
 

 

 

  

Abstract— Modern vehicles require efficient steering 

systems.  The said systems introduce an extra aid torque added 

to the driver’s hand torque in order to direct the vehicle in the 

desired direction. Hydraulic systems are traditionally used for 

many years to do the job. With the advent of the electrical 

vehicle and the strong need to switch to clean energies, 

hydraulic aid systems would not be an appropriate element in 

the new electrical environment. Electrical power aid system 

(EPAS), instead, is the new and important alternative. It is 

based on an electrical DC motor powered by the car batteries 

and governed by a robust control system. A number of control 

algorithms have been applied to do the control task. H∞ 

controllers are one of those robust algorithms. However, H∞ 

system exhibits an unstable behavior for certain road 

conditions. In this paper we introduce fuzzy controllers as an 

alternative for the H∞ ones. We list and compare the 

performance result of the two controllers. 

 
Index Terms— EPAS Systems, Fuzzy Control Systems, 

Robust Control Systems, Nonlinear Control Systems. 

 

I. INTRODUCTION 

An Electric Power Assist Steering (EPAS) system is a 

feedback control system that electrically amplifies the driver 

steering torque inputs to the vehicle for improved steering 

comfort and performance [1].  An EPAS system consists of a 

steering wheel, a column, a rack, an electric motor, a gearbox 

assembly, as well as pinion torque, position, and speed 

sensors. The essential operation of an EPAS system can be 

depicted in the functional diagram shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Currently, all EPAS systems employ a pinion torque 

sensor, between the steering column and pinion, to determine 

the amount of the torque assist to the driver. This torque 

assist is calculated via a tunable nonlinear boost curve. Then, 

this signal is used as a control command to the electric motor 

to achieve a desirable level of assist.   

A control design must ensure several criteria so that the 

overall steering feel and performance will be similar to or 

better than a conventional hydraulic steering system.   

These criteria can be summarized as follows [2]: 

• Stability of the closed-loop system for very high boost curve 

gains that are required to achieve good precision feel.   

• System robustness against components changes and 

degradations. 

• Attenuation of disturbances from sensors, road conditions, 

and environment variations. 

Control of EPAS systems is a very challenging task, due to 

several factors.  First, road conditions and behavior of a 

driver are not predictable.  In order to maintain consistency 

in the steering feel over a large range of the driver's torque, 

such as when the driver rotates the wheel and produces very 

high assist torque, the slopes of the boost curve change 

dramatically.  This will affect significantly overall system 

stability and performance in a fundamental manner.  Second, 

there are several nonlinear components in the system such as 

friction, saturation, on-off or relay, and backlash.  These 

nonlinearities change as mechanical systems degrade and 

system conditions vary (lubrications, temperature, and etc.).  

Finally, road disturbances and sensor noises are significant.  

The system must be capable of maintaining robustness and 

eliminating undesirable vibrations or nibble (vertical 

vibrations in the steering wheel) that the driver might feel. 

 

II. 3-DOF NONLINEAR EPAS MODEL 

A single pinion EPAS system contains several nonlinear 

components, as shown in Fig. 1, such as friction terms in the 

column, rack, and motor, as well as sticking and backlash in 

the gearbox. These nonlinear elements can be inserted as 

required in the simulation to represent accurately their 

nonlinear properties. However, it is possible to approximate 

these terms by linear ones and treat approximation errors as 

model uncertainties. Consequently, it is imperative that 

feedback controllers that are designed on the basis of the 

linearized systems be sufficiently robust so that they provide 

stability and satisfactory performance on the original 

nonlinear system. Following the basic Newton's laws of 

motions, we can establish a nonlinear dynamic model of the 

EPAS system by examining the torque acting on the steering 
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column and the pinion driven electric motor. Finally, by 

considering the forces acting on the rack, we can write the 

differential equations of the system as follows. 
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where, 

 

Td Driver Torque.  NM 

Tm Motor Torque. NM 

Kc Steering Column and Shaft 

Stiffness. 

