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Abstract-This paper presents the state estimation problem 

for nonlinear industrial systems using asynchronous 
measurements to simulate the circumstances of real case studies. 
The well-known conventional Kalman filters give the optimal 
solution but require synchronous measurements, an accurate 
system model and exact stochastical noise characteristics. Thus, 
the Kalman filter with incomplete information and asynchronous 
sensors measurements may be degraded or even diverged.  In 
order to reduce the effect of noise variance uncertainty, adaptive 
fading extended Kalman filter and adaptive unscented Kalman 
filter are proposed to overcome this drawback. On the other 
hand, received data to estimation nodes from multi-sensors have 
different communication delays and various sampling rates. In 
this paper, conventional Kalman filter has been modified in a 
way to be workable for state estimation in plants with different 
communication delays in their sensors. Also decentralized multi 
sensor fusion has been used to estimate states in presence of 
multi-rate sensors. The feasibility and effectiveness of the 
presented methods are demonstrated through simulation studies 
on a continuous stirred tank reactor (CSTR) benchmark 
problem. 
 
Keywords: Multi sensor fusion, Decentralized data fusion, 
Extended Kalman filter, Adaptive Fading EKF, Adaptive fading 
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I. INTRODUCTION 

For a particular industrial process application, there might 
be plenty of associated sensor measurements located at 
different operational levels and having various accuracy and 
reliability specifications. One of the key issues in developing a 
MSDF system is the question of how can the multi-sensor 
measurements be fused or combined to overcome uncertainty 
associated with individual data sources and obtain an accurate 
joint estimate of the system state vector. There exist various 
approaches to resolve this MSDF problem, of which the KF or 
its information form is one of the most significant and 
applicable candidate solutions. In nonlinear systems, the EKF 
use the first order Taylor series to transform nonlinear system  
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to linear system, and it is a used widely in nonlinear system. 
A recent improvement to the EKF is the unscented Kalman 

filter (UKF) [1]. The UKF approximates the probability 
density resulting from the non-linear transformation of a 
random variable instead of approximating the nonlinear 
functions with a Taylor series expansion. The classical 
Kalman filter is a centralized fusion filter that assumes all 
observation coming synchronously to a control computing 
facility. The case where all the sensors operate synchronously 
has been widely studied in the literature for the linear cases 
[2]-[5] and for the nonlinear cases [6]-[8], among others. In 
the time delays context, a common approach is the PDE 
(partial differential equation) see Kwakernaak [9], Richard 
[10], Zhang, Zhang, and Xie [11]-[12] and references therein. 
This approach is usually related to solving a partial differential 
equation and boundary condition equations which do not have 
an explicit solution in general. For the case of discrete-time 
systems, the problem has been investigated via system 
augmentation and standard Kalman filtering, see Kailath et al. 
[13] and Anderson and Moore [14] or the polynomial 
approach [15]. The polynomial approach only addresses the 
steady-state filtering problem and it requires solving a much 
higher order of spectral factorization for systems with delays. 
An efficient method to deal with different sensors delay has 
been introduced in this paper. The main idea of this 
methodology is to recalculate Kalman filter in the delay time 
period. Furthermore, a decentralized state vector fusion is 
utilized in the case when sensors with different sampling rates 
are distributed on system. Simulation results depict the 
efficiency of the fusion approach for this purpose. 

Basically, the conventional Kalman filter methodology 
hinge on prior knowledge about statistical characteristics of 
measurement and process noises. But when these are unknown, 
using adaptive Kalman filter strategy is imperative for state 
estimation purpose, [16]-[17]. In order to reduce the effect of 
prior measurement, fading memory algorithm has been 
applied in this work. Combining adaptive technique and 
proposed asynchronous method, we come into a solution for 
the problem of model-process mismatch and sensors noise 
uncertainty. 

This paper is organized as follows: Section 2 derives state 
estimation procedure on the basis of EKF, UKF and Adaptive 
fading method. Section 3 shows how the KF algorithm can be 
changed in order to accommodate latency in the measurements 
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because of both communication delay and multi-rate sensors. 
In section 4, CSTR industrial plant will be simulated. 
Simulation results are presented in section 5. Finally, section 6 
summarizes the main conclusions. 

II. PROPOSED METHODOLOGY 

A.  Extended Kalman filter 
The Kalman filter in its various forms is clearly established 

as a fundamental tool for analyzing and solving a broad class 
of estimation problems1. 

