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Abstract—Distributed DEVS simulation plays an

important role in solving complex problems for its re-

useability, and composability of component models.

Using MPI to be the communication middleware, the

distribution increases the performance. But even the

tiny faults of computing resources can lead to crash.

Hence Fault Tolerant is necessary to maintain the

simulation reliability. This paper introduces a DEVS

framework supported Fault Tolerant. The optimistic

distributed simulators implement the distribution in

DEVS simulation. Fault Detection, States Storage

and Fault Recovery are integrated into the framework

to avoid crash at runtime. Experiments are carried

out to find the optimal Timeout for Fault Tolerant

framework. The results indicate that the framework

has to be adjusted along with the changing of simula-

tion requirements. Keywords: DEVS, Fault Tolerance,

Fault Detection, States Storage, Fault Recovery

1 Introduction

Discrete EVent system Specification(DEVS) has been ac-
cepted as a sound formalism in modeling and simulation.
The distributed protocol of DEVS has been developed to
meet the requirements for solving the particularly com-
plex problems[1]. The overall simulation time can be
reduced greatly because of many nodes’ participation.
Many distributed frameworks are available to achieve the
goal of distribution under the instructions of [2]. But even
the most robust system can not maintain its reliability.
So it is necessary to design a mechanism to guarantee the
integration of simulation . The distribution provides the
way to backup the simulation entities in case of faults.
[3] presents a roll back based optimistic fault-tolerance
scheme. The stable global virtual time(SGVT) is defined
to make sure the safe roll back. [4] uses the buddy pro-
cessor to store the copy of tasks. If the original proces-
sor fails, the buddy process will be processed. [5] gives
a Fault Tolerant framework based on HLA. The generic
Fault Tolerant model is presented to solve the fault prob-
lems in HLA-based simulations. The model is optimized
on the basis of system’s features.
[3], [4] give the principles of Fault Tolerant, [6] adjust it
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Figure 1: MPI-based Distributed DEVS Architecture

to the dynamic distributed system. [5] emphasizes the
framework to solve the problems in HLA-based simula-
tion. The DEVS field hasn’t been covered yet. In this
paper, we provide a way to do the distribution of DEVS

simulation. The distributed simulator with optimistic
synchronization is introduced. Fault Detection, States
Storage and Fault Recovery are discussed in detail. In
section 2 we give the DEVS formalism. Section 3 in-
troduces the distribution of DEVS simulation. Section
4 explains how to realize Fault Tolerant in distributed
DEVS simulation. Section 5 presents the experimental
data to show the improvement of distributed simulation
and the optimal value for timeout. Finally, the conclusion
is summarized in section 6.

2 DEVS Formalism

The DEVS formalism provides a theoretic base of model-
ing the discrete event models. The formalism specifies the
discrete event model in a hierarchical, modular manner.
The Atomic Model, AM, is specified as follows:

AM = 〈X,Y, S, δint, δext, λ, ta〉 (1)

X is the set of inputs and Y is the set of outputs;
S is the set of sequential states;
δint : S → S is the external state transition function;
δext : Q×X → S is the external state transition function;
λ : S → Y is the output function;
ta : S → ℜ+

0 ∪∞ is the time advance function;
Q = (s, e)|s ∈ S, 0 = e = ta(s) is the set of total sets.
Several atomic models could be coupled in the coupled
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model. The coupled model could also be added into a
larger coupled model according to the closure of it. The
hierarchy is constructed by building coupled models. The
Coupled Model, CM is defined as follows:

CM = 〈X,Y,D,Md, Id, Zi,d, Select〉 (2)

X: a set of input events and Y : a set of output events;
D: a set of component references;
Md: a Classic DEVS model;
Id: a set of influencees of d;
For each i in Id

Zi,d : Yi → Xd to d ouput translation function;
Select is the subsets of D → D : tie-breaking function.