N/M 

bc Steering Column Damping. NM/(Rad/Sec) 

Km Motor and Gearbox Rotational 

Stiffness. 

NM/Rad 

Jm Motor Rotational Inertia. Kg M
2
 

bm Motor and Gearbox Damping. NM/(Rad/Sec) 

m Steering Rack and Wheel 

Assembly Mass. 

Kg 

br Rack Damping. N/(M/Sec) 

G Motor Gear Ratio. dimensionless 

rp Pinion Radius. M 

Kt Tire Spring Rate. N/M 

Θ c Steering column angle. Rad 

&Θ c Steering column angular velocity. Rad/Sec 

Xr  Rack position. M 

•

rX  

Rack linear velocity. M/Sec 

Θ m Assist motor angle. Rad 

m
Θ&  Assist Motor angular velocity. Rad/Sec 

fr, fc, 

and fm 

Nonlinear friction terms in the 

model 

 

 

III. H∞ EPAS CONTROLLER 

In this section we introduce an EPAS system with an H∞ 

controller. Although the controller design details are beyond 

the scope of this paper, it is useful to introduce the simulation 

model of the overall system.  
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 Fig. 2 shows the steering plant state space model with H∞ 

controller. We use this system as a source of data needed for 

neural [3] or fuzzy controllers training. The said 

neural/fuzzy controllers are the original controller 

substitutes. They are expected to do the same original 

controller job. Euclidean ART [4] and back propagation 

neural networks are good examples of neural networks used 

in control applications. 

 

IV. FUZZY LOGIC AND FUZZY CONTROLLERS 

 The fuzzy inference system is a popular computing 

framework based on the concepts of fuzzy set theory, fuzzy 

if-then, and fuzzy reasoning. It has found successful 

application in a wide variety of fields, such as automatic 

control, data classification, decision analysis, expert systems, 

time series prediction, robotics, and pattern recognition [5]. 

Everything is a matter of degree. This statement is known as 

the Fuzzy Principle and it is one of the most important 

principles in fuzzy logic theory [6].  

 In this paper we design a fuzzy controller to substitute an 

H∞ controller that governs an electric car steering aid 

system. It is very important we understand how fuzzy 

controller governs certain plant. The best way to explain that 

is via a practical example that is common to everyone in our 

daily life. The example we are going to choose in here; is the 

speed control process of a room fan. We consider the room 

temperature to be the input variable, and fan speed to be 

governed variable. Although we are able to consider other 

inputs in the system (like room humidity) and other outputs 

(like an AC system), we only consider the temperature and 

fan speed to make the concept simpler. 

 The expected temperature range in a living room in a 

house is 45 to 90 Fahrenheit. The fan speed would be in the 

range 0 to 100 rpm. We would like to build a fuzzy estimation 

for the fan speed in such away to get the speed set according 

to the current temperature value. Depending on the degree of 

fuzziness, the number of membership functions is to be 

selected. For example, the temperature range could be 

subdivided into a number of sub ranges; each range is 

covered by certain membership function. The number of 

those membership functions is decided by the designer and 

has no specific limit.  The higher the number of the 

membership functions, the higher the degree of selectivity 

possible. It is fact an application dependent decision. In this 

example, we can build a system with two membership 

functions in the input side. One represents the cold range 

(45-67 Fahrenheit) and one for the hot range (68 to 90 

Fahrenheit) and other two membership functions in the 

output side. One represents the slow speed (0 to 50 rpm) and 

the other represents the fast speed (51 to 100 rpm). We can 

see that the resulting system would be less vigilant to 

temperature variations and the response to these changes is 

less selective. Now let us increase the selectivity by dividing 

the room temperature range into five sub ranges, namely; 

‘cold’, ‘cool’, ‘just right’, ‘warm’, and ‘hot’. We can also 

divide the fan speed into five regions: ‘stop’, ‘slow’, 

‘medium’, ‘fast’, and ‘blast’. One can easily tell that the 

latter is way better than the former when it comes to 

selectivity comparison. However, increasing the number of 

membership functions does not improve the performance of 
Fig. 2. H∞ based EPAS system.  
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the fuzzy system for free; it is always at the expense of 

processing time. There is always a trade off between the 

quality of performance and the time taken to reach the said 

performance.  

