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Abstract— This paper presented design of a low complex-
ity multichannel affine projection (AP) algorithm using Dichoto-
mous Coordinate descent(DCD) iterations. The computational
complexity of this proposed algorithm is analyzed, and it is shown
through simulation that the new multichannel algorithm not only
provides the same performance as affine projection algorithm, it
could also be implemented in hardware. It is expected that the
new algorithm will consume less memory and power because it
requires less number of multiplications and additions. The per-
formance of the multichannel AP-DCD algorithm depends on
the number of updates. When the number of update (Nu) in-
creases, the performance of the multichannel AP-DCD algorithm
provides the same performance as AP algorithm. Furthermore,
to offering a good convergence speed, the new algorithm pro-
vides the expected tradeoff between convergence performance
and computational complexity.

Keywords: Adaptive filter, affine projection, AP-DCD algorithm,
multichannel.

1 Introduction

Generally, the multichannel adaptive filtering problem’s solu-
tion depends on the correlation between the number of chan-
nels, order and nature of the impulse response involved in the
system. In last few decades multichannel adaptive affine pro-
jection algorithms are used in many different applications such
as active noise control, acoustic echo cancelation and sound
reproduction system. The family of AP algorithms presents
good stability, fast convergence speed and modest computa-
tional cost. Nevertheless, the computational complexity of
AP algorithm increases with the projection order and efficient
strategies require to achieve fast and robust algorithms for real
time systems. Therefore, different fast affine projection (FAP)
algorithms have been proposed [1] basing on efficient matrix
inversions. However, these FAP algorithms were numerically
unstable, computationally complex, and also it did not pro-
vide the same convergence speed. Hence, FAP algorithm was
further modified using Gauss-Seidel inversion [2] scheme for
better numerical stability and low complexity. Although, this
GSFAP [3] algorithm was good to implement for multichan-
nel active noise control (ANC) system, but the complexity was
not so small.

To reduce the complexity further, a Pseudo Affine Projec-
tion (PAP) algorithm [4] using Levinson-Durbin recursion [2]
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was proposed. The proposed algorithm was moderately com-
plex but the design was more complex than GSFAP. Hence,
the Levinson-Durbin recursion was replaced with the Gauss-
Seidel method [3, 5] to derive a simpler algorithm [6, 7],
called the Gauss-Seidel Pseudo Affine Projection (GSPAP)
algorithm. The GSPAP algorithm provided the similar con-
vergence performance and the complexity of the GSPAP al-
gorithm was typically lower than that of the FAP-RLS and
GSFAP algorithms. However, the GSPAP algorithm is still
used at least one inverse matrix computation. This algorithm
could become very complex for large matrices and prone to
numerical instability. Therefore, to improve the stability and
to reduce the complexity, a new pseudo affine projection al-
gorithm called the modified filter-x Dichotomous Coordinate
Descent Pseudo Affine Projection (MFX-DCDPAP) algorithm
was introduced [8]. However, it requires large number of mul-
tiplications.

Thus, this paper presented a low complexity multichannel AP-
DCD algorithm. The new algorithm is an extension work of
single channel AP-DCD algorithm [9]. This proposed algo-
rithm could be used in different applications of signal process-
ing such as active noise control, acoustic echo cancelation and
multimedia systems etc. The new multichannel algorithm has
the potential to provide low complexity and better numerical
stability, in addition, it also requires less number of multipli-
cations. The multichannel AP-DCD algorithm is implemented
in Matlab and discussed in the following sections.

2 Implementation of Multichannel AP-DCD
Algorithm

The block diagram of a multichannel affine projection algo-
rithm using dichotomous coordinate descent iterations is illus-
trated in Figure 1.X1(n) andX2(n) are the excitation signal
matrix of L × K vector, whereL is the filter length andK is
the projection order.h1(n) andh2(n) are the additive noise
andw1(n) andw2(n) are the adaptive filter ofL × 1 vector.
yn is the output of the adaptive filter andK×1 is the vector of
yn anden is the filter error. The complete analysis and design
of the multichannel AP-DCD algorithm are given in table 1.