Kalman filter use to estimate the state xЄRnx of a discrete-
time controlled process that is governed by the linear 
stochastic difference equation x୩ ൌ F୩ିଵx୩ିଵ  G୩ିଵu୩ିଵ  w୩ିଵ                                   (1) y୩ ൌ H୩x୩  v୩                                                                   (2) 

The noise processes ሼw୩ሽ  and ሼv୩ሽ  are white, zero-mean, 
uncorrelated, and have known covariance matrices Q୩  and R୩  , respectively: 

 w୩  ~ ሺ 0, Q୩ሻ                                                                      (3) v୩  ~ ሺ 0, R୩ሻ                                                                       (4) Eൣw୩ w୩T൧ ൌ Q୩δ୩ି୨                                                            (5) Eൣv୩ v୩T൧ ൌ R୩δ୩ି୨                                                               (6) Eൣv୩ v୩T൧ ൌ 0                                                                       (7) 
 
To this point we have considered linear filters for linear 

systems. However, many practical systems are non-linear. 
Nonlinear filtering can be a difficult and complex problem. It 
is certainly not as mature, cohesive, or well understood as 
linear filtering. There is still a lot of room for advances and 
improvement in nonlinear estimation techniques. However, 
some nonlinear estimation methods are becoming widespread. 
These techniques include nonlinear extensions of the Kalman 
filter, unscented filtering, and particle filtering. Nonlinear 
systems can be linearized and then linear estimation 
techniques (such as the Kalman or H∞ filter) can be applied. 
This involves finding a linear system whose states represent 
the deviations from a nominal trajectory of a nonlinear system. 
We can then use the Kalman filter to estimate the deviations 
from the nominal trajectory, and hence obtain an estimate of 
the states of the nonlinear system. The derivation was based 
on linearizing the nonlinear system around a nominal state 
trajectory. The question that arises is, how do we know the 
nominal state trajectory? In some cases it may not be 
straightforward to find the nominal trajectory. However, since 
the Kalman filter estimates the state of the system, we can use 
the Kalman filter estimate as the nominal state trajectory. This 
is a sort of the bootstrap method. We linearize the nonlinear 
system around the Kalman filter estimate, and the Kalman 
filter estimate is based on the linearized system. This idea of 
the extended Kalman filter (EKF) was originally proposed by 
Stanley Schmidt so that the Kalman filter could be applied to 
nonlinear spacecraft navigation problems [19]. 

                                                           
1 Leonard McGee and Stanley Schmidt [18] 

The nonlinear system equations obey the following non-
linear relationships: x୩ ൌ f୩ିଵሺx୩ିଵ, u୩ିଵሻ  w୩ିଵ                                            (8) y୩ ൌ h୩ሺx୩ሻ  v୩                                                                (9) w୩  ~ ሺ 0, Q୩ሻ                                                                    (10) v୩  ~ ሺ 0, R୩ሻ                                                           (11) 

Where w୩  and v୩  are process noise and measurement noise 
with variances of Q୩and R୩ respectively. 

A Taylor series expansion of the state equation will be 
performed around x୩ିଵ ൌ xො୩ିଵା  and w୩ିଵ ൌ 0  to obtain the 
following: x୩ ൌ f୩ିଵሺxො୩ିଵା , u୩ିଵ, 0ሻ  ∂f୩ିଵ∂x |୶ොౡషభశ ሺx୩ିଵ െ xො୩ିଵା ሻ 

               ∂f୩ିଵ∂w |୶ොౡషభశ w୩ିଵ 
 
        ൌ f୩ିଵሺxො୩ିଵା , u୩ିଵ, 0ሻ  F୩ିଵሺx୩ିଵ െ xො୩ିଵା ሻ                  L୩ିଵw୩ିଵ                                                                (12)                 

Where F୩ିଵ  represents பౡషభப୶  and L୩ିଵ indicates பౡషభப୵ . 
Linearization the measurement equation around x୩ ൌ xො୩ି  and v୩ ൌ 0  lead to y୩ ൌ h୩ሺxො୩ି  ,0ሻ  ∂h୩∂x |୶ොౡషሺx୩ െ xො୩ି ሻ  ∂h୩∂v |୶ොౡషv୩ 

 
 ൌ h୩ሺxො୩ି  ,0ሻ  H୩ሺx୩ െ xො୩ି ሻ  M୩v୩                              (13) 

