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Abstract- This paper investigates the application of multi-

sensor data fusion (MSDF) technique to enhance the state 
estimation of a nonlinear plant. The proposed method is based on 
Kalman filters approach to improve the state estimation obtained 
by the adaptive unscented Kalman filter (AUKF). In order to 
prevent estimation algorithm to diverge caused by pre-specified 
fixed distribution matrices assumed by UKF, a novel adaptive 
unscented Kalman filter algorithm has been presented in this 
paper. Here, however, variance matrices for both process and 
measurement noise signals are assumed unknown a priori and 
thus incrementally estimated and updated using a sliding time 
window paradigm within which an estimation of the noise 
variance is calculated and adaptively updated each time the 
window is shifted forward. The proposed methodology is tested 
on a simulated continuous stirred tank reactor (CSTR) problem 
to estimate 4 states of this nonlinear plant. The simulation results 
demonstrate the superiority of the suggested method in state 
estimation compared with the classical UKF-based approach. 
 
Keywords: Multi-sensor data fusion, Unscented Kalman filter, 
Centralized Kalman filter, State estimation. 

 

I. INTRODUCTION 

Data fusion is a multilevel, multifaceted process dealing 
with the detection, association, correlation, estimation and 
combination of data and information from multiple sources to 
achieve refined state and identity estimation, and complete 
and timely assessments of situation and threat. The use of 
multiple sensors allows the data of one sensor to complement 
that of another sensor in order to extract the greatest amount 
of information about the sensed environment [1]. Among the 
various techniques available for multi-sensor data fusion, 
Kalman filtering-based approach is one of the most significant 
one, as it proves to be an efficient recursive algorithm suitable 
for real-time applications. Kalman filtering is used in many 
fields such as control, communication, data assimilation, and 
target tracking.  

It is the optimal filter for linear systems with known noise 
statistical characteristics. Extended Kalman filter as a widely 
used approach in nonlinear systems, use the first order Taylor 
series to transform nonlinear system to linear system.  
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A recent improvement to the EKF is the unscented Kalman 
filter (UKF) [2]. The UKF approximates the probability 
density resulting from the non-linear transformation of a 
random variable instead of approximating the nonlinear 
functions with a Taylor series expansion. The approximation 
is done by evaluating the nonlinear function with a minimal 
set of carefully chosen sample points. The posterior mean and 
covariance estimated from the sample points are accurate to 
the second order for any nonlinearity [3]. If the priori random 
variable is Gaussian, the posterior mean and covariance are 
accurate to the third order for any nonlinearity [4]. 

All these Kalman filters are used for known noise statistical 
characteristics. When these statistics are unknown, however, 
we must use adaptive Kalman filters. We may use adaptive 
Kalman filter banks for weight to compute covariance [5], or  
output correlation to compute Kalman gain without care for 
these covariance [6], or fading memory algorithm to reduce 
the effect of prior measurement [7]. These approaches, 
however, can only be used in linear systems, and reveal poor 
performances for the case of nonlinear systems. 

A novel adaptive Unscented Kalman filter (AUKF) is 
presented in this paper. The main idea of this method is to 
approximate noise variance by employing a sliding time 
window within which an estimation of the noise variance is 
calculated and adaptively updated each time the window is 
shifted forward. 

This paper is organized as follows. In section 2, the 
proposed methodology is presented. Section 3 describes the 
CSTR case study. The effectiveness of the proposed approach 
is demonstrated in section 4. Finally, the conclusions are given 
in section 5. 

II. PROPOSED METHODOLOGY 

Multi-sensor data fusion is concerned with the integration 
and extraction of information from data obtained by two or 
more sensors. In many processes, data from multiple sensors 
must be fused to obtain more complete and more accurate 
information about the operation. 

Among the various techniques available for multi-sensor 
date fusion, Kalman filtering-based approach is one of the 
most significant one, as it proves to be an efficient recursive 
algorithm suitable for real-time applications. State-vector 
fusion and measurement fusion are two commonly employed 
methods for Kalman filter-based sensor fusion [8]. 