In the AP-DCD algorithm γ, µ and ε̂ are regulariza-
tion factors, step-size parameters and the solution vec-
tor of the linear system respectively;x1n and x2n

are the excitation signal,dn is the desired signal
,ŵ1n and ŵ2n are the adaptive filter taps, atn instant
time. X1n = [x1n−K+1 . . . x1n−1 x1n]T ,X2n =
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Figure 1: Block Diagram of Multichannel AP-DCD Adaptive
Filtering Algorithm

Table 1: Multichannel AP-DCD Algorithm
Step Equation × +

Initialization: ε̂n = 0,ŵ1n = 0,ŵ2n = 0 and
x1n = 0,x2n = 0 andyn = 0 for n < 0
for n = 0, 1, . . .

1 zn = [[yn−1]2:K xT
n ŵn−2]T 2L 2L − 1

2 CalculateGn = XnXT
n−1 2K 2K

3 yn = zn + Gnε̂n−1 2K2 2K2

4 en = dn − yn − K
5 r = µen K −

6 CalculateRn = XnXT
n + γIK 2 2

7 ε̂n = 0, α = H/2, m = 1, − −
for k = 1, . . . , Nu

8 p = arg maxp=1,...,K{|rp|} K − 1

9
while |rp| ≤ (α/2)[Rn]p,p andm ≤ Mb do

− 1
m = m + 1,α = α/2

10 if m > Mb, the algorithm stops − −
11 [ε̂n]p = [ε̂n]p + sign(rp)α − 1

12 r = r − sign(rp)αR
(p)
n − K

13 ŵn = ŵn + sign(rp)αXT
n−p − 2L

Total: 2L + 2K2 + 3K + 2 mults
and2L(Nu + 1) + 2K2 + K(2Nu + 3) + Mb + 1 adds

[x2n−K+1 . . . x2n−1 x2n]T where
x1n = [x1n−L+1 . . . x1n−1 x1n]T ;
x2n = [x2n−L+1 . . . x2n−1 x2n]T ;
h1n = [h1n−K+1 . . .h1n−1h1n]T ; h2n =
[h2n−K+1 . . .h2n−1h2n]T ; IK is an K × K identity
matrix and(·)T denotes the transpose matrix.

In step1, for calculation ofzn requiresxT
n ŵn−2, because the

filter outputyn = Xnŵn−1 is calculated using a recursive
approach as shown in steps 1 to 3,[yn−1]2:K values known
from the previous(n−1)th sample.Xn is the matrix of [x1n;
x2n] andŵn is the matrix of [w1(n) ; w2(n)]. Therefore, it
requires2L multiplications and2(L − 1) additions.

In step2, the first row of Gn matrix is the vec-
tor [x1T

nx1n−1 x1T
nx1n−2 . . . x1T

nx1n−K ] and
[x2T

nx2n−1 x2T
nx2n−2 . . . x2T

nx2n−K ], calculation of
these vector requires2K multiplications and2K additions.
step 3, the vectoryn is calculated using the vectorzn,

matrix Gn and vector̂εn−1. It requires2K2 multiplications
and 2K2 additions [9]. Step 4, the error vectoren is
calculated using the vectordn, and the vectoryn; it needs
K additions. Instead of normalizinĝε by the step-sizeµ in
the original AP algorithm [10], the AP-DCD algorithm does
this normalization withen (step 5) and obtains a vectorr.
This algorithm allows to avoid multiplications when updating
the filter weights (step 13) for any value ofµ anddn is the
addition of two additive noise signalsh1(n) andh2(n).

Step 6, The correlation matrixRn of the input matrixXn.
As having calculated the matrixGn, the only element of the
matrixRn that requires calculation[Rn]K,K = XT

n Xn +γIk

. The other elements ofRn can be taken from matricesRn−1

andGn. Thus, the update of the matrixRn requires only 2
multiplications and 2 additions