      
Where H୩represents ப୦ౡப୶  and M୩  indicates ப୦ౡப୴  . A linear state 
space system and a linear measurement equation are in (12) 
and (13) respectively. It means that standard Kalman filter 
equations can be used to estimate the state. Thus, the 
following equations are named as the EKF equations: xො୩ି ൌ f୩ିଵሺxො୩ିଵା , u୩ିଵ, 0ሻ                                                   (14) P୩ି ൌ F୩ିଵP୩ିଵା F୩ିଵT  L୩ିଵQ୩ିଵL୩ିଵT                                (15) K୩ ൌ P୩ି H୩T൫H୩P୩ି H୩T  M୩R୩M୩T൯ିଵ

                               (16) xො୩ା ൌ xො୩ି  K୩ሺy୩ െ h୩ሺxො୩ି  ,0ሻሻ                                         (17) P୩ା ൌ ሺI െ K୩H୩ሻP୩ି                                                           (18) P୩ା ൌ ሺI െ K୩H୩ሻP୩ି                                                           (19) 

B.  Unscented Kalman Filter 
Julier and Uhlman developed the UKF algorithm[1] and 

[20], they used the unscented transform to compute the statics 
character of states and measurements, for the unscented 
transform is second-order equal to the real statics character at 
least. An unscented transformation is based on two 
fundamental principles. First, it is easy to perform a nonlinear 
transformation on a single point (rather than an entire pdf). 
Second, it is not too hard to find a set of individual points in 
state space whose sample pdf approximates the true pdf of a 
state vector. 

Suppose that we know the mean ݔҧ  and covariance ܲ of a 
vector ݔ. A set of deterministic vectors called sigma points 
whose ensemble mean and covariance are equal to ݔҧ  and ܲ 
can be find. We next apply our known nonlinear function ݕ ൌ ݄ሺݔሻ to each deterministic vector to obtain transformed 
vectors. The ensemble mean and covariance of the 
transformed vectors will give a good estimate of the true mean 
and covariance of ݕ . This is the key to the unscented 
transformation. The UKF algorithm can be simply obtain by 
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replacing the EKF equations with unscented 
transformations[21]-[24].  

Suppose the nonlinear system equations obey the following 
non-linear relationships: 
 

The UKF algorithm can be summarized as follows: 
1- The algorithm will be started with some initial guesses for 
the state estimation (x) and the error covariance matrix (P), 
defined as: 

 xොା ൌ Eሾxሿ              (20) 
 Pା ൌ Eሾሺx െ xොାሻሺx െ xොାሻTሿ                                  (21) 
 
2- The following time update equations are used to 

propagate the state estimate and covariance from one 
measurement time to the next: 
(a) Calculate a collection of sigma points, stored in the 
columns of the n ൈ ሺ2n  1ሻ sigma point matrix xො୩ିଵା  as: 

 χ୩ିଵ ൌ ቈxො୩ିଵା    xො୩ିଵା  ටሺn  λሻP୩ିଵା    xො୩ିଵା െ ටሺn  λሻP୩ିଵା  

              (22) 
The parameter is a scaling parameter defined as: 
 λ ൌ αଶሺn   κሻ െ n                      (23) 
 

The constant α determines the spread of the sigma points 
around xො୩ିଵା  and κ is a secondary scaling parameter. 
(b) Propagate each column of χ୩ିଵ (i.e., χ୩ିଵ୧ ) through the 
nonlinear system dynamic equation to perform the prediction 
or time update step as: 

 χ୩ିଵכ,୧ ൌ f൫χ୩ିଵ୧ , u୩ିଵ൯     i ൌ 0,1, ڮ ,2n                 (24) 
 χ୩ିଵכ ൌ fሺχ୩ିଵሻ                         (25) 

 
(c) Then a priori estimate values for state and error covariance 
are calculated as: 
 xො୩ି ൌ ∑ W୧ሺ୫ሻχ୩ିଵכ,୧ଶ୬୧ୀ                                                                 (26) P୩ି ൌ ∑ W୧ሺୡሻሺχ୩ିଵכ,୧ െଶ୬୧ୀ xො୩ି ሻሺχ୩ିଵכ,୧ െ xො୩ି ሻT  Q୩ିଵ                (27) 
 
Where W୧ሺ୫ሻ and W୧ሺୡሻ are sets of scalar weights defined by: 
 Wሺ୫ሻ ൌ ା୬              (28) 
 Wሺୡሻ ൌ ା୬  ሺ1 െ αଶ  βሻ              (29) 
 W୧ሺ୫ሻ ൌ W୧ሺୡሻ ൌ ଵଶሺା୬ሻ    i ൌ 1, ڮ ,2n                    (30) 
 β  is a parameter used to incorporate any prior knowledge 
about the distribution of ݔ. 