As shown in fig.1(b), state-vector fusion method uses a 
group of Kalman filters to obtain individual sensor-based state 
estimates which are then fused to get an improved joint state 
estimate. On the other hand, the  measurement  fusion  method 
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(a) 

 
                                            (b) 
Figure 1. Kalman-filter-based multi-sensor data fusion. (a) 

Measurement fusion (b) state-vector fusion. 
 
in fig.1(a), to obtain a weighted or combined measurement 
and then uses a single Kalman filter to get the final state 
estimate based on the fused measurement. Both methods have 
their own merits and demerits. The measurement fusion 
method requires that the sensor should have identical 
measurement matrices (H). Although the measurement fusion 
method provides better overall estimation performance, state-
vector fusion has lower computational cost and possesses the 
advantage of distributed parallel computation and fault 
tolerance. Judicious trade-off between computational 
complexity, comutatioal time and numerical accuracy has to 
be made for selection of the proper algorithm for any practical 
application.  

In this work, the measurement fusion technique has been 
adopted for fusing multiple sensors to provide necessary 
information to enhance the AUKF estimation. 

A. Unscented Kalman Filter 
In 1960, R.E. Kalman published his famous paper 

describing a recursive solution to the discrete-data linear 
filtering problem. Kalman filter algorithm attempts to 
propagate the mean and covariance of a system using a time-
update and a measurement update. If the system is linear, then 
the mean and covariance can be exactly updated with the 
Kalman filter. If the system is nonlinear, then the mean and 
covariance can be approximately updated with the extended 
Kalman filter. The extended Kalman filter (EKF) is the most 
widely applied state estimation algorithm for nonlinear 
systems. However, the EKF can be difficult to tune and often 
gives unreliable estimates if the system nonlinearities are 
severe. This is because the EKF relies on linearization to 
propagate the mean and covariance of the state. 

Julier and Uhlman developed the UKF algorithm[9]-[10], 
they used the unscented transform to compute the statistical 
characteristics of states and measurements, for the unscented 
transform is second-order equal to the real statistics at least. 
An unscented transformation is based on two fundamental 
principles. First, it is easy to perform a nonlinear 

transformation on a single point (rather than an entire pdf). 
Second, it is not too hard to find a set of individual points in 
state space whose sample pdf approximates the true pdf of a 
state vector. 

Taking these two ideas together, suppose that we know the 
mean ݔҧ and covariance ܲ of a vector ݔ. A set of deterministic 
vectors called sigma points whose ensemble mean and 
covariance are equal to ݔҧ and ܲ can be find. We next apply 
our known nonlinear function ݕ ൌ ݄ሺݔሻ to each deterministic 
vector to obtain transformed vectors. The ensemble mean and 
covariance of the transformed vectors will give a good 
estimate of the true mean and covariance of ݕ. This is the key 
to the unscented transformation. The UKF algorithm can be 
simply obtain by replacing the EKF equations with unscented 
transformations [11]-[14].  

Suppose the nonlinear system equations obey the following 
non-linear relationships: 
ݔ  ൌ ݂ିଵሺݔିଵ, ିଵሻݑ   ିଵ                                              (1)ݓ
ݕ  ൌ ݄ሺݔሻ                                                                     (2)ݒ
,  ~ ሺ 0ݓ  ܳሻ                                                                         (3) 
,  ~ ሺ 0ݒ  ܴሻ                                                                          (4)  
 w୩  and v୩  are process noise and measurement noise with 
variances of Q୩and R୩ respectively. n and m signifies number 
of states and outputs .  

The UKF algorithm can be summarized as follows: 
1- The algorithm will be started with some initial guesses for 
the state estimation (x) and the error covariance matrix (P), 
defined as: 

 xොା ൌ Eሾxሿ               (5) 
 Pା ൌ Eሾሺx െ xොାሻሺx െ xොାሻTሿ               (6) 
 
2- The following time update equations are used to 

propagate the state estimate and covariance from one 
measurement time to the next: 
(a) Calculate a collection of sigma points, stored in the 
columns of the n ൈ ሺ2n  1ሻ sigma point matrix xො୩ିଵା  as: 

 χ୩ିଵ ൌ ቈxො୩ିଵା    xො୩ିଵା  ටሺn  λሻP୩ିଵା    xො୩ିଵା െ ටሺn  λሻP୩ିଵା  

               (7) 
The parameter is a scaling parameter defined as: 
 λ ൌ αଶሺn   κሻ െ n                       (8) 
 

