

Index Terms—Field Programmable Gate Array (FPGA),
Hardware Implementation, Image Processing, Matrix-Vector
multiplication.

Abstract—Matrix-vector multiplication is a computationally

intensive and kernel operation used in many image processing
applications. This paper presents a preliminary Field
Programmable Gate Array (FPGA) design and implementation
of dense matrix-vector multiplication for use in an image
processing application. The design is optimized for speed which
is the main requirement for such applications. The design has
been implemented on Virtex-4 FPGA using Xilinx ISE 9.2i and
the performance is evaluated by computing the execution time
on FPGA. FPGA implementation results demonstrate that it can
provide a maximum throughput of 16970 frames per second
utilizing only 14% Virtex-4 slices and 57% DSP48 blocks which
is quite adequate for most real-time image processing
applications.

I. INTRODUCTION
 Computationally intensive algorithms used in image and
signal processing, multimedia, telecommunications,
cryptography, networking and high performance computing
(HPC) domains in general were first realized using software
running on Digital Signal Processors (DSPs) or General
Purpose Processors (GPPs). Significant speed–up in
computation time can be achieved by assigning complex
computation intensive tasks to hardware and by exploiting the
parallelism in algorithms [1].

Recently, Field Programmable Gate Arrays (FPGAs) have
emerged as a platform of choice for hardware implementation
of computation intensive algorithms [1]–[13]. Especially,
when the design at hand requires very high performance,
designers can benefit from high density and high performance
FPGAs instead of costly multicore Digital Signal Processing
(DSP) systems. FPGAs enable a high degree of parallelism
and can achieve orders of magnitude speedup over GPPs [7].
This is as a result of the increasing embedded resources on
FPGA.

FPGA have the benefits of the hardware speed and the
software flexibility; also they have a price/performance ratio
much more favorable than Application Specific Integrated

Manuscript received March 23, 2010. This work was financially
supported by Research Center in the College of Engineering, King Saud
University under grant no. 11/430.

Authors are with the Department of Electrical Engineering, College of
Engineering, King Saud University, Riyadh 11421, Saudi Arabia (emails:
smanzoor@ksu.edu.sa, atelba@ksu.edu.sa and almazroo@ksu.edu.sa).

Circuits (ASICs). Since the major resources for implementing
computation intensive algorithms are embedded on FPGA,
latency associated with device communication has been
eliminated. However, these embedded resources are limited
hence it is important to use these resources efficiently.

The last decade has seen ever increasing application areas
for FPGAs. Modern FPGAs currently accommodate more
than ten million gates with clock rates up to 600 MHz [13].
Example application areas include single chip replacements
for old multichip technology designs, DSP, image processing,
multimedia applications, high–speed communications and
networking equipment such as routers and switches, the
implementation of bus protocols such as Peripheral
Component Interconnect (PCI), microprocessor glue logic,
coprocessors and controllers [13].

Most of the computation intensive algorithms such as those
used in image processing application involve dense or sparse
matrix–vector multiplication as the kernel operation. It has
been implemented using novel algorithms and technologies to
achieve high performance [14]–[16]. In this paper, we present
a preliminary design and FPGA implementation of dense
matrix–vector multiplication for use in an image processing
application.

The remainder of this paper is organized as follows.
Section II presents a brief overview of the FPGA technology.
The mathematical formulation of the design is presented in
section III. Section IV presents the hardware design and
FPGA implementation results of the matrix–vector multiplier.
Finally, concluding remarks and scope for future work are
discussed in section V.

II. FPGA TECHNOLOGY OVERVIEW
FPGAs are digital integrated circuits (ICs) that belong to a

family of programmable logic devices (PLDs). An FPGA chip
includes Input Output Blocks (IOBs) and the core
programmable fabric. The IOBs are located around the
periphery of the chip, providing programmable I/O
connections and support for various I/O standards. The core
programmable fabric consists of programmable logic blocks
also called Configurable Logic Blocks (CLBs) and
programmable routing architectures [17].

Many different architecture and programming technologies
have evolved to provide better designs that make FPGAs
economically viable and an attractive alternative to ASICs.
Modern FPGAs have superior logic density, low chip cost and
performance specifications comparable to low end

FPGA Design and Implementation of Dense
Matrix-Vector Multiplication for Image

Processing Application
Syed M. Qasim, Member, IAENG, Ahmed A. Telba, and Abdulhameed Y. AlMazroo

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

microprocessor. With multimillion programmable gates per
chip, current FPGAs can be used to implement digital systems
capable of operating at frequencies up to 600 MHz. In many
cases, it is possible to implement an entire system using a
single FPGA. This is very economical for specialized
applications that do not require the performance of custom
hardware [17].

