
 
 

 

 
Abstract—Longest-path routing problems, which can arise in 

the design of high-performance printed circuit boards (PCBs), 
have been proven to be NP-hard. In this article, we propose a 
mixed integer linear programming (MILP) formulation to 
gridded longest-path routing problems; each of which may 
contain obstacles. After a longest-path routing problem has been 
transformed into an MILP problem, parallel MILP solvers can 
be used to find optimal solutions. In addition, suboptimal 
solutions can be generated in exchange for reduced execution 
time. The proposed formulation method can also be used to solve 
shortest-path routing problems. Experimental results show that 
more than 3,700X speed-up can be achieved by using 16 threads 
in solving formulated longest-path routing problems. The 
execution time can be further reduced if more processer cores 
are available. 

 

 
Index Terms—Electronic Design Automation (EDA), Mixed 

Integer Linear Programming (MILP), Parallel Computing, PCB 
Routing. 
 

I. INTRODUCTION 
In the design of high-performance printed circuit boards 

(PCB), bus routing is a critical process since differences of 
wire lengths in a bus must be kept small [1]–[2]. One 
approach for performing the length-matching bus routing is to 
allocate extra spaces for short wires, so that lengths of these 
wires can be extended. In order to extend the length of a wire, 
a number of obstacle-aware longest-path routing algorithms 
have been proposed [3]–[5]. Although these algorithms are 
efficient, it is not guaranteed that they will generate optimal 
solutions. 

In this article, we propose a mixed integer linear 
programming (MILP) formulation to gridded longest-path 
routing problems; each of these routing problems may contain 
obstacles. After a longest-path routing problem has been 
transformed into an MILP problem, MILP solvers can be used 
to find optimal solutions. Moreover, suboptimal solutions can 
be generated in exchange for reduced execution time. Our 
approach has been used to generate better solutions than the 
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results generated by algorithms in [3]–[5] for a number of 
benchmark routing problems. Furthermore, the proposed 
formulation method can be used to solve shortest-path routing 
problems efficiently. 

In recent years, technologies of MILP solvers have 
advanced. As a result, many large-scale problems can now be 
solved efficiently by a parallel MILP solver, which has the 
ability to exploit the computational power of multi-core 
processors. Our experimental results show that high degrees 
of scalability can be achieved by using parallel MILP solvers 
in finding solutions of formulated longest-path routing 
problems. Owing to the properties of MILP problems, it is 
possible to further shorten the execution time if more CPU 
cores are available. 

The remainder of this paper is organized as follows. In 
Section II, we define gridded longest-path routing problems 
that we intend to solve, and define the representation of 
routing results. Section III describes how to generate linear 
constraints for each vertex in a graph which is transformed 
from a longest-path routing problem. Prevention of subtours 
is discussed in Section IV. In Section V, the algorithm for 
transforming a longest-path routing problem into an MILP 
problem is presented. Section VI is dedicated to experimental 
results. Finally, conclusions are drawn in Section VII. 

II. PRELIMINARIES 
In this article, a gridded longest-path routing problem is 

defined to have a gridded rectangular routing region, a source 
terminal, a target terminal, and a number of grid cells that 
represent obstacles. It is assumed that the source and target 
terminals lie on different grid cells; otherwise the problem is 
trivial. The longest-path routing problem requires us to find 
the longest path (or the longest wire) between the source and 
target terminals using vertical and horizontal line segments 
only. Additionally, endpoints of line segments must lie in the 
center of grid cells, and only one routing layer can be used. 

An example of a gridded longest-path routing problem is 
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Fig. 1.  (a) A gridded longest-path routing problem, and (b) one of its 
optimal solutions. 
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shown in Fig. 1(a), where each square denotes a grid cell and 
black squares denote obstacles. Also, “S” denotes the source 
terminal and “T” denotes the target terminal. Fig. 1(b) 
illustrates a solution to the problem shown in Fig. 1(a); the 
total wire length for the solution is 31 since the wire (or the 
path) visits 31 grids, including the grid cells of source and 
target terminals. Although the solution shown in Fig. 1(b) 
contains many grid cells that are not visited by the wire, the 
solution is in fact optimal because it is not possible to find a 
longer wire for the problem. 