3- Now that the time update equations are done, we implement 
the measurement-update equations. 
(a) The sigma points are updated as: 

 χ୩|୩ିଵ ൌ ൣxො୩ି    xො୩ି  ඥሺn  λሻP୩ି    xො୩ି െ ඥሺn  λሻP୩ି ൧        (31) 
 
(b) Propagate each column of χ୩|୩ିଵ through the nonlinear 
system measurement equation to predict the measurement 
values as: 
 yො୩ሺ୧ሻ ൌ hሺχ୩|୩ିଵ୧ ሻ                          (32) 
      yො୩ ൌ ∑ W୧ሺ୫ሻyො୩ሺ୧ሻଶ୬୧ୀ                                                                   (33) 
 
(c) After the prediction step, the correction or measurement 
update step is performed to calculate the posterior estimate 
state as follows: 

 xො୩ା ൌ xො୩ି  K୩ሺy୩ െ yො୩ሻ             (34) 
 
Where y୩  is the actual measurement vector. The y୩  can be 
pre-filtered with a simple Kalman filter (KF) with identity 
gain and unit observation gain. This pre-filter removes the 
Gaussian noises much extent and helps the UKF algorithm for 
better convergence and less deviations in the final estimated 
states. K୩ is the Kalman gain defined by: 

 K୩ ൌ P୶୷P୷ି ଵ               (35) 
 
Where 
 P୶୷ ൌ ∑ W୧ሺୡሻሺχ୩|୩ିଵ୧ െଶ୬୧ୀ xො୩ି ሻሺyො୩ሺ୧ሻ െ yො୩ሻT                             (36) P୷ ൌ ∑ W୧ሺୡሻሺyො୩ሺ୧ሻ െଶ୬୧ୀ yො୩ሻሺyො୩ሺ୧ሻ െ yො୩ሻT  R୩                          (37) 

 P୩ା ൌ P୩ି െ K୩P୷K୩T                                                               (38) 
 

C.  Adaptive Fading  
The Kalman filter formulation assumes complete a priori 

knowledge of the process and measurement noise covariance 
matrices Qk and Rk. However, in most practical applications 
these matrices are initially estimated or, in fact, are unknown. 
The problem here is that the optimality of the estimation 
algorithm in the Kalman filters setting is closely connected to 
the quality of the a priori noise statistics [25]. It has been 
shown how poor estimates of the input noise statistics may 
seriously degrade the Kalman filter performance, and even 
provokes the divergence of the filter [26]-[27]. From this point 
of view it can be expected that an adaptive formulation of the 
extended Kalman filter will result in a better performance or 
will prevent filter divergence. 

In this case, the covariance of the adaptive fading algorithm 
is[28]: 

ܥ   ൌ ்ߟߟሾܧ ሿ ൌ ܪ ܲି ்ܪ  ܴ                                       (39) 
 

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009



Where η୩ ൌ y୩ െ h୩ሺxො୩ି ሻ , ܲି  and ܴ  are innovations, a 
predicted error covariance and a measurement covariance of 
the KF, respectively. ܥ  is referred to as the calculated 
innovation covariance in this paper. In general, the innovation 
of the filter is easily affected by unaccounted errors, such as 
an unknown fault bias, an un-modeled dynamic, or an 
unknown initial condition. Also, the innovation covariance 
shows the effect of any unaccounted errors, as they are 
directly involved in the computations of the innovation. 

For example, if we know an exact dynamic equation, the 
innovation covariance is equal to ܥ. But sometimes, the exact 
dynamic equation of a nonlinear stochastic system is not 
available. Then, an estimation error and a predicted error 
covariance may increase by the effect of the unknown 
information. In (39), if  ܲି  is increased, then ܥ  is also 
increased. Similarly, sometimes, the exact measurement 
equation of a nonlinear stochastic system is not available. 
Then, an innovation covariance ܥ may be also increased by 
the effect of an unknown information. In this case, an 
innovation covariance ܥ  is increased by an increased 
measurement covariance ܴ in (39). As a result, the change of 
an innovation covariance can be used for an adaptive filter. 
The increased innovation covariance can be estimated as ܥҧ ൌ ଵெିଵ ∑ ்ୀିெାଵߟߟ                                                       (40)               
 

where M is a window size. We call Cത୩  an estimated 
innovation covariance in this paper. 