Significant technological advancements have led to
architectures that combine FPGA’s logic blocks and
interconnect matrices, with one or more microprocessors,
embedded Intellectual Property (IP) cores, memory blocks,
DSP blocks integrated on a single chip to facilitate the
implementation of Programmable System–on–a–Chip
(PSoC) designs [18]–[19].

Examples of PSoC are the Xilinx Virtex–II Pro, Virtex–4,
Virtex–5 and Virtex–6 FPGA families, which include one or
more hard-core PowerPC processors embedded along with
the FPGA’s logic fabric [20]–[22]. Alternatively, soft
processor cores that are implemented using part of the FPGA
logic fabric are also available. Many soft processor cores are
now available such as: Xilinx 32–bit MicroBlaze [23] and
PicoBlaze, and the Altera Nios and the 32–bit Nios II
processor [17].

III. MATHEMATICAL FORMULATION
Matrix–vector multiplication is computationally intensive

and typical routine used in many image processing
applications. It requires several multiply and accumulate
(MAC) units. In DSPs, the overall performance is limited by
the number of multiplications and additions that could be
done in parallel. DSPs take several clock cycles to perform all
the necessary MAC operations. However, modern FPGAs, on
the other hand are equipped with large number of hardware
resources embedded in the FPGA fabric itself such as DSP48
blocks, multipliers, Block RAMs, etc [17]. It can provide
higher and more efficient processing rates required by such
applications if the algorithm is coded in a way to utilize these
embedded resources efficiently. The objective of this paper is
to realize a large and dense matrix–vector multiplier for an
image processing application [24].

We represent the vector C as (C1, C2...Cm)T and vector G
which represents the image data. According to the
application, we want to multiply matrix S with vector C
represented by the following equation

 C=SG (1)
where, S is a Jacobian matrix. In the discrete form, it is
required to find the unknown vector G from the known vector
C, while S is treated as a constant matrix for simplicity. We
can represent G by the following relationship

 G=STC (2)
where, ST is the transpose of S. Replacing ST by A,
mathematically; the above equation is approximated by the
following relationship

 G=AC (3)
The key idea here is to calculate G using (3). The dimension
of the given matrices depends on the application, which, in
this case is summarized in table 1.

Table 1: Matrix Dimensions

Matrix Symbol Matrix Dimension

A 1024×28

C 28×1

G 1024×1

IV. HARDWARE DESIGN AND FPGA IMPLEMENTATION
In this section, we present the details of the hardware

design for implementing matrix–vector multiplication on
FPGA. As can be seen from (3), the image processing
algorithm reduces to matrix–vector multiplication. For
efficient implementation and maximum speed-up, integer
arithmetic is utilized. Since the floating–point arithmetic unit
consumes more silicon real estate of FPGA and are slower as
compared to integer arithmetic, we used integer arithmetic for
the design.

The design involves the computation of G = AC, where A is
a matrix, C and G are vectors as summarized in table 1. It is
required to calculate vector G. The matrix–vector
multiplication is performed by broadcasting rows of matrix A
and multiplying the corresponding column elements of vector
C [25]. The sequence of operations involved in the
computation of matrix–vector multiplication is as follows:
1) Reading the individual row elements of matrix A and the

individual column elements of vector C.
2) Storing them in internal buffers row and column wise

respectively.
3) Multiplying the row and column elements.
4) Accumulating the multiplier output and writing back the

results to the output buffers.
The input and output buffers are implemented on the

FPGA. The matrix–vector multiplication typically involves
MAC operations. The MAC unit consists of a multiplier and
accumulator. The row and the column elements are supplied
as the two inputs to the multiplier. The output of the multiplier
is directly given to the accumulator as one of the inputs. The
previous output of the accumulator is fed back as the second
input.

The MAC unit takes each element of the matrix A in row
major format and each element of vector C, multiplies them
and adds the result to the running total. This process is
repeated till the last element of row A and column C. The
values are fed in a sequential manner. If the reset signal is
asserted high, the contents of registers A and C are cleared.