Steps 7 to 13, solve the liner systemRnεn = r using the
DCD [11] algorithm and obtain an approximation solution
ε̂n. The DCD algorithm uses coordinate descent iterations
with variable step-size parameterα for solving the normal
equations without multiplications and divisions [11]. In the
DCD algorithm, the step-sizeα can take one ofMb with pre-
defined values corresponding to representation of elements
[ε̂n]p, p = 1, . . . ,K, of the vectorε̂n as fixed-point words
with Mb bits within an amplitude range[−H,H]. The param-
eterH should preferably be larger than the absolute maximum
Hmax among elements of the true solution of the system. In
the case of uncertainty,H should be chosen high enough for
a worst-case situation. Note that the choiceH > Hmax does
not affect the adaptive filter performance and only results in
an increase ofMb by log2(H/Hmax) bits that has a little im-
pact on the complexity. IfH < Hmax, it may slow down the
convergence of the adaptive filter at the initial part of the learn-
ing process. It is convenient to chooseH as a power-of-two
number, resulting in the step-size parameterα also a power
of two. Then all multiplications byα can be implemented
by bit-shifts, which significantly simplifies the algorithm im-
plementation. Elements of the residual vectorr are denoted
asrp, p = 1, . . . ,K. The DCD algorithm starts the iterative
search from the most significant bits of elements inε̂n. As the
most significant bits have been updated, the algorithm starts
updating the next bit, and so on. One update requiresK bit-
shifts,K additions, andK comparisons; the latter are counted
as additions. With theNu updates, the complexity of the DCD
algorithm is upper limited by2NuK+Mb additions [12]. The
filter weights update at step 13 is included in the DCD itera-
tions; it is implemented with addition and bit-shift operations
only [9].

3 Computational Complexity of Multichannel
AP-DCD Algorithm

The maximum number of multiplications per iteration for the
AP-DCD algorithm is:

MAP−DCD = 2L + 2K2 + 3K + 2 (1)
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Table 2: Comparison of the Number of Multiplications (×)
and Additions (+) per Iteration of the Multichannel AP-DCD
Algorithm

Multichannel AP-DCD (×) per iteration (+) per iteration
L = 16,K = 8, Nu = 16 186 969
L = 64,K = 8, Nu = 16 282 2601
L = 150, K = 5,Nu = 4 367 1622
L = 512,K = 8, Nu = 16 1178 17833

The maximum number of additions per iteration for the mu-
tichannel AP-DCD algorithm is:

AAP−DCD = 2L(Nu+1)+2K2+K(2Nu+3)+Mb+1 (2)

In the multichannel AP-DCD algorithm design required367
multiplications and1622 additions at filter lengthL = 150,
projection orderK = 5 and number of updatesNu = 4.
Whereas the reported paper of Albuet. al [8] MFX-DCDPAP
algorithm required3198 multiplications and3524 additions at
filter lengthL = 150, projection orderK = 5 and number
of updatesNu = 4. Due to more number of multiplication in
MFX-DCDPAP algorithm, it consumes more power in hard-
ware design. However, in the multichannel AP-DCD design,
it will consume less power and memory space in FPGA imple-
mentation, because it has less number of multiplications and
additions.

The number of multiplications and additions that are required
for AP-DCD algorithm is illustrated in table 2. It is clearly ev-
ident from the results that while MFX-DCDPAP algorithm re-
quired3198 multiplications and3524 additions at filter length
L = 150, AP-DCD algorithm only required367 multiplica-
tions and1622 additions to provide same results. Therefore,
the memory requirements of the multichannel affine projec-
tion algorithm is significantly less than MFX-DCDPAP algo-
rithm, because in MFX-DCDPAP needed several matrices and
vectors in comparision to multichannel AP-DCD algorithm.

4 Numerical Results of Multichannel AP-DCD
Algorithm

The numeric results of multichannel AP-DCD algorithm were
obtained by computer simulation using Matlab and then com-
pared the misalignment with the original AP algorithm. The
desired data are generated according to

hn1 = h1nx1n + vn (3)

hn2 = h2nx2n + vn1 (4)

wherevn andvn1 are independent zero-mean Gaussian ran-
dom numbers. Therefore the desired signal is the addition of
the equation 3 and 4

dn = hn1 + hn2 (5)
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APA, µ = 0.25
DCD−APA: Nu=1, µ = 0.45
DCD−APA: Nu=4, µ = 0.45
DCD−APA: Nu=8, µ = 0.45
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DCD−APA: Nu=16, µ = 0.45

Figure 2: L = 16, SNR = 30dB, Mb = 16, H = 4,
µ(AP ) = 0.25, µ(DCD) = 0.45 , K = 8, Nmc = 200

The data vectorsx1n and x2n contain autoregressive corre-
lated random numbers are given by

x1n = νx1n−1 + wn (6)

x2n = νx2n−1 + wn (7)

Whereν is the autoregressive factor (ν = 0.9) andwn is in-
dependent zero-mean random Gaussian numbers of unit vari-
ance. Elements of impulse responses areh1i andh2i, where
i = 0 . . . L − 1, is independent zero-mean Gaussian random
numbers with variance exp (−βi) in each simulation trial, new
vector h1 and h2 are generated. The misalignment in a multi-
channel simulation trial is calculated as

||h1 − ŵn1||2 + ||h2 − ŵn2||2/||h1 + h2||2 (8)

The values obtained inNmc trials are averaged and divided
by a number of channels and plotted against the time index n.
The signal to noise ratio (SNR) is set 30dB for all simulation
scenarios.