The constant α determines the spread of the sigma points 
around xො୩ିଵା  and κ is a secondary scaling parameter. 
(b) Propagate each column of χ୩ିଵ(i.e.,χ୩ିଵ୧ ) through the 
nonlinear system dynamic equation to perform the prediction 
or time update step as: 
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 χ୩ିଵכ,୧ ൌ f൫χ୩ିଵ୧ , u୩ିଵ൯     i ൌ 0,1, ڮ ,2n                  (9) 
 χ୩ିଵכ ൌ fሺχ୩ିଵ, u୩ିଵሻ                        (10) 

 
(c) Then a priori estimate values for state and error covariance 
are calculated as: 
 xො୩ି ൌ  W୧ሺ୫ሻχ୩ିଵכ,୧ଶ୬

୧ୀ                                                                     ሺ11ሻ 

P୩ି ൌ  W୧ሺୡሻሺχ୩ିଵכ,୧ െଶ୬
୧ୀ xො୩ି ሻሺχ୩ିଵכ,୧ െ xො୩ି ሻT  Q୩ିଵ                 ሺ12ሻ 

 
Where W୧ሺ୫ሻ and W୧ሺୡሻ are sets of scalar weights defined by: 
 Wሺ୫ሻ ൌ ା୬              (13) 
 Wሺୡሻ ൌ ା୬  ሺ1 െ αଶ  βሻ              (14) 
 W୧ሺ୫ሻ ൌ W୧ሺୡሻ ൌ ଵଶሺା୬ሻ    i ൌ 1, ڮ ,2n                    (15) 
 β is a parameter used to incorporate any prior knowledge 
about the distribution of ݔ. 
3- Now that the time update equations are done, we implement 
the measurement-update equations. 
(a) The sigma points are updated as: 

 χ୩|୩ିଵ ൌ ൣxො୩ି    xො୩ି  ඥሺn  λሻP୩ି    xො୩ି െ ඥሺn  λሻP୩ି ൧        (16) 
 
(b) Propagate each column of χ୩|୩ିଵ through the nonlinear 
system measurement equation to predict the measurement 
values as: 
 yො୩ሺ୧ሻ ൌ hሺχ୩|୩ିଵ୧ ሻ                          (17)
       yො୩ ൌ  W୧ሺ୫ሻyො୩ሺ୧ሻଶ୬

୧ୀ                                                                        ሺ18ሻ 

 
(c) After the prediction step, the correction or measurement 
update step is performed to calculate the posterior estimate 
state as follows: 

 xො୩ା ൌ xො୩ି  K୩ሺy୩ െ yො୩ሻ             (19) 
 
Where y୩ is the actual measurement vector. The y୩ can be 
pre-filtered with a simple Kalman filter (KF) with identity 
gain and unit observation gain. This pre-filter removes the 
Gaussian noises much extent and helps the UKF algorithm for 
better convergence and less deviations in the final estimated 
states. K୩ is the Kalman gain defined by: 

 

K୩ ൌ P୶୷P୷ି ଵ              (20) 
 
Where 
 P୶୷ ൌ  W୧ሺୡሻሺχ୩|୩ିଵ୧ െଶ୬

୧ୀ xො୩ି ሻሺyො୩ሺ୧ሻ െ yො୩ሻT                               ሺ21ሻ 

 P୷ ൌ  W୧ሺୡሻሺyො୩ሺ୧ሻ െଶ୬
୧ୀ yො୩ሻሺyො୩ሺ୧ሻ െ yො୩ሻT  R୩                           ሺ22ሻ 

 P୩ା ൌ P୩ି െ K୩P୷K୩T               (23) 
 

B.  Adaptive Unscented Kalman Filter  
The theory presented in section 2.A makes the Kalman filter 

an attractive choice for state estimation. But when a Kalman 
filter is implemented on a real system it may not work, even 
though the theory is correct. Two of the primary causes for the 
failure of Kalman filtering are finite precision arithmetic and 
modeling errors [15]. 

The theory presented also assumes that the system model is 
precisely known. It is assumed that the noise sequences {wk} 
and {Q} are pure white, zero-mean, and completely 
uncorrelated. If any of these assumptions are violated, as they 
always are in real implementations, then the Kalman filter 
assumptions are violated and the theory may not work. In 
order to improve filter performance in the face of these 
realities, the following methods are presented.  