3 MPI-based Distributed DEVS Simula-

tion

3.1 MPI-based Distributed DEVS Architec-
ture

In this paper, we apply Message Passing Interface(MPI)
to realize distributed DEVS distribution . MPI is seemed
as the infrastructure for message communication mecha-
nism. The four layer distributed architecture is shown in
Figure 1. Based on the DEVS Model and DEVS Simula-
tor, DEVS MPI Middleware and MPI are constructed to
achieve distribution. Distributed Simulators are the key
parts to add the distributed features to DEVS simulation
without touching the modeling aspect. Atomic and Cou-
pled model are still simulated in the sequential simulator
and coordinator. Distributed Simulator and coordina-
tor collect and send the messages from sequential ones
to Message Transition module. This module organizes
and sends the messages to MPI. In another way, Message
Transition receives the messages from MPI. Distributed
simulators subsequently pass them to the sequential sim-
ulators to accomplish the message circulation.

3.2 DEVS Simulator Distribution

DEVS Simulation Distribution is realized by the dis-
tributed simulator. We implement optimistic distributed
simulator on the basis of sequential simulator under the
instructions from [7] and [8]. The Partition distributes
models first, then distributed simulators are created sepa-
rately on different nodes accordingly. The Root node that
simulates the Root Model starts and stops the simulation
while all the models are connected by messages. Messages
are divided into Local Message and Remote Message. Re-
mote Message is used to connect models wherever they
are located. Using Time Warp, optimistic simulator in-
creases the simulation speed greatly.

3.2.1 Partition

Partition is the division of simulation models running in
different nodes in distributed simulation. We give the
definition of partition below:

P = ∪Pi, N = ∪Ni, i ∈ {1, . . . k} , Pi =
l∑

j=1

Mi,j (3)

M =

k∑

i=1

l∑

j=1

Mi,j ,Mi,j ∈ {a, c} (4)

The Pi represents the partition in every simulation node
Ni. M is the set of simulation models, composed of Mi,j

means the indexed j model located in the Ni. Mi,j is ei-
ther the Atomic(a) or Coupled(c) model. We don’t touch
the partition too much in this paper, only give the prin-
ciples of partition in MPI-based Distributed DEVS Sim-
ulation:
(1)∃Pr = Mr,0,Mr,0 = root(M), Root Model is the fun-
damental model in DEVS simulation, its simulator is a
bit different from the common model simulator. For this
reason, the Nr only simulated Root Model is named Root
node.
(2)∀Mi,j ∈ Pi,Mi,j ∈ {c} ,∀Mi,k,Mi,j 6= parentn(Mi,k),
1 ≤ n ≤ depth(hierarchy). Partition does not permit the
model allocated together with its parent, even the n-level
parent. If the coexistence happens, it makes no sense
to distribute the model. Obviously, the messaging speed
inside the coordinator is much faster. When the models
share the same parent are partitioned in the same node,
the messages between them have to be transmitted in
MPI DEVS Middle. The extra transmission slows the
speed too much. And the burden on node is not relieved
either.

3.2.2 Optimistic Distributed Simulator

We apply Time Warp algorithm in Optimistic Dis-
tributed Simulator, and in consequence the simulator
is extended to implement the optimistic time advance.
DEVS Models, Local Simulators, Message Manager and
Simulator Queues constitute the simulator structure
shown in Figure 3. Meanwhile, Simulator Queues con-
taining State Queue, Input Queue and Output Queue
are also seemed as the message window in DEVS MPI
Middleware. State Queue is used to save model states in
time order. Input Queue and Output Queue are linked
to the Message Manager which handles the messages in
and out of the Local Simulators. The two queues store
Remote Messages. The messages to be received by Local
Simulator are stored in Input Queue, and the messages to
be sent are stored in Output Queue. DEVS MPI Middle-
ware is designed to collect the messages from optimistic
simulator and send them to MPI infrastructure. Message
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Figure 2: Fault Tolerant supported Distributed DEVS
Framework