After a delay, as determined by the implementation results,
the first element of vector G is available at the serial output
and this output is stored in on–chip memory as shown in
figure 1. This operation is repeated and the process continues
until all the rows of matrix A are processed. Finally, the
output vector G is available with all the elements stored in the
memory locations. A simplified diagram of the processing
element for matrix–vector multiplication is shown in figure 1.
Figure 2 presents the simulation result for matrix–vector
multiplication using Xilinx edition ModelSim XE III 6.4b
simulator.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

X

+ DFF

R
E
G

a28 ..…………………… a2 a1

1

2

3

.

.

.

.

.

1024

c1 ……………………… c27 c28

 CLK RST

A C

G

RAM

Figure 1: Matrix-vector multiplication processing architecture

Figure 2: FPGA simulation results of matrix-vector multiplication

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

In order to evaluate the performance of FPGA–based
implementation, the algorithm was coded in VHDL and
implemented on Virtex–4 (xc4vlx200ff1513, speed grade:
–11) family using Xilinx ISE 9.2i tool. The design was
synthesized into Virtex–4 FPGA optimized for speed. The
hardware resource utilization is summarized in table 2.

As shown in table 2, 14% of the slices and 57% DSP48s are
utilized leaving a plenty of room to implement more parallel
processors on the same FPGA chip. The results listed in table
2 were obtained using Xilinx ISE 9.2i tool. The optimization
setting for ISE is for maximum clock speed. The total
processing time using Virtex–4 FPGA is found to be 58.93
µs; this is equivalent to a throughput of 16970 frames per
second. The results indicate the feasibility of using FPGA for
real–time high speed image processing applications using this
matrix–vector multiplication.

Table 2: FPGA Resource Utilization

Resources Used/Available Utilization

Slices 1,3010 out of 89088 14%

Four-input LUTs 9612 out of 178176 5%

DSP48s 55 out of 96 57%

Maximum Frequency 17.376 (MHz) -

V. CONCLUSIONS AND FUTURE WORK
Most of the algorithms which are used in DSP, image and

video processing, computer graphics and vision and high
performance supercomputing applications have matrix
operation as the kernel operation. In this paper, we have
presented a preliminary design of dense matrix–vector
multiplication. The design has been implemented on a Xilinx
Virtex–4 FPGA device and the performance is evaluated by
computing its execution time on FPGA. Hardware
implementation results demonstrate that it can provide a
throughput of 16970 frames per second which is sufficient for
many real–time image and video processing applications.

Some recommendations to continue this work in future are
outlined below:
1) Implementing the architecture of matrix–vector

multiplication using floating point arithmetic instead of
integer. This will further enhance the design by making it
suitable for other high performance computing
applications, where the current trend is to use double
precision floating point numbers.

2) FPGA–based standalone module is presented to enhance
the computation time of the matrix–vector multiplication.
However, the communication time between the FPGA
coprocessor and host PC is not taken into consideration.
The introduction of parallel and/or pipelined coprocessor
along with an embedded processor of FPGA can reduce
the computational time depending on the level of
parallelism introduced.

3) Exploration of domain–specific Coarse Grained
Reconfigurable Architecture (CGRA) for implementing
computationally intensive matrix–vector multiplication.

ACKNOWLEDGMENT
The authors would like to thank Dr. Mohammed AlEsheikh

and the staff of Research center, College of Engineering, King
Saud University for their support.

REFERENCES
[1] S. Ogrenci, A. K. Katsaggelos, and M. Sarrafzadeh, “Analysis and

FPGA Implementation of Image restoration under resource constraint,”
IEEE Trans. on Computers, Vol. 52, No. 3, pp. 390-399, 2003.

[2] C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Liu, “Implementing an
OFDM Receiver on the RaPiD Reconfigurable Architecture,” IEEE
Trans. on Computers, Vol. 53, No. 11, pp. 1436-1448, 2004.

[3] G. R. Goslin, “A Guide to Using Field Programmable Gate Arrays for
Application-Specific Digital Signal Processing Performance,”
Microelectronics Journal, Vol. 28, Issue 4, pp. 24-35, 1997.

[4] J. Isoaho, J. Pasanen, O. Vainio, and H. Tenhunen, “DSP System
Integration and Prototyping with FPGAs,” Journal of VLSI Signal
Processing, Vol. 6, pp. 155-172, 1993.