1)   Fading Method  : 
It is a simple way of forcing the filter to “forget” 

measurements in the distant past and place more emphasis on 
recent measurements. This causes the filter to be more 
responsive to measurements. It theoretically results in the loss 
of optimality of the Kalman filter, but it may restore 
convergence and stability. It is better to have a theoretically 
suboptimal filter that works rather than a theoretically optimal 
filter that does not work due to modeling errors. The greater 
responsiveness of the fading-memory filter to recent 
measurements makes the filter less sensitive to modeling 
errors, and hence more robust. The main part of fading is 
updating covariance for each step ݇ ൌ 1,2,  :as below ڮ

 P୩ା ൌ αଶP୩ା             α  1              (24) 
 
Note that P is not equal to the covariance of the estimation 

error. However, the fading-memory filter is more robust to 
modeling errors than the standard Kalman filter. If α= 1 then 
the fading-memory filter is equivalent to the standard Kalman 
filter. In most applications, α is only slightly greater than one 
based on how much past measurements should be forgotten.  

2)   Novel Adaptive Method  
As discussed earlier, KF methods assume that the exact 

value of measurement and process noise variances are known. 
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However, basically, in real industrial processes, it is not a very 
practical assumption. Thus, an adaptive method that can 
estimate the process and measurement noise variances could 
help to make the assumptions more realistic. Authors 
suggestion for updating procedure based on the fact that 
process and measurement noise variances are in fact unknown 
can be formulated as follows.  

Suppose the dynamic system equation is 
 x୩ ൌ f୩ିଵሺx୩ିଵ, u୩ିଵ, t୩ିଵሻ  w୩ିଵ          (25) 

 xො୩ି ൌ f୩ିଵሺxො୩ିଵା , u୩ିଵ, t୩ିଵሻ           (26) 
 
Where xො୩ି  indicates the calculated state using time-update 
equations and  xො୩ା shows the estimated state using 
measurement-update equations.  Generally, xො୩ା is more 
accurate than xො୩ି  due to the fact that the measurement of time 
K in estimation node is considered in the procedure. 
Consider xො୩ା is sufficiently close to x୩. Hence, following the 
Eqs. (26) and (27), the process noise could be estimated as the 
difference between  xො୩ା,xො୩ି  i.e. wෝ ୩ିଵ ൌ xො୩ା െ xො୩ି . 
Consequently, the process noise variance (Q୩ିଵሻ could be 
obtained via Eq. (28). 

 wෝ ୩ିଵ ൌ xො୩ା െ xො୩ି              (27) 
 Q୩ିଵ ൌ  Eൣwෝ ୩ିଵwෝ ୩ିଵT ൧                               (28) 

 ܳ was assumed to be diagonal, thus, its estimation Q୩ should 
also be diagonal. 

 Q୩ିଵ ൌ diagሾDVQሿ            (29) 
 
Process noise can be computed using a limited preceding 
horizon. 

 DVQ୧ ൌ 1M െ 1  wෝ ୧,୩ି୨wෝ ୧,୩ି୨M
୨ୀଵ                        ݅ ൌ 1,2, ڮ , ݊ ሺ30ሻ 

 
M signifies to the length of the window size. Applying 

Eqns. (29) and (30), the process variance noise can be 
estimated using previous available data. 

The variance of measurement noise should be estimated as 
well.  Generally, the covariance matrix is determined using 
Eq. (31). 

 P୩ ൌ Eሾሺx୩ െ xො୩ሻሺx୩ െ xො୩ሻTሿ           (31) 
 η୩ and ε୩ are defined as error in each time-step 
 η୩ ൌ y୩ െ H୩xො୩ି              (32) 
 ε୩ ൌ y୩ െ H୩xො୩ା             (33) 
 

In order to estimate the measurement noise, an innovation step 
is here introduced by authors. In this step, the measurement 
noise is computed using a new introduced sequence IS . IS is 
defined in Eqs. (34), (35) and (36). 
 ISଶ୩ିଵ ൌ η୩ , ISଶ୩ ൌ ε୩            (34) 

 IS ൌ y െ Hxො             (35) 
 IS ൌ ሺHx୩  v୩ሻ െ Hxො୩ ൌ v୩  Hሺx୩ െ xො୩ሻ          (36) 
 

Where H represents for డೖሺ௫ೖሻడ௫ೖ  that in most practical 
applications is a constant matrix. In order to find the 
relationship between IS and actual measurement noise R୩, the 
variance of IS should be computed. If v୩ and xො୩ be 
independent, EሾIS ISTሿcan be calculated using Eq. (37).  