Transition wraps and unwrapps the Remote Messages.
Init, X and Y messages are treated respectively due to
the different message entrance in Message Manager.
At runtime, the partition is published to all the simula-
tion nodes, then the models are loaded. Init messages
are broadcasted to all the models to the initialization.
When the simulation is started, all the simulators send
the local star messages to themselves to time advance.
During the simulation, when the destination of the mes-
sages is located remotely, the messages are sent to DEVS
MPI Middleware and store in the Output Queue. In a
reverse manner, simulators inquiry DEVS MPI Middle-
ware if received some messages, and store them in Input
Queue. The mechanisms in Message Manager to handle
the messages are different in distributed simulator and
coordinator.
In distributed simulator, local simulators process the
messages directly without delivery. Local star messages
which lead to outputting Y messages are sent by the sim-
ulator itself. There only exist the Init/X messages in
Input Queue.
In distributed coordinator, the messaging process is
shown in Figure 3. Message Manager transmits Init, X
and Y messages to hierarchical simulators if the Input
Queue is not empty, otherwise star messages are sent
to local simulators to advance time. Compared to the
sequential coordinator, receiving star messages have to
obey the following rules.

1. The sub models located remotely are ignored in the
selection of immediate star model.

2. The star messages usually lead to the Y mes-

sages from the coupled model. The Y messages
are wrapped into the Remote Messages and subse-
quently sent to MPI DEVS Middleware. In the mean
time, they are stored in the Output Queue.

3. The termination condition has to be inquired after
receiving star message in Root node.

It is worth to note that Init/X messages and Y messages
are treated respectively in Message Manager. We take
the three level hierarchy coordinator in Figure 3 for ex-
ample. The traces in blue signify Init/X messages while
the red traces represent Y messages.
If the Message Manager receives Init/X messages from
Input Queue: (1) The Init/X messages arrive at
Coordinator-0 first.
(2) Identified by the coupled model, the input messages
are transmit to the sub simulators: Simulator-0 and
Coordinator-1. If they are not the local simulator, the
messages have to be wrapped into remote Init/X mes-
sage and sent to relative nodes again.
(3) Coordinator-1 continues to transmit the messages to
its sub simulators: simulator-1 and simulator-2. The
transmission is finished when the Init/X messages cover
all the local simulators.
If the Message Manager receives Y messages from Input
Queue: (1) The parent simulator is found based on the
parent model information in Y messages. The Figure
3 shows that Simulator-1 is the parent simulator. (2)
Simulator-1 generates its own Y message by receiving in-
put Y message, soon after the Simulator-1’s Y message
is sent to parent Coordinator-1. (3) Coordinator-1 con-
verts the Simulator-1’s Y message to be its own X mes-
sage and Y message. X message is sent to Simulator-2 and
Coordinator-1’s Y message is sent to parent Coordinator-
0. (4) Similar to Coordinator-1, Coordinator-0 converts
the Y message to be its own X message and send to
simulator-0. The message traces end when all the local
simulators are influenced by the input Y messages.

4 Fault Tolerant in Distributed DEVS

Simulation

We introduce the design and implementation of Fault Tol-
erant in this section. Even the most robust simulation
system can not claim to be immune from faults. The
distribution of DEVS simulation brings the hardware re-
dundancy. So it is possible to develop a framework to
support Fault Tolerant.

4.1 Fault Tolerant supported Distributed
DEVS Framework

In this framework, there are four kinds of nodes: Mas-
ter, Logger, Model Server, Root Server. Figure 2 illus-
trates the structure of framework and connections be-
tween nodes. Master and Logger are responsible for Fault
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Figure 3: Distribute Simulator

Table 1: Message Channels

Channel Type Messages in Channel

Command Init, Start, Pause, Continue, Stop

Detection Detect, Response, LVT, GVT

Model Remote Messages

Log STas, STcc, Request

Tolerant while the servers are models’ simulation plat-
forms. In addition, State Pool subordinated to Logger
stores states at intervals. Master is seemed as the control
center in the framework, it controls simulation’s life circle
and decides when and which node is fault.
Master and Logger are connected with all the Model
Servers including Root Server by message channels. The
channels are constructed on MPI infrastructure. The
channels are divided into Command channel, Detection
channel, Model channel and Log channel. Tab 1 describes
the channels and the messages in them. Command Mes-
sage is used to control simulation experiments, Partition
and Repartition are attached to the Init and Continue
messages. Detection detects the fault nodes, GVT is at-
tached to Detect message while LVT is attached to Re-
sponse message. Model Message is transmitted among
model servers, including X-Y and anti messages. Log
Message is the package within the simulator states and
the request for reloading fault models. Fault Detection,
States Storage and Fault Recovery are the basic elements
in Fault Tolerant. We describe the algorithms and detail
how they work in the framework in next sections.

