined threshold mindissol is defined to be a con-
nected region R in the data space, so that for each point
X ∈ R, V(hs,ht)(X, t) < −mindissol < 0.

From Definition 1 and 2, we determine emerging trend in-
tervals to represent emerging trends of continuous data.
For current time point t, we denote the coagulation inter-
val at t and the previous time point (t−1), as [cogst, coget]
and [cogs(t−1), coge(t−1)] respectively. Additionally, the
dissolution interval at t is denoted as [disst, diset]. In or-
der to determine the emerging trend interval at t, it is
necessary to examine the relative positions of the three
above intervals. Figure 1 concludes all of the eight pos-
sible relative positions of the three intervals within the
range of the reference attribute [min,max]:

(1) Because there is no overlap between [disst, diset] and
[cogs(t−1), coge(t−1)], there is no dissolution occurred
in the last coagulation interval, then the emerg-
ing trend interval at time t equals [cogst, coget] ∪
[cogs(t−1), coge(t−1)].

(2) There is an overlap between [disst, diset] and
[cogs(t−1), coge(t−1)]: it means that a dissolution
occurred in [disst, coge(t−1)]. Therefore the emerg-
ing trend interval at time t equals [cogst, coget] ∪
[cogs(t−1), disst].

(3) In this case, the coagulation interval at (t − 1) is
included in the dissolution interval at t. It seems
there is a shift of data concentration from [cogs(t−1),
coge(t−1)] to [cogst, coget] at time t. Therefore, the
emerging trend interval at time t equals [cogst, coget].

(4) Although there is an overlap between [cogs(t−1),
coge(t−1)] and [cogst, coget], there is no overlap be-
tween [cogs(t−1), coge(t−1)] and [disst, diset]. There-
fore, there is no dissolution in last coagulation inter-
val, and the emerging trend interval at time t equals
[cogst, coge(t−1)].

(5) Similar to (4), except that [cogs(t−1), coge(t−1)] is in-
cluded in [cogst, coget]. Because there is no dissolu-
tion in last coagulation interval, the emerging trend
interval at time t equals [cogst, coget].

(6) Contrasting to (5), [cogst, coget] is included in
[cogs(t−1), coge(t−1)]. Although it seems that from
t, data records are beginning to concentrate on de-
tail interval, because at t there is no dissolution in
last coagulation interval, the emerging trend interval
at time t equals the last coagulation interval.

(7) There is an overlap between [cogs(t−1), coge(t−1)] and
[cogst, coget]. Additionally, there is a dissolution in
last coagulation interval. Therefore, the emerging
trend interval at t equals [cogst, disst].

(8) Compared with (6), in case a dissolution exists in
the last coagulation, the emerging trend interval at
t equals [cogs(t−1), coget].

Note that the method proposed to diagnose changes of
trends and to determine the emerging trend intervals in
terms of one reference attribute in a single-scan of data
stream: therefore, it is possible to determine all of the
emerging trend intervals of all attributes synchronously.

5 Mining Ratio Rules

In this section we aim to mine ratio rules from data points
within emerging trend intervals. We adopt our previ-
ously proposed incremental Principal Component Anal-
ysis method (IPCA) [7] to mine ratio rules. In addition,
because a emerging trend interval is determined with re-
spect to one reference attribute, it is possible that there
are more than one kind of ratio rules within an emerging
trend interval. Therefore, we utilize our previously pro-
posed generalized multiple regression measurement (GR)
[8] to evaluate the goodness-of-fit of existing ratio rules.

5.1 Incremental Ratio Rules Mining

We mine ratio rules incrementally using IPCA [7] as
shown in Figure 2. The main idea is to read in a new
data point xt+1 and perform three steps:

• Compute the projection yi, based on the current pro-
jection vector ei, by projecting xt+1 onto ei. Note
that ei is the i-th principal component coefficient
vector, and represents the i-th ratio rule of the past
data sets;

• Estimate the reconstruction error u and the energy
d based on y; and

• Update the estimations of ei.

Intuitively, the goal is to update ei adaptively and quickly
based on the new data point. The larger the reconstruc-
tion error u, the more ei is updated. However, the mag-
nitude of this update should also take into account the
past data currently “captured” by ei. For this reason, the
update is inversely proportional to the current energy d.