The dimension of the rectangular routing region shown in 
Fig. 1(a) is 8x6, since the region contains 8 columns and 6 
rows. The numbering of columns and rows for the routing 
region is illustrated in Fig. 2(a); the bottom-left grid cell is at 
column 1 and row 1. Therefore, the column number of a grid 
cell can be considered as the x coordinate of the grid cell, 
while the row number of a grid cell can be considered as its y 
coordinate. 

Before presenting the MILP formulation of longest-path 
routing problems, we describe how to use variables (or 
decision variables) to represent a routing result. For the 
problem shown in Fig. 2(a), since each pair of neighboring 
grid cells may associate with a line segment (or wire segment) 
in the final routing result, the routing region shown in Fig. 2(a) 
can be transformed into a graph illustrated in Fig. 2(b), where 
each vertex in (b) corresponds to a grid cell in (a). Note that 
directed edges are used in the graph instead of undirected 
edges because directed edges are required in our formulation 
in order to prevent subtours in final routing results. 
Prevention of subtours will be discussed in detail in Section 
IV. 

After the original routing region has been transformed into 
a graph containing vertices and directed edges, variables (or 
decision variables) are used to represent these directed edges. 
The name of a directed edge is coded as 

E_x1_y1_x2_y2 

if the edge starts from vertex (x1, y1) and ends at vertex (x2, y2). 
For instance, if there is a vertex whose coordinates are (6, 3) 
and it has four neighboring vertices, the names of directed 
edges corresponding to the vertex are shown in Fig. 3. 

In our MILP formulation of a longest-path routing problem, 
the aforementioned names of directed edges are used as 
names of variables (or decision variables); variables of this 
type are called E-variables. In addition, values of E-variables 
represent conditions of directed edges. For each E-variable, 
the value of 1 means that the corresponding directed edge 
exists in the final routing result. On the contrary, the value of 0 
means that the corresponding directed edge does not appear in 
the final routing result. Therefore, a solution of a longest-path 
routing problem contains a set of E-variables and their final 
values. 

III. CONSTRAINTS FOR EACH VERTEX 
After a longest-path routing problem has been transformed 

into a graph which contains vertices and directed edges, each 
vertex in the graph belongs to one of the following four types: 

(1) The vertex represents a source terminal 
(2) The vertex represents a target terminal 

(3) The vertex represents an obstacle 
(4) The vertex does not represent a source terminal, a 

target terminal, or an obstacle 

If a vertex represents a source terminal, then one (and only 
one) of its outgoing edges will appear in the final routing 
result. Moreover, none of its incoming edges will appear in 
the final routing result. For the example shown in Fig. 3, if 
vertex (6, 3) represents a source terminal, all of the following 
constraints must be satisfied: 

• E_6_3_6_4 + E_6_3_7_3 + E_6_3_6_2 + E_6_3_5_3 = 1 
• E_6_4_6_3 = 0 
• E_7_3_6_3 = 0 
• E_6_2_6_3 = 0 
• E_5_3_6_3 = 0 

Likewise, if a vertex represents a target terminal, then one and 
only one of its incoming edges will appear in the final routing 
result. Additionally, none of its outgoing edges will appear in 
the final result. 

If a vertex in a transformed graph represents an obstacle in 
the original routing problem, then all of the vertex’s incident 
edges (which include all the incoming and outgoing edges) 
must not appear in the final routing result. Therefore, values 
of E-variables for these directed edges must be set to zero. 

Finally, if there is a vertex which does not represent a 
source terminal, a target terminal, or an obstacle, then it can 
be passed by a wire. For each vertex of this type, the number 
of incoming edges must be equal to the number of outgoing 
edges in the final routing result. Also, the number of incoming 
edges appearing in the final result must be less than or equal to 
one. Therefore, in the example shown in the Fig. 3, the 
following constraints must be satisfied if vertex (6, 3) belongs 
to this type: 

• E_6_4_6_3 + E_7_3_6_3 + E_6_2_6_3 + E_5_3_6_3 = 

 

 

 
(a)  (b) 

Fig. 2.  (a) The numbering of rows and columns for a rectangular routing 
region, and (b) the graph transformed from the original rectangular routing 
region. 

 
Fig. 3.  Names of directed edges corresponding to a vertex whose 
coordinates are (6, 3). 
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E_6_3_6_4 + E_6_3_7_3 + E_6_3_6_2 + E_6_3_5_3 
• E_6_4_6_3 + E_7_3_6_3 + E_6_2_6_3 + E_5_3_6_3 ≤  1 

Furthermore, the above two constraints imply that the 
number of outgoing edges appearing in the final routing result 
must be less than or equal to one. 