 EሾIS ISTሿ ൌ R୩  HP୩HT            (37) 
 

However, v୩ and xො୩ are not really independent, because, as 
mentioned above, the value of v୩ was used in updating xො୩ା  
(See Eq. (19)). Therefore, considering this fact, our suggestion 
to calculate the variance of IS  is presented as follows. These 
formulas are not derived using mathematical equations; rather, 
extensive simulation tests have shown that these formulas can 
give us more accurate results. The main idea that helped the 
authors to reach the following formulation was this fact that 
the variance of the difference between two correlated signals 
is always smaller than the maximum of signal variances.  

 EሾIS ISTሿ ൌ R୩ െ HP୩ାHT            (38) 
 R୩ ൌ EሾIS ISTሿ  HP୩ାHT            (39) 
 EሾIS ISTሿ ൌ diagሾDVRሿ            (40) 
ܴܸܦ  ൌ 12M  IS୧,୩ି୨IS୧,୩ି୨ଶMିଵ

୨ୀ            ݅ ൌ 1,2, ڮ , ݉              ሺ41ሻ 

 

III. MATHEMATICAL MODEL OF CSTR 

An irreversible and exothermic reaction A→B takes place 
inside the jacket CSTR that is shown in Figure 2 [16]. The 
reaction is operated by two proportional controllers that are 
used to regulate the outlet temperature and the tank level. A 
cooling jacket surrounds the reactor and the coolant is water in 
this case. Negligible heat losses, constant densities, perfect 
mixing inside the tank and uniform temperature in the jacket 
are assumed.  
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Fig.2.Schematic diagram of the process 

 
The dynamic equations describing the system are given by [17]: 
ݐܸ݀݀  ൌ ܨ െ                                                                                  ሺ42ሻܨ

 ݀ሺܸܥሻ݀ݐ ൌ ܥܨ െ ܥܨ െ ܸ ൬݇݁ିாೌோ்൰                              ሺ43ሻܥ

ܿߩ  ݀ሺܸܶሻ݀ݐ ൌ ܨሺܿߩ ܶ െ ܶሻܨ െ ܸܪ∆ ൬݇݁ିாೌோ்൰ ܥ െ െܷܽ൫ܶ െ ܶ൯                                                                              ሺ44ሻ 
ߩ  ܸ ܿ ݀ ܶ݀ݐ ൌ ߩ ܿܨ൫ ܶ െ ܶ൯  ܷܽሺܶ െ ܶ                          ሺ45ሻ 
ܨ  ൌ 40 െ 10ሺ48 െ ܸሻ        (Level controller)                    (46) 
 F୨ ൌ 49.9 െ 4ሺ600 െ Tሻ     (Temperature controller)         (47) 
 
Table 1 gives values of process parameters and steady state 
conditions:  

Table 1: Non isothermal CSTR parameter 
Notation             Variable                     Steady state values 
Fo                  Outlet flow rate                       40 ft3/h 
Cai    Inlet reactant concentration         0.5 lb. mol of A/ft3 
T             Reactor temperature                      600°R 
Fj              Coolant flow rate                       49.9 ft3/h 
V             Volume of reactor                          48 ft3 
Ca   Reactant concentration in reactor   0.245 lb.mol of A/ft3 
Tj              Jacket temperature                        594.6°R 
Ti            Inlet feed temperature                     530°R 
Notation          Variable                           Parameter values 
Vj             Volume of jacket                             3.85 ft3                     
Ea             Activation energy                     30000Btu/lb.mol 
U            Heat-transfer coefficient             150 Btu/h ft2 °R 
Tc              Inlet feed temperature                     530°R 
cp          Heat capacity (process side)         0.75 Btu/lbm°R 
ρ           Density of process mixture               50 lbm/ft3 
k0                 Frequency factor                      7.08×1010h-1  
R               Universal gas constant            1.99Btu/lb.mol°R 
a0                  Heat-transfer area                          250 ft2 
ΔH                 Heat of reaction                  -30000 Btu/lb.mol 
Cj          Heat capacity (coolant side)             1.0 Btu/lbm°R            
ρj                   Density of coolant                      62.3lbm/ft3 
 

IV. SIMULATION STUDY 

For computer simulation, the CSTR nonlinear model is 
implemented using s-function and SIMIULINK facilities in 
MATLAB. The basic time unit is hours (hr) and the sampling 
time is taken to be equal to 0.005 hr. 