What is the method to decrease the effect by unaccounted 
errors? To account for the effect of the unaccounted system 
model errors, Kim [29] proposed the AFEKF. In this section, 
we summarize the structure of the AFEKF. We assume that 
we do not know the exact dynamic or measurement equation 
for the system. The relation between C୩  and Cത୩  is defined 
as Cത୩ ൌ α୩C୩. Then, the scalar variable α୩ can be estimated 
by ߙ ൌ ݔܽ݉ ቄ1, ଵ ିܥҧܥሺݎݐ ଵሻቅ                                    (41) 
 

Where m is the dimension of z୩ , which is the m×1 
measurement vector. When the innovation covariance is 
increased by unaccounted errors, an estimated innovation 
covariance ܥҧ  shows the estimate of the true innovation 
covariance. 

We consider the first case, in which the dynamic equation is 
not known exactly. Generally, the effects of incomplete 
information in the dynamic equation can be compensated by 
the increase of the magnitude of ܲି  . Thus a predicted error 
covariance must be increased to compensate the effect of an 
inexact dynamic equation as തܲି where തܲି ൌ ߣ ܲି . Hereߣ is 
called a forgetting factor and ߣ ≥1. Then Cത୩   can be 
represented by 

ҧܥ  ൌ ܪ തܲି ்ܪ  ܴ ൌ ߣሺܪ ܲି ሻܪ்  ܴ                         (42) 
 

In (42), we can obtain the following equations 

ܪሾߙ  ܲି ்ܪ  ܴሿ ൌ ܪߣ ܲି ்ܪ  ܴ                               (43) ߣ ൎ ௧ሺఈೖுೖೖషுೖାሺఈೖିଵሻோೖሻ௧ሺுೖೖషுೖሻ                                                  (44) 

 
Here, (44) gives an approximate value of λ୩ . But the 

measurement equation does not have unaccounted errors in the 
first case. As a matter of fact, an innovation covariance is 
increased by not the measurement covariance but the 
increased predicted error covariance. This indicates that the 
ratio of innovation covariances α୩ is mainly generated by λ୩. 

Therefore we can assume that ߙ is almost equal to ߣ. If 
we assume ߣ ߙ =  , then the error covariance is തܲି ߙ = ܲି . 
The AFEKF using this concept is denoted in this paper as “the 
AFEKF with rescaling- ܲ .” 

Next, we consider the second case, in which the 
measurement equation is not known exactly. The estimation 
error and the innovation covariance may be also increased by 
the effect of the unknown information, as they were in the first 
case. Here, the dynamic equation does not have unaccounted 
errors in the second case. So, an innovation covariance is 
increased by not a predicted error covariance but an increased 
measurement covariance. The effects of incomplete 
information in the measurement equation can be compensated 
by the decrease of the magnitude of Kk. We set ߣ = 1 because 
the predicted error covariance is unchanged as തܲି ൌ ܲି  . And 
we use the Kalman gain that is decreased by 1/ ߙ . The 
decrease of the Kalman gain magnitude means to depend less 
on measurement information. The AFEKF using this concept 
is denoted in this paper as “the AFEKF with rescaling-Kk.” 
From these results, we propose the following filter [29]. 
DEFINITION 1 A discrete-time adaptive fading EKF is given 
by the following coupled difference equations when the 
information of a nonlinear stochastic system is partially 
known ݔොି ൌ ݂ିଵሺݔොିଵା ሻ                                                                   (45) തܲି ൌ ିଵܨሾߣ തܲିଵା ିଵ்ܨ  ܳିଵሿ                                          (46) ܭഥ ൌ ఒೖఈೖ തܲି ்ܪ ሾܪ തܲି ்ܪ  ܴሿିଵ                                         (47) തܲା ൌ ሺܫ െ ሻܪഥܭ തܲି ොାݔ (48)                                                              ൌ ොିݔ  ݖഥሾܭ െ ݄ሺݔොି ሻሿ                                                (49) 
 