IV. PREVENTION OF SUBTOURS 
Incorrect formulation of longest-path routing problems can 

result in routing solutions that contain subtours [6]. Fig. 4 
illustrates a routing result which satisfies the constraints 
presented in Section III and the number of grid cells visited is 
also the maximum (31). However, it contains a subtour and 
the routing result is not valid. 

To prevent the existence of subtours in routing results, we 
adopt the use of U-variables; this type of variables has been 
used in the integer linear programming (ILP) formulation of 
traveling salesperson problems (TSPs) [6]. The idea of 
U-variables is to associate a U-variable with each vertex, so 
that the value of the U-variable for vertex vj is greater than the 
value of the U-variable for vertex vi if the directed edge 
vi → vj appears in the final routing result. By incorporating 
this method into our MILP formulation of longest-path 
routing problems, subtours will not appear in final routing 
results. Furthermore, the method will not generate an 
exponential number of constraints. 

In our MILP formulation of longest-path routing problems, 
the name of a U-variable is coded as 

u_x_y 

if the U-variable is associated with a vertex whose coordinates 
are (x, y). For each directed edge in a transformed graph, 
constraints regarding U-variables must be generated. For the 
example shown in Fig. 3, the constraint related to U-variables 
for the directed edge (5,3) → (6,3) is: 

IF ( E_5_3_6_3 = 1 ) THEN ( u_6_3 >  u_5_3 ). 

However, since the relational operator “ > ” cannot be used in 
the standard MILP formulation, we transform the above 
constraint into the following: 

IF ( E_5_3_6_3 = 1 ) THEN ( u_6_3 – u_5_3 ≥  1 ). 

Note that the value of u_6_3 is now restricted to be greater 
than the value of u_5_3 by at least one if the directed edge 
exists in the routing result. This constraint can be further 
transformed into the following linear inequality: 

u_6_3 – u_5_3 + M× (1 – E_5_3_6_3) ≥  1, 

where M is a constant whose value must be sufficiently large. 
Therefore, when the value of E_5_3_6_3 is 1, the linear 
inequality becomes “u_6_3 – u_5_3 ≥  1.” On the other hand, 
when the value of E_5_3_6_3 is 0, the linear inequality 
becomes redundant. Note that the value of E_5_3_6_3 is either 
0 or 1. 

In the aforementioned linear inequality, since the value of 
M can affect the execution time of an MILP solver for solving 
formulated problems, it is desirable to find the minimum 
value of M. If the minimum value of each U-variable is 
defined to be zero, it can be derived that the maximum values 

of U-variables can be set to (nr*nc – nob – 1), where nr denotes 
the number of rows in the rectangular routing region, nc 
denotes the number of columns in the rectangular routing 
region, and nob denotes the number of grid cells that represent 
obstacles. That is because the number of grid cells that are not 
obstacles is (nr*nc – nob) in a routing problem. Thus, the 
maximum possible value for the difference of two U-variables 
is (nr*nc – nob – 1). As a result, the minimum value of M is 
(nr*nc – nob). 

In addition to the value of M, U-variables can also affect the 
performance of MILP solvers for finding solutions. Although 
U-variables can be integers, our experiments show that setting 
U-variables as real numbers (instead of integers) can 
significantly reduce the execution time of MILP solvers.  

V. THE ALGORITHM 
The algorithm for transforming a gridded longest-path 

routing problem into an MILP problem is detailed in Fig. 5. 
The value of Total_Wire_Length is computed as (the sum of 
values of all E-variables) + 1. In our implementation of the 
algorithm, in addition, output files are in the CPLEX LP file 
format [7]. Therefore, many different MILP solvers (e.g., 
IBM ILOG CPLEX, Gurobi Optimizer, and GLPK) can be 
used to read the files and generate solutions. 

 
Fig. 4.  An invalid longest-path routing result. 

Algorithm LongestPathToMILP() 
Input. The description of a gridded longest-path routing 

problem, which includes (1) the dimension of the 
rectangular routing region, (2) the location of the source 
terminal, (3) the location of the target terminal, and (4) 
locations of obstacles. 

Output. The description of an MILP problem which corresponds 
to the input longest-path routing problem. 

1. Transform the input longest-path routing problem into a 
graph (G) which contains vertices and directed edges 
(Section II). 