 Fig. 3 shows the input variable (temperature) membership 

functions. We have chosen them to be of Gaussian bell shape. 

  

 
 

 

 

 Fig. 4 shows the output variable (fan speed) membership 

functions. We have chosen them to be of triangular shape.  

 

 
 

 

 Once the training is completed, the system becomes ready 

for testing. The testing is represented by feeding the 

controller with temperature values and monitoring the 

resulting decision generated by it. One of the testing 

examples is shown in figs. 5a and 5b. If we select the input 

temperature to be 67.5 F
o
, the resulting fan speed would be 

55.9 rpm.  

 
 

 The set of rules that links input membership functions to 

the output ones is: 

1. if (Temp is Cold) then (Speed is Stop) 

2. If (Temp is Cool) then (Speed is Slow) 

3. If (Temp is Optimal) then (Speed is Medium) 

4. If (Temp is Hot) then (Speed is Fast) 

5. If (Temp is Very Hot) then (Speed is Blast) 

 

 
 

 

 The temperature 67.5 Fo is common to both ‘optimal’ and 

‘hot’ input membership functions. However it is more 

towards the ‘optimal’ one (note the shaded areas in fig. 5a). 

The corresponding output membership functions are fired 

according to the five rules given earlier. Accordingly, they 

are ‘medium’ and ‘fast’. The final crisp value for the speed 

selection is done by a process called defuzzification [7]. In 

this process, the centroid [8][9] of the output membership 

shaded areas is calculated. In our case this results in 55.9 

rpm.      

 Fig. 6 shows the overall surface relationship between the 

temperature applied and the resulting fan speed. 

 

 
 

Fig. 3. Temperature membership functions. 

Fig. 4. Fan speed membership functions. 

Fig. 5a. Input temperature sensed is 67.5 Fo 

Fig. 5b. Resulting fan speed is 55.9 rpm. 

Fig. 6. Temperature-Speed mapping. 
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 Fig. 6 represents a planar relationship between the 

temperature and the fan corresponding speed.  If we add 

another input (like room humidity) and make it part of the 

speed decision, the said relationship becomes three 

dimensional surface.  

 

V. EPAS FUZZY CONTROLLER 

In this section, we train a fuzzy controller to substitute the 

original H∞ controller. The design details of the H∞ 

controller are far beyond the scope of this paper. However, we 

refer to the controller signals as needed. The original 

controller receives three signals: Tc, Theta_c, and 

Theta_m_dot and produces one control signal U [3]. Figs. 7 

and 8 show the said input and output signals 
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 One of the important training issues for fuzzy controllers 

is the number of membership functions and the shape of the 

said functions. In this paper we use three fuzzy controllers, 

one for each input. The over all performance will be the 

average of the three controllers. Further tuning is possible to 

make the contribution of one controller exceeds the others, 

i.e. one the controllers will the dominant over the other two 

ones.  

 The fuzzy controllers training parameters are as follows: 

      

     Number of nodes: 64 

     Number of linear parameters: 30 

     Number of nonlinear parameters: 45 

     Total number of parameters: 75 

     Number of training data pairs: 41055 

     Number of checking data pairs: 0 

     Number of fuzzy rules: 15 

 

 We choose the same structure for all of the three fuzzy 

controllers. The said structure is shown in fig. 9.  

 Figs 10a, 10b, and 10c show the membership function 

distributions of the fuzzy controller inputs Tc, Theta_c, and 

Theta_m_dot. The fuzzy controller overall output signal 

would be the average of the three outputs. 