Table 2: States for Storage

Entity Type State Definition

Atomic Model STa = S

Atomic Simulator STas {STa, tl, tn, LV T}

Coupled Model STc = {Si} , Si ∈ {STa, STc}

Coupled Coordinator STcc {STc, tl, tn, eventList, LV T}

Node STn = {Si} , Si ∈ {STas, STcc}

4.2 Fault Detection

We consider the faults in three categories:(1)Hardware
faults to halt simulation in some node.(2)Operation Sys-
tem shut down for some reason.(3)The simulator crashes.
The logical faults in model and MPI-based Communi-
cation faults between nodes are not covered here. And
we assume that master and logger are robust enough to
maintain the thousands times of simulation.
These faults cause a common phenomenon: The models
on the node do not respond to any queries no matter
what they are. For this reason we use detection messages
to inquiry Timeout. The threshold value of Timeout is
given according to specified simulation at first. Master
sends detect messages to model servers periodically dur-
ing simulation. If the model servers do not respond in
time, the node is seemed to have been in fault.
It is important to determine the appropriate threshold
value in relative simulation. If the value is larger than
need, the recovery of simulation can not be activated
timely. If the value is less, the false fault report causes
the unnecessary recovery. Timeout differs from simula-
tion to simulation. It is not reasonable to keep the fixed
value in all simulations. We do the Timeout computation
by way of modeling simulation platform including simu-
lation entities and Fault Tolerant entities.
These entities are built in DEVS. Simulation entities sim-
ulate the protocol of Atomic Solver(simulator) model,
Coordinator model and Root Coordinator model while
Fault Tolerant entities are composed of Master and Log-
ger Models. These DEVS models are used to load the
DEVS models for concrete simulation applications. Once
the entities and models are ready, the sequential simu-
lation can be executed to compute the threshold value
of Timeout. Regarded as the reference value, sequential
result helps find the accurate optimal Timeout by the
experiments on real system.

4.3 States Storage and Fault Recovery

Fault Recovery is actually the rollback to last correct
state. So the States Storage is the basis of Fault Recov-
ery like the State Queue in Time Warp. The definition
of state from atomic model to node is listed in Tab 2.
It is noted that simulators report states to Logger im-
mediately after each time advance operation. The states
in the phase of receiving input messages are abandoned
because the Input and Output Queues have to be stored
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in case of recovering this kind of state. Logger organizes
the log messages into groups by nodes and stores them
into States Pool in time order. The State Pool updates
the model states as soon as the log messages are coming.
Supported by Logger and State Pool, The algorithm of
Fault Recovery is given below:

1. N∗ is found to having been fault by Fault Detection.

2. re partition returns Nr for reloading the fault
models.

3. ∀m∗,j in N∗, sr′,j is created in Nr, Nr requests
STas(∗, j) or STcc(∗, j) from Logger to update sr,j .
t∗ is acquired from sr′,j .

4. ∀si,j , i 6= r′,∀msg ∈ Qi, if t(msg) ≥ t∗ and msg
received from m∗,j , si,j receives ¬msg.

5. ∀si,j , i 6= r′,∀msg ∈ Qo, if t(msg) ≥ t∗ and msg sent
to m∗,j , si,j sends msg to sr′,j .

The re paritition is to allocate models again to the
healthy nodes. The scheme is designed in two respects:(1)
The models on the fault node are all reloaded on the
chosen node. (2) The new recovering node is chosen ac-
cording to the number of atomic models. On one hand,
compared to the original partition, the new one does
not distribute the reloading models. So the communi-
cation load can remain the same level as before. On an-
other hand, atomic models are in charge of most com-
putation in DEVS simulation. The number of atomic
models indicates the computation burden on the node.
re partition chooses the node with the least atomic
models to recover fault models.