2. For each directed edge in G, generate a corresponding 
E-variable (Section II). 

3. For each vertex in G, generate a corresponding U-variable. 
4. Generate a (decision) variable named “Total_Wire_Length.” 
5. For each vertex in G, generate corresponding linear 

constraints (Section III). 
6. For each directed edge in G, generate a linear constraint 

which is used for the prevention of subtours (Section IV). 
7. Generate the linear constraint: Total_Wire_Length = (the 

sum of values of all E-variables) + 1. 
8. Write all the generated variables and constraints into a file 

(e.g. in the CPLEX LP file format) which represents the 
formulated longest-path routing problem. Also, the value of 
“Total_Wire_Length” must be maximized. 

Fig. 5.  The algorithm for transforming a gridded longest-path routing 
problem into an MILP problem. 
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For a given longest-path routing problem, we can observe 
that the number of grid cells (or vertices) is (nr*nc) and the 
number of directed edges is bounded by (4*nr*nc). Therefore, 
if we assume that n = nr*nc, the total number of variables 
(including E-variables, U-variables, and the variable named 
Total_Wire_Length) in a transformed MILP problem is 
bounded by O(n). Also, since a linear constraint is generated 
for each directed edge and at most five constraints are 
generated for each vertex, we can conclude that the time 
complexity of the proposed algorithm is linear in terms of the 
number of grid cells.  

VI. EXPERIMENTAL RESULTS 
The proposed algorithm for transforming longest-path 

routing problems into MILP problems has been implemented 
in Java programming language. MILP problems (or MILP 
problem files) generated by our program are in CPLEX LP 
file format [7] so that many MILP solvers can be used to find 
solutions. In the experiments, we used CPLEX (version 12.1) 
and Gurobi Optimizer (version 3.0.0) to find solutions of 
generated MILP problems. All the programs (including our 
transformation program and MILP solvers) were executed on 
a Linux workstation which had two Intel Xeon E5520 
processors and 32 GB of RAM. Note that each of Xeon 
E5520 processors has four cores and is capable of executing 
programs with up to eight threads. Therefore, the workstation 
we used can run parallel MILP solvers with up to 16 threads. 

Table I shows the results of our approach and the 
comparison of our approach with other longest-path routing 
algorithms. Columns 2 and 3 of the table list routing results 
(in terms of total wire lengths) generated by the algorithms 
proposed in [3]–[5]. The column “Transform. Time” lists the 
CPU times used by our program for transforming longest-path 
routing problems into MILP problems. The results of using 
parallel MILP solvers in finding solutions of generated MILP 
problems are shown in the rest of the table. Note that 16 
threads were used for running these solvers, and all the 
elapsed times were calculated as the average of multiple runs. 

As can be seen in Table I, compared with the algorithm 
proposed in [3]–[4], our approach generates better solutions 
for testcases Data1 and Data9. Also, compared with the 
algorithm proposed in [5], our approach generates a better 
solution for testcase Data9. In reality, our approach generates 
optimal solutions, i.e., longest paths, for testcases Data1 
through Data9. For testcase Data10, we suspended the 

execution of MILP solvers before they exhausted all the 
memory of the workstation. However, Gurobi was able to find 
a path whose total wire length was 6,495 in 21 days. 

As described in Section II, final values of E-variables, 
which are generated by MILP solvers, represent a solution to 
the original longest-path routing problem. For example, the 
routing result illustrated in Fig. 1(b) can be represented as: 

[ E_6_1_6_2=1, E_7_2_7_1=1, E_7_1_8_1=1, E_8_1_8_2=1, 
E_6_2_7_2=1, E_8_2_8_3=1, E_5_3_4_3=1, E_4_3_4_4=1, 
E_6_3_5_3=1, E_7_3_6_3=1, E_8_3_7_3=1, E_4_4_3_4=1, 
E_3_4_3_5=1, E_5_5_5_4=1, E_5_4_6_4=1, E_6_4_7_4=1, 
E_7_4_8_4=1, E_8_4_8_5=1, E_2_5_1_5=1, E_1_5_1_6=1, 
E_2_6_2_5=1, E_3_5_4_5=1, E_4_5_5_5=1, E_8_5_7_5=1, 
E_7_5_7_6=1, E_3_6_2_6=1, E_4_6_3_6=1, E_5_6_4_6=1, 
E_6_6_5_6=1, E_7_6_6_6=1, Total_Wire_Length=31 ] 

Note that U-variables as well as E-variables whose values are 
zero are not listed. 