 Fig. 11 shows the three fuzzy controllers and the way they 

are connected to produce the overall control signal U. We can 

see that the controllers have the same effect on the overall 

control signal. The system performance could be further 

improved by changing the controller weights (they are 

currently set to 1). In other words we can make the 

contribution of one or two of the controllers exceed that of the 

others by changing their weights. However, it is an 

experimental method and it does not have analytical bases as 

of yet.   

 

   
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

Fig. 7. H∞ controller input signals.  

Fig. 8. H∞ controller output signal. 

Fig. 9. Fuzzy controllers structure. 

Fig. 10a. Tc signal membership function distribution. 

Fig. 10b. Theta_c signal membership function distribution. 

Fig. 10c. Theta_m_dot signal membership function distribution. 
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VI. FUZZY CONTROLLER SIMULATION RESULTS 

 Once the fuzzy controller is trained, it becomes ready to 

replace the original H∞ system. The overall system is shown 

in fig. 12. 

 

 
  

 

 

 

 Fig. 12 shows the overall control system based on the fuzzy 

controller. The original H∞ controller is completely removed 

and replaced with the fuzzy one.  
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 We need to see now, how the new system would behave 

when exposed to the road conditions and driver’s steering 

torque. The driver’s steering torque is applied via an external 

driver torque signal generator (Td). Then, we measure the 

assist torque (both desired and actual). The difference 

between the two represents the error signal that we try to 

minimize. Figs 13-16 show the applied torque and the assist 

torque in both of the H∞ controller and its corresponding 

fuzzy one.    
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 It would be also useful to test the system against harsh 

driving circumstances. Driving a car is not always a smooth 

process.  The driver sometimes needs to make sudden 

decisions to avoid certain obstacles that may appear along 

his/her way. Sudden steering is an example of these harsh 

circumstances.  

 Figs 17 and 18 show the performance of the H∞ system. 

One can notice the fluctuation in (Ta) value once the step 

torque is applied. This fluctuation damps with time shortly 

and the system reaches its steady state.  
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 Figs 19 and 20 show the performance of the fuzzy control 

system. We can notice that both of the systems are almost  

Fig. 11. EPAS System fuzzy controller. 

Fig. 12. Fuzzy controller based EPAS system.  

Fig. 13. H∞ Ta and Ta desired signals. 

Fig. 14. H∞ Ta-Ta desired signals. 

Fig. 16. Fuzzy controller Ta-Ta desired signal. 

Fig. 15. Fuzzy controller Ta and Ta desired signals. 

Fig. 17. H∞ Ta and Ta desired signals in response to driver’s step 
Steering. 

Fig. 18. H∞ Ta-Ta desired signal in response to driver’s step Steering. 
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identical and both reach the same level of stability (steady 

state error) at the same time.  
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VII. CONCLUSIONS AND FUTURE WORK  

The major conclusion we come to in this paper, is the 

ability of fuzzy systems to play the role of EPAS controllers. 

We have noticed that the performance of the fuzzy controller 

is almost identical with that of the original H∞ one. The 

choice of appropriate fuzzy parameters like the number and 

shape of membership functions plays an important role in 

realizing this identity. With small number of functions, the 

error rate will increase but the system complexity will be 

smaller and vice versa. It is well known that the higher the 

complexity of the system, the slower the overall response to 

be. Our future work will be focusing on finding methods 

and/or algorithms that help in deciding the optimal number 

and perhaps the optimal shape of the membership functions. 

We need to reach certain level of fuzzy system complexity so 

that the error would be the best, and the response would be 

the fastest.  
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Fig. 19. Fuzzy controller Ta and Ta desired signals in response to driver’s 

step Steering. 

Fig. 20. Fuzzy controller Ta-Ta desired signal in response to driver’s step 

Steering. 
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