5 Case Study and Analyze

5.1 Model Description

We build the City Map to model the traffic in city. The en-
tities such as District, Home, Office, TrafficLightController,
RoadSegment and Bridge constitute the city. Car move-
ment between entities is seemed as the message in im-
plementation. Home, Office, TrafficLightController, Road-

Segment and Bridge are the atomic models, they are used
to couple District. City Map is composed of an amount
of Districts and the RoadSegments or Bridges connecting
the Districts. At the beginning of the simulation, cars are
generated in each Homes. Soon after they are transmit-
ted to Office through RoadSegment, TrafficLightController

or Bridge. Finally, when all the cars go back Home, the
simulation is terminated.
The complexity of City Map is determined by the number
of Districts. In order to adjust the complexity in experi-
ments, we give the number in initialization.

5.2 Experiments

Supported by Python DEVS, simulators, Fault Tolerant
servers and models are implemented in Pyhon. MPI is
the infrastructure of distribution of simulation. There-
fore MPI4Python is used to develop the distributed sim-
ulators. Conservative and optimistic simulators are both
implemented to show the improvement from sequential to
distributed, from distributed to parallel. Our testbed is
a 32 nodes cluster installed the Linux Fedora 9.0, Python
2.5, openMPI 1.2.7 and MPI4Python 1.1.0.
The experiments are designed in two sets: Efficiency cen-
tered and Fault Tolerant centered. The former focuses on
the speedup of simulators using Time Warp. The latter
obtains Timeout’s optimal value for Fault Tolerant.
The top picture in Fig 4 gives the consumed time curves
of different number of Districts. The performance data
is collected when the Districts number is 1, 2, 4, 8 and
16. Moreover, the curve in blue indicates the simulation
executed on sequential simulator while the red one is the
result from optimistic simulator on 2 nodes.
In another aspect, we select Timeout to do the optimiza-
tion for Fault Tolerant. The Accuracy of Fault Detection
is defined to help find the optimal value. The number of
Districts is 4 and the samples of Timeout are ranged from
0.0 to ∞. The experiments are performed 10 times at
each point. Accuracy is the correct detection proportion
in experiments.

5.3 Analyze

From the Efficiency centered experiments, it is shown
that the optimistic simulator accomplishes a great deal
in improving performance. The top graph shows that the
consumed time approaches the half of the sequential by
increasing Districts number. Obviously, the performance
will be elevated significantly by increasing nodes num-
ber.
In the Fault Tolerant centered experiments, the Accu-
racy curve indicates that the Accuracy increases from 0
to 100% along with the Timeout from 0 to ∞. 100% Ac-
curacy is the goal of Fault Tolerant. Simultaneously, the
less the Timeout is, the better for the performance. If the
Timeout is larger than necessary, lots of time is wasted in
detecting faults. Therefore, the fault can not be corrected
immediately, the chain faults will happen soon after. It
costs much more than need for recovering the faults. In
the result, the simulation performance is lowered greatly.
So the value of Timeout just touches the 100% Accuracy
is the most optimal one. In our experiments, the best
Timeout is 0.3 second as shown in Fig 4.

6 Conclusions and Future Work

We have introduced how to do the DEVS simulation
distribution with the support of MPI. The algorithms
to realize the conservative and optimistic simulators are
presented in detail. Based on the distribution, the
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Figure 4: Experiments Results for Distribution and
Timeout

framework for supporting the Fault Tolerant is designed.
Fault Detection, States Storage and Fault Recovery are
described respectively in advance, Master, Logger and
Model Server are implemented to fulfill the requirements
from Fault Tolerant. Two sets of experiments are per-
formed to show the improvement of distributed DEVS

simulation and the optimization for Fault Tolerant. The
results testify that optimistic simulators speedup the sim-
ulation a lot. And the most optimal value for Timeout is
acquired at the moment Accuracy just reaches 100%. For
future work, it is necessary to further the optimization in
distributed simulators. The algorithms such as machine-
learning have to be applied on the settings in Time Warp.
They can adapt to the features in different models, hence
the optimistic simulators can achieve the highest speed in
all kinds of simulation. Moreover, the calibration of mod-
eling simulation platforms is not limited to the Timeout.
The other parameters like time delay of messages can be
modeled and in consequence calculated to get the optimal
value in Fault Tolerant framework.
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