To measure the scalability of a parallel MILP solver in 
finding solutions of formulated longest-path routing 
problems, we used CPLEX to solve a number of formulated 
problems with different number of threads; the results are 
shown in Table II. Note that all the elapsed times were 
calculated as the average of multiple runs. In general, by using 
more threads in running the solver, less execution time is 
required. For the example of testcase Data8, by using 16 
threads in running the solver, more than 3,700x speed-up can 
be achieved. 

While longest-path routing problems belong to the class of 
NP-hard [3]–[4], shortest-path routing problems can be 
solved in polynomial time [8]. By minimizing (instead of 
maxmizing) the value of Total_Wire_Length in the algorithm 
shown in Fig. 5, the modified approach can be used to find 
shortest paths. Table III shows the results of using parallel 
MILP solvers in finding shortest paths. As can be seen in the 
table, shortest-path routing problems can be solved 
efficiently. 

VII. CONCLUSION 
We proposed an MILP formulation to gridded longest-path 

routing problems. The proposed algorithm is capable of 
transforming a longest-path routing problem into an MILP 
problem. The algorithm is efficient since the time complexity 
is linear in terms of grid cells in the original routing problem. 
After a longest-path routing problem has been transformed 
into an MILP problem, parallel MILP solvers can be used to 

Table I.  Comparison of Our Approach with Other Routing Algorithms for Solving Longest-Path Routing Problems. 

Testcase Kohira [3-4] Yan [5] Transform. 
Time 

CPLEX Gurobi 
Wire Length Wire Length Wire Length Elapsed Time Wire Length Elapsed Time 

Data1 80 82 0.22 s 82 1.29 s 82 1.11 s 
Data2 119 119 0.27 s 119 9.83 s 119 4.09 s 
Data3 107 107 0.27 s 107 7.05 s 107 4.36 s 
Data4 103 103 0.27 s 103 7.69 s 103 5.36 s 
Data5 95 95 0.27 s 95 0.92 s 95 0.98 s 
Data6 85 85 0.27 s 85 26.58 s 85 139 s 
Data7 113 113 0.27 s 113 17.23 s 113 4.34 s 
Data8 115 115 0.27 s 115 6.88 s 115 4.45 s 
Data9 251 261 0.45 s 263 69.75 s 263 453 s 
Data10 6,626 6,636 1.97 s No Solution 29 days 6,495 21 days 
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find solutions. As a result, computational power of multi-core 
processors can be exploited. Although the performance of our 
approach cannot compete with a number of existing routing 
algorithms, the approach can be used to find optimal solutions 
or to prove optimality of solutions. Moreover, since high 
degrees of scalability can be achieved, the proposed approach 
can be attractive when a computer which contains many 
processor cores is available. 
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Table II.  Elapsed Time of Using CPLEX in Solving Longest-Path Routing Problems with Different Number of Threads. 

Testcase CPLEX 
1 thread 2 threads 4 threads 8 threads 16 threads 

Data1 36.39 s 1x 28.06 s 1.3x 9.58 s 3.8x 4.67 s 7.8x 1.29 s 28.2x 
Data2 642.74 s 1x 96.05 s 6.7x 45.30 s 14.2x 16.87 s 38.1x 9.83 s 65.4x 
Data8 25,491.82 s 1x 469.27 s 54.3x 100.90 s 252.6x 19.51 s 1307x 6.88 s 3,705x 
Data9 10,885.65 s 1x 6,509.02 s 1.7x 5,081.46 s 2.1x 3,092.72 s 3.5x 1,431.35 s 7.6x 

Table III.  Elapsed Time of Using MILP Solvers in Finding Solutions to Shortest-Path Routing Problems. 

Testcase CPLEX Gurobi 
Wire Length Elapsed Time Wire Length Elapsed Time 

Data1 9 0.01 s 9 0.02 s 
Data2 22 0.02 s 22 0.04 s 
Data3 12 0.01 s 12 0.03 s 
Data4 12 0.01 s 12 0.03 s 
Data5 12 0.01 s 12 0.03 s 
Data6 12 0.01 s 12 0.03 s 
Data7 12 0.01 s 12 0.04 s 
Data8 12 0.02 s 12 0.03 s 
Data9 8 0.03 s 8 0.05 s 
Data10 153 3.83 s 153 11.42 s 
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