5.2 Evaluation of Ratio Rules

Here, we utilize GR [8] to evaluate the goodness-of-fit of
existing ratio rules at the new data point xt+1:

GR =
eT Se∑t+1

i=1 ∥ xi − mean ∥2

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009



Incremental Principal Component Analysis：0. Initialize       to a unit vector,      to a small positive value                  .1. for a new data point           arrives 2.     3.    for 1< i < K4.       // compute   - th PC of the new arrival data5.                                                  // energy of -th PC   6. // reconstruction error based on   -th PC7. // update coefficient of i-th PC at time point 
8. // output the actual   - th PC 9. // repeat with remainder PCs of 10. Endfor11. Endfor

1 1ˆ : t+=x x

1 1,ˆ ˆ:i i t i iy+ += −x x w
1,1:i i t i ii y +′= +e e ud

1, ˆ: Tt i i iy +′ = e x 21,:i i t id d yδ +′= + 1,ˆ:i i t i iy +′= −u x e
1, ˆ: Tt i i iy + = e x 1t+x

ie id ( 1,..., )i m=1t+x
ii i 1t +

i

Figure 2: Incremental Principal Component Analysis.

where e=[e1, e2, . . . , eK ]T is one of the existing ratio rules
which calculated by IPCA algorithm in Section 5.1;

S =
t+1∑
i=1

(xi − mean)(xi − mean)T

is denoted as scatter matrix and mean is the average vec-
tor of the data. As discussed in [8], the result of GR
varies within [0, 1]. Larger the result is, better the ratio
rule fits to the new data. The skeleton of mining ratio
rules within an emerging trend interval is illustrated in
Figure 3.

6 Experimental Results

Synthetic data streams. In the 2-dimensional
synthetic data (xt, yt), firstly, we generate continu-
ous xt from α different Gaussian distribution: xt ∼
N(µi, σ

2
i ), (i = 0, 1, · · · , α). We assume that the num-

ber of data points with the same distribution is V , and
µi continuously changes as µi+1 = µi + (−1)s · V , where
s ∈ {1, 2} specifies the direction of the movement and has
a probability of 10% to be 1, which makes the streams
flow reversely. Secondly, we generate yt by β ratio re-
lationships, as yt = bi · xt + ε, (i = 0, 1, · · · , β), where
ε ∼ N(0, 0.12) denotes random noise.

Additionally, we specify the number of data points sat-

For each new arrival data point:1. Calculate                      with respect to the existing vratio rules.2. If the maximumthe j-th ratio rule fits to the new data point;3.       Elsethe new data point represents a new ratio rule, andinitializes coefficients of (v+1)-th ratio rule4.       Update the coefficients of the objective ratio rule    according to IPCA algorithm in Figure 2.        

( 1,..., )iGR i v=
( )jGR threshold j v≥ ≤

Figure 3: Generalized multiple regression measure.

isfying each ratio is B. Therefore, we have the follow-
ing concept drifting scenarios: (1) V < B, then we get
the same ratio rules in different emerging trend intervals;
(2) V = B, then we get different ratio rules at different
emerging trend intervals; (3) V > B, then we can find
different ratio relations in one emerging trend interval.

Real data sequences. We downloaded all the NAS-
DAQ stock prices from yahoo website 1 starting from
05− 08− 2001 and ending at 05− 08− 2003. It has over
4000 stocks. We used the daily closing prices of each stock
as sequences. These sequences are not of the same length
for various reasons, such cash dividend, stock split, etc.
We made each sequence length 365 by truncating long se-
quences and removing short sequences. Finally, we have
3140 sequences all with the same lenght 365. The 365
daily closing proces start from 05 − 08 − 2001, ending at
some date (not nessaritly at 05 − 08 − 2003, since there
are no proces in weekends).

Bench methods. We compare performance our ap-
proach with that of eigen-analysis based approach [2]
and RARR method [5]. We choose Ehs,ht(t)/ht to be
the value of mincoag and mindissol. Here, Ehs,ht(t) =
ht

∫
All X

|V(hs,ht)(X, t)|δX is the total rate of change over
the entire spatial locations at t. Additionally, the thresh-
old of GR measurement is set to be 0.98.

Performance measurements.: we measure the quality
of ratio rules by “Guessing Error” which is defined in [2].
Given a set of ratio rules R on a n × m data matrix D,
“single-hole guessing error” is defined as the reconstruct-
ing error as in equation (1). Correspondingly, “h-hole
guessing error” is defined as in equation (2).

