
 
 

 

  
Abstract— The goal of this paper is to present a tool for 

automatic implementation of Timed Automata model in a 
real-time operating system. The purpose of this tool is to make 
design, implementation and verification of real-time control 
systems easier because human resources will be concentrated 
more on the area of specification and verification than 
implementation issues. In the paper are described developed 
modules enabling automatic implementation of Timed Automata 
models from UPPAAL into the real-time operating system 
extension RTX. The software tool is being developed as an 
open-source project with support from the National Grant 
Agency at the Department of Control and Instrumentation, 
Brno University of Technology. 
 

Index Terms— Timed Automata, Temporal Logic, UPPAAL, 
RTX.  
 

I. INTRODUCTION 

  Control systems play an important role in everyday life. 
People and the systems themselves are surrounded by 
hundreds of different devices consisting of one or more 
control system: cellular phones, PDAs, televisions, cars, 
buildings etc. They usually help us, but in the case of incorrect 
operation they can be a threat to us or other systems [1], [2], 
[3]; therefore it is necessary to ensure their reliable and safe 
behaviour. To produce such reliable and safe systems via a 
standard (and proved) approach is and arduous task requiring 
a lot of time, skill, and human effort; however, the human 
work is mainly concentrated in the area of implementation 
(writing routines and programs, designing HW, debugging, 
etc.) and not in the area of specification and verification. 
Formal methods help to concentrate human resources on the 
specification and verification and it significantly improves 
final reliability and safety of the control systems. 

Timed Automata are often used for description, modelling 
and verification of different systems in almost all branches of 
engineering. Today, they are an interdisciplinary tool 
facilitating work on product and system design from HW to 
SW parts of applications. Many articles and papers are 
published every year; they show Timed Automata as a useful 
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tool in many areas of human activity such as aviation [5], 
economy [6], industry [7], communication [4], control 
systems [8], etc. 
 Complexity of today's control systems forces system 
developers to often utilize operating systems in the control 
engineering applications. It is because the complexity and 
computational power demands of the operating system 
becomes less important due to higher performance of the 
processors while their advantages are indisputable. However, 
developing control application with or without operating 
system support is a totally different task. Techniques, 
methods and strategies that are used in implementations 
without operating systems cannot be used if implementing the 
same control task in the target platform with the operating 
system support. This is because control system application 
must be separated into less or more independent tasks 
(processes, threads) and with such independent tasks 
difficulties arise around exclusive access to shared resources; 
memory locations and hardware elements. Moreover, a 
general-purpose operating system cannot be used because 
control task is a strictly time-constraint process and it's 
deadlines must be complied with at all time. This is why a 
real-time operating system must be used; however difficulties 
arise related to the time behaviour of the tasks. 
 

II.  FORMAL APPROACH 

The formal approaches used for designing the real-time 
control systems such as: UML, ROPES, etc., concentrate 
predominantly on theoretical solutions of the appropriate 
interactions of the blocks to provide real-time behaviour in 
terms of time-constraints and synchronism, however, 
practical experiences show that a fair amount of failures in 
real-time control systems are not only caused by flaws in the 
design, but also by underestimation of the efficiency of the 
particular point-to-point connection. Having designed proper 
Timed Automata, synchronization points of processes, and 
employing further measures to diminish the compromising of 
timeliness is crucial if the control system is to be transferred 
into practice. 

Utilization of Timed Automata and real-time operating 
system can solve many of the aforementioned problems. 
Timed Automata can be used not only for formal description 
of the control task but also for verification of it's correctness 
and time behaviour. Real-time operating systems can be used 
for proper implementation of this formal model in the target 
platform. Transformation from the Timed Automata 
specification into the real-time operating system application 
can be done automatically without human intervention; it 
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significantly improves reliability and safety parameters of the 
final application. 

This transformation can be done by a development strategy 
that has been previously presented by the authors [9]. The 
simplified model of this strategy can be described by a state 
diagram shown in Fig. 1. 

 
Fig. 1: State diagram of the development strategy 

 
 The state diagram of the proposed development strategy 
consists of 4 important steps.  In the step: Formal Model, a 
Timed Automata model of the control task is created. As soon 
as the model is created it's verification phase can be carried 
out in the step: Verification. When the verification step is 
finished, the development procedure can either move back 
into the Formal Model step, because the verification failed, or 
into the step: Implementation, where automatic 
implementation of the model is built.  
 The formal model can be incorrect if deadlock or livelock 
is observed during the verification step. In this case, we must 
return to the Formal Model step and another appropriate 
Timed Automata model of the system must be created. The 
Implementation step is followed by the Tests step. In this step 
all necessary tests of the final application are made. If any of 
the performed tests fail, the development strategy must return 
back into the Formal Model and changes in the Timed 
Automata model must be carried out. If the tests of the system 
were successfully then the development procedure ends. 
 