Where ߣ≥1, η୩ ൌ z୩ െ h୩ሺxො୩ି ሻ, Cത୩ ൌ α୩C୩,ܥ ൌ ்ߟߟሾܧ ሿ ൌܪ ܲି ்ܪ  ܴ, ܥҧ ൌ ଵெିଵ ∑ ்ୀିெାଵߟߟ  and ߙ ൌ ݔܽ݉ ቄ1, ଵ ିܥҧܥሺݎݐ ଵሻቅ 

 

III. ASYNCHRONOUS KALMAN FILTER  

In the previous section, it was assumed that all the sensor 
measurements are synchronously available at each sampling 
instant. This unrealistic assumption must be disregarded in 
according to the communication delay or the different sensor 
sampling rates that affect the multi-sensor data fusion 
procedure.  
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A. Asynchronous communication delay 
A nonlinear discrete system observed by non-delayed 

measurements where both process and measurements are 
influenced by additive Gaussian noise can be put in state space 
form in (8) and (9). 

Furthermore, if this system has an output that is delayed n 
samples, for instance due to a slow sensor or a long processing 
time of the sensor data, there will be a second output equation:  z୩כ ൌ hכሺxୱ, sሻ  v୩(50)                                                              כ 
where  s ൌ k െ N 

The delayed measurement cannot be fused using the normal 
extended Kalman filter equations but requires some 
modifications in the structure of the filter.   

Recalculation Method : 
If only a few measurements are fused in the delay period or 

if the computational burden of the filter is uncritical, an 
optimal filter estimate can be obtained simply by recalculating 
the filter through the delay period .As the measurement are not 
available in the time interval t=S to t=K ,it is suggested to 
update state and covariance without measurement update in 
this time interval .As soon as measurement of time t=s is 
received with delay at t=K ,estimation procedure begins with 
time update and measurement update again from t=S ,and will 
be proceed to time t=K+1 using only time update 
equations .The repeated manner of this procedure imposes 
high computational burden. But, it is not a big deal in 
industrial plant that time constant of systems is high.  

B.  Different sampling rate  
Assume that the m sensors are geographically distributed on 

an industrial plant. Estimation procedure should have the 
ability to deal with the amount of data that will be received by 
the estimation node at different times. In this paper 
decentralized data fusion will be used to estimate states from 
asynchronous different sampling rate sensors. 

 
Figure 1. Decentralized data fusion schematic. 

In order to deal with different sampling rate sensors, 
Alouani suggestion [30] is to fuse received measurement 
values at the end of pre-selected time interval. In contrast, the 
author's suggestion is to fuse data of multi-rate sensors at any 
time in which a measurement is received. At this step, the 
fused value of states and covariances are sent back to 
estimation nodes as the information of data of time t=K and 
the procedure will be repeated to estimate the desired values 

of time t=K+1. As the sensors are multi-rate, naturally 
measured values of all sensors cannot be accessible at each 
arbitrary time-step. Thus, for those sensor nodes that measured 
value are not available, they send state and covariances which 
have been computed by only time-update equation to fusion 
node. 

For i = 1, 2, . . . , m, suppose that that X୧ሺkሻ and P୧ሺkሻ are 
the state estimates and the estimation error covariance 
matrices of Xm(k) by Kalman filtering based on model (8) and 
(9) respectively, which are independent of each other, then the 
optimal fused estimate in the sense of linear minimum 
covariance is given by  ܺሺ݇|݇ሻ ൌ ∑ ,ୀଵߙ ܺ,ሺ݇|݇ሻ                                                  (51) 
Where ߙ, ൌ ൫∑ ܲ,ିଵሺ݇|݇ሻୀଵ ൯ିଵ ܲ,ିଵሺ݇|݇ሻ                                      (52) 
 
and the corresponding estimation error covariance matrix is ܲሺ݇|݇ሻ ൌ ൫∑ ܲ,ିଵሺ݇|݇ሻୀଵ ൯ିଵ                                                  (53) 
 
In addition, it can be shown 
 ܲሺ݇|݇ሻ  ܲ,ሺ݇|݇ሻ               ሺ݅ ൌ 1,2, ڮ , ݉ሻ                   (54) 
 

IV. MATHEMATICAL MODEL OF CSTR  

An irreversible and exothermic reaction A→B takes place 
inside the jacket CSTR that is shown in Figure 2 [31]. The 
reaction is operated by two proportional controllers that are 
used to regulate the outlet temperature and the tank level. A 
cooling jacket surrounds the reactor and the coolant is water in 
this case. Negligible heat losses, constant densities, perfect 
mixing inside the tank and uniform temperature in the jacket 
are assumed.  