GE =

√√√√ 1
nm

n∑
i

m∑
j

(d̂ij − dij)2 (1)

GEh =

√√√√ 1
nh|Hh|

n∑
i

∑
H∈Hh

∑
j∈H

(d̂ij − dij)2 (2)

where Hh contains some subset of the hCm combination
of sets H with h “holes”.

6.1 Sensitivity Analysis

We generate x(t) from α = 4 trend intervals. In the case
of V < B as shown in Figure 4(a), our proposed method
(in red solid segments) achieves the ratio in every trend
intervals. Because that all of the data satisfy the same
ratio relationship, the result of eigen-analysis method (in
black dashed line) and RARR (in green dashed line) are
also able to get the exact ratio rules. In Figure 4(b) where
V = B, there are β = 4 kinds of different ratio relation-
ship in different intervals of X. Our proposed method
is able to capture the different ratio rules in different in-
tervals. While, the results of eigen-analysis method and

1http://table.finance.yahoo.com/
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RARR method are sensitive to noise, and did not cap-
ture the exact ratio relationship in subsets of data. In
the last case of V > B, it is expected to mine differ-
ent ratios within a trend interval. As shown in Figure
4(c), we can see that in each trend interval, our proposed
method mined the ratio rules according to GR measure-
ment successfully, while, the eigen-analysis method and
RARR method are failed.

In Figure. 4(d), 4(e) and 4(f), using the single-hole guess-
ing error measurement, we compare the effectiveness of
the three approaches for each concept drifting scenarios.
Here, the ratio of results of RARR algorithm and our pro-
posed approach to that of eigen-analysis based method is
illustrated. We can find that the performance of our ap-
proach is best in all of the cases. Therefore, we can see
that the “local” ratio rules generated by our approach in
each emerging trend intervals of data describing the ratio
relationship better.

(a) V < B (b) V = B

(c) V > B (d) V < B

(e) V = B (f) V > B

Figure 4: Sensitivity analysis.

In Figure. 5, we depict the ratio of processing time of

1111

0.530.530.530.53 0.510.510.510.51

00.10.20.30.40.50.60.70.80.91

1 2 3Eigen-analysis based RARR Proposed approach

1111

0.530.530.530.53 0.510.510.510.51

00.10.20.30.40.50.60.70.80.91

1 2 3Eigen-analysis based RARR Proposed approach
Figure 5: Comparison of processing time.

the three approaches for the case of (V > B). We can
see that the RARR method and our proposed approach
achieve almost the same processing time. Both of these
two approaches realize incremental generation of ratio
rules. Although our approach includes the process for
detecting emerging trends of data, this process is also in-
cremental and has no effect to process time. The eigen-
analysis based method is the most expensive.

6.2 Scalability Analysis

As shown in Figure 6(a), as the number of data points
increases from 1000 to 5000, execution time of eigen-
analysis based method increases fast. Additionally, in
terms of ‘h-hole guessing error”, as shown in Figure 6(b),
eigen-analysis based approach performances the most
worst. For the reason that our approach achieves ra-
tio rules mining at emerging trends of data, the guessing
error is the least.

6.3 Experiments on Real Data

Figure 7 shows real stock data from four companies.
From mined ratio rules among these 4 sequences, we find
that sequence A and sequence B are independent with
other sequences, while sequence C is related with se-
quence D. We plot the data points of sequence A and
sequence B in Figure 8, and we can verify that there is
no linear relationship between sequence A and sequence
B. On the other hand, the data points of sequence C and
sequence D are plotted in Figure 9, and we can mine ratio
rules (in red solid segments) between the two sequence in
terms of intervals of sequence C, as well as that in the
last interval of sequence C, no linear relationship exists,
and the real data of these two last subsequences are not
similar with each other in Figure 7.

7 Conclusion

In this paper we discussed an approach for mining ra-
tio rules in concept drifting data streams. The velocity
density estimation technique is used to detect emerging
trend intervals. Then ratio rules are mined within each
emerging trend interval in order to provide insight into
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Figure 6: Scalability analysis.

Figure 7: 4 real stock data sequences.

the nature of the pattern in the underlying data char-
acteristics. Breaking the limitation of traditional batch
process of eigen-analysis, we propose an incremental pro-
cess for generating ratio rules. Innovation of the GR mea-
surement addresses the problem for deriving ratio rules
from subsets of data.
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