As it is clear from Fig.2, the outputs of the system are 
volume and temperature of product, concentration of A, and 
temperature of CSTR jacket. For the simulation studies, 
measurements (ܸ, ܶ) have been assumed as the observed 
values in order to estimate all states of the system 
   .(, ܶܥ ,ܶ ,ܸ)

Proposed methodologies have been implemented on the 
CSTR plant. Figures 3-6 show the estimation of 4 states of the 
CSTR by 3 methods .The real value of standard deviation of 
measurement and process noises are 0.005 and 0.01 times of 
initial real states, respectively. Standard UKF is presented as 
the comparison criterion in which the correct noise variances 
are applied. In order to demonstrate the effect of fading and 
novel adaptive methods in the case of which process and 
measurement noises are not really known, incorrect values of 
noises covariance are introduced to these methods to examine 
their capability to extract the real values. The ratios of the 
incorrect values to the correct ones are 0.1 and 10, 
respectively, for R and Q in Figs. 3-6. These methods should 
compensate the effect of shortage in this information.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.Estimation of volume of CSTR 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.Estimation of product concentration 
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Fading UKF RMSE= 1.8404
Standard UKF  RMSE= 0.78557
Novel Adaptive UKF RMSE= 0.85099
Real State

Table 4 : Temperature estimation error in terms of RMSE. The first row shows the ratios of incorrect values to correct values of noise variances. The incorrect values are 
just applied to fading and novel adaptive  methods where Standard method use the actual value of noise and process variances. 
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Table 5 : Temperature of CSTR jacket estimation error in terms of RMSE. The first row shows the ratios of incorrect values to correct values of noise variances. The 
incorrect values are just applied to fading and novel adaptive  methods where Standard method use the actual value of noise and process variances. 

                        R 
Method    Q 

1 
0.1 

0.1 
1 

10 
0.1 

0.1 
10 

0.1 
0.1 

10 
10 

10 
0.01 

0.01 
10 

0.1 
0.01 

0.01 
0.1 

0.1 
100 

100 
0.01 

Fading  0.97449 1.3358 0.95735 1.8404 1.0634 1.0556 0.95575 2.2386 0.98122 1.3446 2.24 0.94913 
Standard  0.78557 0.78557 0.78557 0.78557 0.78557 0.78557 0.78557 0.78557 0.78557 0.78557 0.78557 0.78557 

Novel Adaptive  0.83008 0.83904 0.83104 0.85099 0.83172 0.83451 0.83095 0.85845 0.83075 0.84039 0.85794 0.83131 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5.Estimation of Temperature of CSTR 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.Temperature Estimation of Jacket 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 : Volume estimation error in terms of RMSE. The first row shows the ratios of incorrect values to correct values of noise variances. The incorrect values are just 
applied to fading and novel adaptive  methods where Standard method use the actual value of noise and process variances. 
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Table 3 : Concentration estimation error in terms of RMSE. The first row shows the ratios of incorrect values to correct values of noise variances. The incorrect values are 
just applied to fading and novel adaptive  methods where Standard method use the actual value of noise and process variances. 
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It should be mentioned that estimation of concentration 
state is the most important parameter in output quality of 
CSTR. However, the simulation of others outputs also verify 
the capability of the proposed method. 

Tables 2-5 can clearly show that the proposed Novel 
Adaptive method is the best choice for industrial cases in 
which the real values of noise variances are unknown. 

 

V. CONCLUSION 

In this paper, we have studied the estimation procedure 
using Kalman filter theory. For highly nonlinear plants, as it is 
reported in the literature, the unscented Kalman filter is more 
accurate than extended Kalman filter, thus, UKF has been 
applied here to estimate states of a nonlinear CSTR plant. In 
order to reduce the error in estimations in which the noise 
variances are not known, Fading and novel adaptive methods 
of UKF has been presented in this paper. In novel adaptive 
method, variance matrices for both process and measurement 
noise signals were assumed unknown a priori and thus 
incrementally estimated and updated using a sliding time 
window paradigm within which an estimation of the noise 
variance is calculated and adaptively updated each time the 
window is shifted forward. The simulation results show the 
capability of the proposed novel adaptive method in 
performance monitoring of this nonlinear case study.   
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