 
Figure 2. Schematic diagram of the process. 

 

Table 1: Non isothermal CSTR parameter 
Notation             Variable                     Steady state values 
Fo                  Outlet flow rate                       40 ft3/h 
Cai    Inlet reactant concentration         0.5 lb. mol of A/ft3 
T             Reactor temperature                      600°R 
Fj              Coolant flow rate                       49.9 ft3/h 
V             Volume of reactor                          48 ft3 
Ca   Reactant concentration in reactor   0.245 lb.mol of A/ft3 
Tj              Jacket temperature                        594.6°R 
Ti            Inlet feed temperature                     530°R 
Notation          Variable                           Parameter values 
Vj             Volume of jacket                             3.85 ft3                     
Ea             Activation energy                     30000Btu/lb.mol 

Dynamic models based on 
sensor m  ڭ 

 ڭ

AFUKF ڭ 
 ڭ

ܺሺ݇|݇ሻ 

ܺሺ݇|݇ሻ 

ܺଵሺ݇|݇ሻ 

 ڭ
 ڭ

 ,ߙ ڭ,ߙ

 ଵ,ߙ

 ܺሺ݇|݇ሻAFUKF ڭ

AFUKF Dynamic models based on 
sensor 1  

Dynamic models based on 
sensor i  
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U            Heat-transfer coefficient             150 Btu/h ft2 °R 
Tc              Inlet feed temperature                     530°R 
cp          Heat capacity (process side)         0.75 Btu/lbm°R 
ρ           Density of process mixture               50 lbm/ft3 
k0                 Frequency factor                      7.08×1010h-1  
R               Universal gas constant            1.99Btu/lb.mol°R 
a0                  Heat-transfer area                          250 ft2 
ΔH                 Heat of reaction                  -30000 Btu/lb.mol 
Cj          Heat capacity (coolant side)             1.0 Btu/lbm°R            
ρj                   Density of coolant                      62.3lbm/ft3 

 
The dynamic equations describing the system are given by 

[32]: 

oi FF
dt
dV

−=
                                                                            (55)  

Ca
RT
EkVCaFCaF

dt
VCad a

oii ⎟⎟
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⎞
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⎛
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⎞

⎜
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⎛−−= exp)(

0                       (56) 
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⎞

⎜
⎝
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                         (57)  

)()( 0 jjcjjj
j

jjj TTUaTTFc
dt

dT
cV −+−= ρρ                       (58) 

)48(1040 VFo −−=  (Level controller)                               (59) 

)600(49.49 TFj −−= (Temperature controller)                   (60) 

Table 1 gives values of process parameters and steady state 
conditions. 
 

V. SIMULATION STUDIES   

For computer simulation, the CSTR nonlinear model is 
implemented using s-function and SIMIULINK facilities in 
MATLAB. The basic time unit is hours (hr) and the sampling 
time is taken to be equal to 0.005 hr. 

As it is clear from Fig.2, the outputs of the system are 
volume and temperature of product, concentration of A, and 
temperature of CSTR jacket. For the simulation studies, 
measurements (V,T) have been assumed as the observed 
values in order to  estimate of all states of the system 
(V,T,Ca,Tj ).   

The simulation studies on this case study have been 
conducted to investigate the performance of the discussed 
methods in different situations.  

A.  Asynchronous communication delay 
The simulation results of implemented methods in section 2 

on the case study are depicted in figures 3-6. In order to 
investigate the capability of proposed methods in estimation of 
system states according to realistic settings in which 
asynchronous sensor data are corrupted with unknown noise, 
both incorrect values of noise variance assumptions and 
different communication delays are embedded in the 
simulation. The ratios of the incorrect values of noise variance 

to the correct corresponding values are 0.1 in Fig 3-6. These 
approaches should compensate for the effect of lack of data 
about the noise statistical characteristics. The capabilities of 
presented methods in extracting real values are clearly 
illustrated via figures and root mean square error criteria 
(RMSE). 

 
Figure 3. Estimation of Reactor temperature when number of  

delay is 30. 