Figure 2 plotted against misalignment and time (iterations) of
AP-DCD algorithm forK = 8, DCD step size(µ) = 0.45 and
L = 16 with different number of update (Nu) values . In case
of one update (Nu = 1) against AP algorithm, the AP-DCD
algorithm has a lower convergence speed than the AP algo-
rithm and the steady state is out of range. When the number of
updates increase atNu = 4 and8 the convergence speed stays
nearly same with AP algorithm and the steady state value ap-
proaches towards AP algorithm. But atNu = 12, the conver-
gence speed is same as AP and the steady state values further
approaches towards AP. However, forNu = 16, AP-DCD al-
gorithm provides the same performance as AP. This is due to
the solution of the equationRnεn = r provided by the DCD
algorithm convergences to the true solution.
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APA, µ = 0.25
DCD−APA: Nu=16, µ = 0.9
DCD−APA: Nu=16, µ = 0.8
DCD−APA: Nu=16, µ = 0.6
DCD−APA: Nu=16, µ = 0.52
DCD−APA: Nu=16, µ = 0.42

Figure 3: L = 64, SNR = 30dB, Mb = 16, H = 4,
µ(APA) = 0.25, Nu = 16, K = 8 andNmc = 200

The figure 2 suggests, atNu = 16, K = 8 the AP-DCD algo-
rithm provides the same performance as AP. Hence in figure
3, atNu = 16, K = 8 andL = 64 by adjusting the step size
(µ) of DCD against AP algorithm, the performance of mis-
lignments with time (iterations) are analyzed. Atµ = 0.52
the AP-DCD algorithm provides slightly faster convergence
speed and slower steady-state value than AP algorithm. With
the increase inµ, the AP-DCD algorithm provides same con-
vergence speed as AP but the steady-state approaches towards
AP algorithm. When the step-size (µ) = 0.42 the performance
of convergence speed and steady-state values of the AP-DCD
algorithm are same as AP algorithm.

Figure 4 shows that, forL = 512, K = 8 , Nu = 16, µ value
of DCD is adjusted with AP. After couple ofµ value adjust-
ment it is seen that atµ = 0.7, the learning curve is completely
merzed with AP algorithm and has a perfect solver of the sys-
tem equations. That means the convergence speed and steady
state value of AP-DCD algorithm provides the same perfor-
mance as AP.

5 Conclusions

The proposed multichannel low complexity affine projection
algorithm using Dichotomous Coordinate descent (DCD) iter-
ations implemented in Matlab. This proposed algorithm has
better numerical stability than the other multichannel affine
projection algorithm (MFX-DCDPAP). The performance of
the multichannel AP-DCD algorithm depends on the number
of updates. When the number of updates (Nu) increase, the
performance of the multichannel AP-DCD algorithm provides
the same performance as AP algorithm. Furthermore, the
computational complexity of the proposed algorithm is also
analyzed, and it is shown through simulations that the new
algorithm not only provides the same performance as AP al-
gorithm, but also it could be implemented in hardware (FPGA,
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APA, µ = 0.25
DCD−APA: Nu=16, µ = 0.32
DCD−APA: Nu=16, µ = 0.9
DCD−APA: Nu=16, µ = 1.0
DCD−APA: Nu=16, µ = 0.6
DCD−APA: Nu=16, µ = 0.52
DCD−APA: Nu=16, µ = 0.4
DCD−APA: Nu=16, µ = 0.7

Figure 4: L = 512, SNR = 30dB, Mb = 16, H = 4,
µ(APA) = 0.25, Nu = 16, K = 8

ASICs). It is also expected that AP-DCD algorithm will con-
sume very less memory and power. Because it requires less
number of additions and multiplications. In addition, it is also
shown that the new algorithm provides the expected tradeoff
between convergence performance and computational com-
plexity. Further investigation is required for the proposed al-
gorithm to implement in hardware (ASICs, FPGA).
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