III.  TIMED AUTOMATA MODEL 

 For the purposes of the formal description of the task, timed 
automaton and temporal logic have been chosen as an 
appropriate description method. The main advantage of this 
formal method is that there exists an integrated tool 
environment for modelling, simulation, and verification of 
real-time systems called UPPAAL. UPPAAL was developed 
jointly by BRICS at Aalborg University and the Department 
of Computer Systems at Uppsala University [10]. It is the 
appropriate tool for a system that can be modelled as a 
collection of non-deterministic processes with a finite control 
structure and real-valued clocks, communicating through 
channels or shared variables. Typical application areas 
include real-time controllers, communication protocols and 
embedded systems control.  UPPAAL consists of three main 
parts: a description language, a simulator, and a 
model-checker [18]. 

1. The Description Language 

 The description language is a non-deterministic guarded 
command language with simple data types; unbounded 

integers, arrays, etc. It serves as a modelling or design 
language to describe system behaviour as networks of 
automata extended with clock and data variables [18].  

1. The Simulator 

 The simulator is a validation tool that enables examination 
of possible dynamic executions of a system during early 
design or modelling stages and thus, provides an inexpensive 
means of fault detection prior to verification by the 
model-checker, which covers the exhaustive dynamic 
behaviour of the system [18]. 

1. The description language 

3. The model-checker is used to check invariant and bounded 
liveness properties by exploring the symbolic state-space of 
the system, i.e., reachability analysis in terms of symbolic 
states represented by constraints [18]. 
 
 The theory of timed automaton is well described in [11]. A 
number of verification tools have been developed for timed 
systems in the past year. UPPAAL is one of them as described 
in [12], [13], or [10]. The other tools are well described in 
[14]. 
 The goal of UPPAAL has always been to serve as a 
platform for the tool to provide a flexible architecture that 
allows experimentation. It should allow orthogonal features to 
be integrated in an orthogonal manner to evaluate various 
techniques within a single framework and investigate how 
they influence each other [15].  
 The formal model is represented by Timed Automata 
diagram(s) created in UPPAAL. The model is stored in a 
XML file. This formal model can be automatically converted 
into the objects that are easy to implement into real-time 
operating systems and these objects result in an executable 
code. 
 

IV.  REAL-TIME OPERATING SYSTEM 

 There are many real-time operating systems available. 
Some of them are free, some are available under GPL or BSD 
license and some of them are proprietary. Decision process of 
choosing the right one is a painful work and many aspects 
must be considered [16]. However practical experiences show 
that the selection of the suitable real-time operating system is 
often the question of experiences of the developers. 
 Authors are very well experienced with the real-time 
extension RTX. It is not a stand-alone real-time operating 
system because it requires the presence of the Microsoft 
operating system on the target platform. But it provides 
almost all features and properties like standard real-time 
operating system for x86 platforms [17].  
 RTX is a real-time extension based on Win32 Application 
Interface (API). It provides precise control of IRQs, I/O, and 
memory. It operates in Ring 0 with the highest performance 
and sustained interrupt rates of 30 KHz with an average IST 
latency of less than one microsecond. This is why RTX 
becomes more and more popular in control systems, 
especially in the area of diagnostic systems and real-time 
control systems. Another advantage of this real-time 
extension is a close cooperation with the Windows operating 
system. It makes possible to create outstanding graphics user 
interface (GUI) without any additional costs or effort because 
this GUI is created under standard Windows API and with the 
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real-time extension core is connected by a shared memory 
mechanism. Moreover, RTX is available for free in the 
evaluation edition. 
 Basic concept of RTX is based on so-called processes slots. 
Slot is an execution unit (task) that can be started or stopped 
independently to the other RTX processes. Each task consists 
of at least one thread. Threads in the same task run in the same 
environment (memory, CPU core) however threads from 
different tasks are planned by the same scheduler. Priority 
system consists of 128 independent priority levels and two or 
more threads can share the same priority level. 
 

V. IMPLEMETATION TOOL 

 Implementation of the Timed Automata model in RTX can 
be carried out automatically in the step: Implementation in 
Fig. 1. The relationship between UPPAAL, implementation 
tool, RTX, x86 target platform and control technology is 
shown in Fig. 2. 
 

 
Fig. 2: Relationship between the designing tool, target 

platform and technology 
 
 The Model of the control system is created and verified in 
the UPPAAL tool. If the verification is passed then the 
implementation tool reads the Timed Automata model saved 
in XML file and creates a Visual C++ project for the RTX 
application. The RTX application creates one task consisting 
of one or more threads. Each thread in the RTX process is 
equivalent to UPPAAL process assignment. The RTX 
process has a direct connection to the Hardware Abstraction 
Layer (HAL) of the Target Platform and it can directly control 
hardware in the Technology. Mapping of the model variables 
into the hardware must be completed by a human in Visual 
C++ project. However internal behaviour of the RTX process 
and its threads are generated automatically by Timed 
Automata model. 
 Many problems must be solved before the Timed Automata 
model can be successfully transferred into the RTX 
structures. The most important one is a time concept. 
UPPAAL time is an integer value passing from –∞ to +∞. 
RTX time is based on a HAL timer period that is a minimum 
time quantum that can be used for timers and sleep functions. 
This HAL timer period can be one of the fixed value; 100, 
200, 500 and 1000 µs and this value is the same for all 
processes and its threads. The corresponding value must be 
chosen before the implementation of the Timed Automata in 
RTX as the implementation tool should be aware of it. 
 Another problem can be with the Urgent Channels. Urgent 
channels are similar to synchronisation channels, except that 
it is not possible to delay in the source state if it is possible to 
trigger a synchronisation over an urgent channel. It cannot be 
successfully realized in symmetric architecture with one 
available CPU (with just one core) in the target platform. 
Therefore, urgent synchronization is carried out by a 
supervising thread using the maximum priority. This thread is 

attached to the control process and controlled via the HAL 
timer period. 
 