 
Figure 4. Estimation of Reactant concentration when number  

Of delay is 30. 

 
Figure 5. Estimation of Reactor jacket temperature when number  

of delay is 30. 

 
Figure 6. Estimation of Reactor volume when number of delay in 

measurement of V is 30. 
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Recalculation EKF RMSE= 0.23734
Recalculation UKF RMSE= 0.20154
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Real State
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Classical Kalman filter strategies fundamentally rely on 

known model and noise information. Consequently, as it is 
obvious in figures, they cannot compensate the effect of 
model-process mismatch and noise uncertainty.  As discussed 
in section 2, UKF is comparatively more acceptable for 
estimation of states in nonlinear plants than EKF. 
Subsequently, adaptive recalculation UKF methodology can 
also estimate states with less error than adaptive recalculation 
of EKF method. In order to provide a more comprehensive 
comparison between these methods, the RMSE values of each 
method in terms of different delays from sensor V is presented 
in table 2. Consequently, table 2 also certifies that the 
modified adaptive fading UKF method by recalculation 
procedure expose more accurate results, compared to other 
methods.  

B.  Sensors with different sampling rate  
Figures 7-10 illustrate the results of the proposed method in 

section 2.2.2 in which data generation rate of sensor T(as a 
high rate sensor) is 30 times of sensor V(as a low rate sensor) . 

 
Figure 7. Estimation of Reactor temperature. 

 
Figure 8. Estimation of Reactant concentration. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. Estimation of Reactor temperature. 

 

 
Figure 10. Estimation of Reactor volume. 

 
Presented data in table3 is calculated by MATLAB software 
in which sampling rate of sensor T as a high rate is NH/NL 
times of sensor V as a low rate one.  

VI. CONCLUSION 

The ability to incorporate data from a large, possibly 
changing variety of sources and to accommodate sensing 
delays without derogating estimation is extremely valuable in 
systems. The inaccurate estimation of states in EKF and UKF 
methods due to a lack of solid consideration of existing model 
uncertainty and also a nonrealistic pre-assumption on noise 
distribution matrices has been alleviated by incorporation of 
an adaptive fading method into KF strategies. In order to 
consider real assumption, i.e. sensors with inherent or 
communication delays, recalculation method has been 
embedded to AFEKF and AFUKF in order to enable them for 
performance monitoring of asynchronous measurements. 
Moreover, the simulation results denote the improvement of 
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Table 2. RMSE of different methods in estimation of CSTR volume when data of sensor V received after different values of delay .The 
measurement noise variance used in estimation is artificially set as 0.1 actual noise variance 

Number of delay 
RMSE 2 5 10 15 20 30 50 80 100 

EKF Recalculation Method 0.1843 0.18447 0.18484 0.18598 0.18735 0.19128 0.20058 0.21454 0.22326 
UKF Recalculation Method 0.09196 0.09202 0.09205 0.09227 0.09249 0.09261 0.09337 0.09708 0.10144 

AFEKF Recalculation Method 0.05548 0.05607 0.05819 0.06175 0.06608 0.0759 0.09595 0.12206 0.13671 
AFUKF Recalculation Method 0.04525 0.04539 0.04554 0.04592 0.04633 0.04667 0.04712 0.04839 0.04942 

 
Table 3. RMSE of estimation with different sampling rates.(NH corresponds to temperature sampling rate as high-rate sensor 

and NL is for volume as low rate sensor; NH/NL is the ratio of two quantities.) ۺۼ۶ۼ  
RMSE 2 5 8 10 15 20 30 40 50 80 100 
Low Rate 0.02443 0.02852 0.03523 0.04144 0.05606 0.07351 0.10703 0.14301 0.17768 0.28633  0.35603 
High Rate 0.02597 0.03172 0.03927 0.04578 0.06091 0.07852 0.12213 0.16822 0.21284 0.33154  0.44128 
Fusion 0.02427 0.02847 0.03519 0.04141 0.05603 0.07349 0.103 0.14298 0.17766 0.28531  0.3401 
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nonlinear state estimation using UKF that approximates  the 
probability density from the non-linear transformation of a 
random variable, compared to EKF method in which 
approximation is done employing Taylor series expansion. 
Besides, an asynchronous decentralized data fusion platform 
for an estimation of multi-sampled signals based on AFUKF 
has been studied. The fused estimate shows better 
performance than Kalman filtering based on each single 
sensor’s information.  
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