[5] A. G. Ye and D. M. Lewis, “Procedural Texture Mapping on FPGAs,”
in Proc. of ACM/SIGDA 7th Intl. Symp. on Field Programmable Gate
Arrays, pp. 112-120, 1999.

[6] S. Knapp, “Using Programmable Logic to Accelerate DSP Functions,”
http://www.xilinx.com/appnotes/dspintro.pdf.

[7] J. Ma, “Signal and Image processing via Reconfigurable Computing,”
in Proc. of the First Workshop on Information and Systems
Technology, 2003.

[8] F. Otto and Z. Pavel, “Hardware Accelerated Imaging Algorithms,” in
Proc. of AUTOS’2002 Automatizace systému, pp. 165-171, 2002.

[9] L. Batina, S. B. Ors, B. Preneel, and J. Vandewalle, “Hardware
architectures for public key cryptography,” Integration, the VLSI
Journal, Vol. 34, pp. 1-64, 2003.

[10] D. Johnson, K. Gribbon, D. Bailey, and S. Demidenko, “Implementing
Digital Signal Processing Algorithm’s in FPGA’s: Digital Spectral
Warping,” in Proc. of 9th Electronics New Zealand Conf., pp. 72-77,
2002.

[11] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of
Systems and Software,” ACM Computing Surveys, Vol. 34, No. 2, pp.
171-210, 2002.

[12] R. Tessier and W. Burleson, “Reconfigurable Computing for Digital
Signal Processing: A survey,” Journal of VLSI Signal Processing, Vol.
28, No. 3, pp. 7-27, 2001.

[13] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W.
Luk, and P. Y. K. Cheung, “Reconfigurable Computing: architectures
and design methods,” IEE Proc. of Computer Digital Techniques, Vol.
152, No. 2, pp. 193-207, 2005.

[14] N. Fujimoto, “Faster matrix-vector multiplication on GeForce
8800GTX,” in Proc. of the 22nd IEEE Intl. Parallel and Distributed
Processing Symposium (IPDPS), pp. 1-8, 2008.

[15] N. Fujimoto, “Dense matrix-vector multiplication on the CUDA
architecture,” Parallel Processing Letters, Vol. 18, No. 4, pp.
511-530, 2008.

[16] M. Delorimier and A. Dehon, “Floating-Point sparse matrix-vector
multiply for FPGAs,” in Proc. of the IEEE Intl. Symposium on Field
Programmable Gate Arrays, pp. 75-85, 2005.

[17] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes, “Features,
Design Tools and Application Domains of FPGAs,” IEEE Trans. on
Industrial Electronics, Vol. 54, No. 4, pp. 1810-1823, 2007.

[18] G. Stitt and F. Vahid, “Energy advantages of microprocessor platforms
with on-chip configurable logic,” IEEE Design and Test of Computers,
Vol. 19, No. 6, pp. 36-43, 2002.

[19] A. Ansari, P. Ryser, and D. Isaacs, “Accelerated System Performance
with APU-enhanced processing,” Xcell Journal, First quarter 2005.

[20] Xilinx Inc, Virtex-II platform FPGA Data Sheet, 2005.
[21] Xilinx Inc, Virtex-4 multiplatform FPGA, 2005.
[22] Xilinx Inc, Virtex-5 multiplatform FPGA, May 2006.
[23] Xilinx Inc, MicroBlaze Soft Processor Core, 2005.
[24] D. F. Garcia-Nocetti, J. G. N. Gamio, and L. Aguilar, “Parallel

Realization of the Linear Back-projection Algorithm for Capacitance
Tomography using TMS320C6701 DSP,” in Proc. of 3rd World
Congress on Industrial Process Tomography, pp. 648-653, 2003.

[25] J.-Y. Blanc and D. Trystram, “Implementation of parallel numerical
routines using broadcast communication schemes,” in Joint Intl. Conf.
on Vector and Parallel Processing, Lecture Notes in Computer Science,
Springer Verlag, Vol. 457, pp. 467-478, 1990.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

http://www.xilinx.com/appnotes/dspintro.pdf�

	INTRODUCTION
	FPGA Technology Overview
	Matrix Dimension
	Matrix Symbol
	MATHEMATICAL Formulation
	Hardware Design and FPGA Implementation
	Conclusions and Future Work
	Acknowledgment
	References
	Utilization
	Used/Available
	Resources