VI.  EXAMPLE 

 Let us consider a simple system that represents the JK 
flip-flop device: 
 

 (1) 
 
 Where J and K are inputs of the device and Qn and Qn+1 are 
its outputs before and after the synchronization clock.  A 
simplified model of this device in UPPAAL is shown in 
Figure 3. 

 
Fig. 3: Simplified model of the JK flip-flop 

 
 The system is a Mealy state machine with two states and 
four transitions. Anytime the system enters the state:  
STATE_1, its output is set to 1 and if the system enters the 
state: STATE_0, the output is set to 0. Transition between the 
states corresponds with the equation 1. For simplicity the time 
and invariant conditions are not considered here. 
 The implementation of this system in RTX is carried out by 
the process JK_TEST consisting of 3 threads. The structure of 
the process is shown in Fig.fi 4. 
 Thread sync is responsible for the proper synchronisation 
of signals J and K. Function mutex ensures an exclusive 
access to the signals J and K because the threads inout and 
state_machine also share them. Function event then 
represents calling of the corresponding event handling of the 
synchronization channel; standard, urgent or broadcast 
channel. This thread has the highest priority in the process. 
This thread is completely generated by the implementation 
tool. 
 Thread inout is responsible for communication with the 
HAL. Implementation is strictly dependent on the target 
platform hardware and it cannot be generated automatically 
from the Timed Automata model. The implementation tool 
creates only a skeleton and the developer must implement the 
correct read and write function. However the developer must 
not solve problems with synchronisation or unique access to 
the shared variables; it is already carried out by the skeleton 
and the other thread(s) in the process. Priority of this thread 
must be lower than the priority of the sync thread. 
 The thread state_machine is a core of the task. It generates 
the logical behaviour of the system. It consists of one or more 
case-switch statements where transitions among states are 
performed. All the conditions that fire the transitions for each 
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state are encapsulated in a Condition to Leave function. For 
instance, function CL_STATE_1() has an implementation: 
 
 
CL_STATE_1() { 
 if ((J&&K) || (J&&!K)) { 
  Q = 1; 
  state = STATE_1; 
  return;  
 } 
 if ((!J&&K) || (J&&K)) { 
  Q = 0; 
  state = STATE_0; 
  return;  
 } 
} 
 
 This thread is also completely generated by the 
implementation tool and its priority can be the same as inout 
thread but must be lower than sync thread. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Implementation of the JK flip-flop in RTX 
 

VII.  CONCLUSION 

 A suggested tool for automatic transferring of the Timed 
Automata model into the real-time operating system brings 
several advantages into the area of system control design. 
 Routine implementation work of the software engineer will 
be replaced by automatic implementation; it significantly 
increases safety and reliability of the control systems, while 
its verification demand will be lower. 
 Verification of the system will be based on its formal 
specification; it brings the possibility to verify the project 
during a specification process and final verification can be 
automated or semi-automated: without human intervention. 
 Total design time will be reduced, whilst safety and 
reliability parameters will be preserved or improved with 
lower costs. 
 However, several issues remain unresolved regarding the 
tool.  As was aforementioned, the challenging problem with 

urgent channels was solved by a special thread sync that 
controls the synchronisation between channels. The minimal 
delay between synchronization events rely on the HAL timer 
period. This period can be in the range from 100 to 1000 µs; 
and it can be too long for time-critical application. Thus 
another approach must be found. 
 Another issue deals with Committed Locations. The 
Committed Location is a location (state), where no delay pass 
is allowed. If a broadcast synchronisation is sent to different 
locations (state) then it is difficult to ensure constant delay 
pass among the states. 
 Finally, the invariant conditions can be used in the future 
version of this tool for time-checking behaviour of the model, 
during real-time execution of the control system. 
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Process: JK_TEST 

thread: sync 
 
do 
 { 

mutex(J); 
event(J); 
mutex(K); 
event(K); 

 }  
while (!terminated) 

thread: inout 
 
do { 

mutex(J); 
read(J); 
mutex(K); 
read(K); 
mutex(Q); 
write(Q); 

} while (!terminated) 

thread: state_machine 
 
do { 

case (state) { 
switch STATE_1: CL_STATE_1();break; 
switch STATE_0: CL_STATE_0();break; 

} 
 

} while (!terminated) 
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