

Abstract—Longest-path routing problems, which can arise in

the design of high-performance printed circuit boards (PCBs),
have been proven to be NP-hard. In this article, we propose a
mixed integer linear programming (MILP) formulation to
gridded longest-path routing problems; each of which may
contain obstacles. After a longest-path routing problem has been
transformed into an MILP problem, parallel MILP solvers can
be used to find optimal solutions. In addition, suboptimal
solutions can be generated in exchange for reduced execution
time. The proposed formulation method can also be used to solve
shortest-path routing problems. Experimental results show that
more than 3,700X speed-up can be achieved by using 16 threads
in solving formulated longest-path routing problems. The
execution time can be further reduced if more processer cores
are available.

Index Terms—Electronic Design Automation (EDA), Mixed

Integer Linear Programming (MILP), Parallel Computing, PCB
Routing.

I. INTRODUCTION
In the design of high-performance printed circuit boards

(PCB), bus routing is a critical process since differences of
wire lengths in a bus must be kept small [1]–[2]. One
approach for performing the length-matching bus routing is to
allocate extra spaces for short wires, so that lengths of these
wires can be extended. In order to extend the length of a wire,
a number of obstacle-aware longest-path routing algorithms
have been proposed [3]–[5]. Although these algorithms are
efficient, it is not guaranteed that they will generate optimal
solutions.

In this article, we propose a mixed integer linear
programming (MILP) formulation to gridded longest-path
routing problems; each of these routing problems may contain
obstacles. After a longest-path routing problem has been
transformed into an MILP problem, MILP solvers can be used
to find optimal solutions. Moreover, suboptimal solutions can
be generated in exchange for reduced execution time. Our
approach has been used to generate better solutions than the

Manuscript received July 25, 2010. This work was supported in part by
the National Science Council (NSC) of Taiwan under grants
NSC-98-2221-E-155-053 and NSC-99-2221-E-155-088.

I-Lun Tseng is with the Department of Computer Science and
Engineering, Yuan Ze University, Chung-Li City 32003, Taiwan (phone:
+886-3-463-8800 ext. 2357; fax: +886-3-463-8850; e-mail:
iltseng@saturn.yzu.edu.tw).

Huan-Wen Chen is with the Department of Computer Science and
Engineering, Yuan Ze University, Chung-Li City 32003, Taiwan (e-mail:
s976040@mail.yzu.edu.tw).

Che-I Lee is with the Department of Computer Science and Engineering,
Yuan Ze University, Chung-Li City 32003, Taiwan (e-mail:
s976026@mail.yzu.edu.tw).

results generated by algorithms in [3]–[5] for a number of
benchmark routing problems. Furthermore, the proposed
formulation method can be used to solve shortest-path routing
problems efficiently.

In recent years, technologies of MILP solvers have
advanced. As a result, many large-scale problems can now be
solved efficiently by a parallel MILP solver, which has the
ability to exploit the computational power of multi-core
processors. Our experimental results show that high degrees
of scalability can be achieved by using parallel MILP solvers
in finding solutions of formulated longest-path routing
problems. Owing to the properties of MILP problems, it is
possible to further shorten the execution time if more CPU
cores are available.

The remainder of this paper is organized as follows. In
Section II, we define gridded longest-path routing problems
that we intend to solve, and define the representation of
routing results. Section III describes how to generate linear
constraints for each vertex in a graph which is transformed
from a longest-path routing problem. Prevention of subtours
is discussed in Section IV. In Section V, the algorithm for
transforming a longest-path routing problem into an MILP
problem is presented. Section VI is dedicated to experimental
results. Finally, conclusions are drawn in Section VII.

II. PRELIMINARIES
In this article, a gridded longest-path routing problem is

defined to have a gridded rectangular routing region, a source
terminal, a target terminal, and a number of grid cells that
represent obstacles. It is assumed that the source and target
terminals lie on different grid cells; otherwise the problem is
trivial. The longest-path routing problem requires us to find
the longest path (or the longest wire) between the source and
target terminals using vertical and horizontal line segments
only. Additionally, endpoints of line segments must lie in the
center of grid cells, and only one routing layer can be used.

An example of a gridded longest-path routing problem is

Obstacle-Aware Longest-Path Routing with
Parallel MILP Solvers

I-Lun Tseng, Member, IAENG, Huan-Wen Chen, and Che-I Lee

(a) (b)

Fig. 1. (a) A gridded longest-path routing problem, and (b) one of its
optimal solutions.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

shown in Fig. 1(a), where each square denotes a grid cell and
black squares denote obstacles. Also, “S” denotes the source
terminal and “T” denotes the target terminal. Fig. 1(b)
illustrates a solution to the problem shown in Fig. 1(a); the
total wire length for the solution is 31 since the wire (or the
path) visits 31 grids, including the grid cells of source and
target terminals. Although the solution shown in Fig. 1(b)
contains many grid cells that are not visited by the wire, the
solution is in fact optimal because it is not possible to find a
longer wire for the problem.

The dimension of the rectangular routing region shown in
Fig. 1(a) is 8x6, since the region contains 8 columns and 6
rows. The numbering of columns and rows for the routing
region is illustrated in Fig. 2(a); the bottom-left grid cell is at
column 1 and row 1. Therefore, the column number of a grid
cell can be considered as the x coordinate of the grid cell,
while the row number of a grid cell can be considered as its y
coordinate.

Before presenting the MILP formulation of longest-path
routing problems, we describe how to use variables (or
decision variables) to represent a routing result. For the
problem shown in Fig. 2(a), since each pair of neighboring
grid cells may associate with a line segment (or wire segment)
in the final routing result, the routing region shown in Fig. 2(a)
can be transformed into a graph illustrated in Fig. 2(b), where
each vertex in (b) corresponds to a grid cell in (a). Note that
directed edges are used in the graph instead of undirected
edges because directed edges are required in our formulation
in order to prevent subtours in final routing results.
Prevention of subtours will be discussed in detail in Section
IV.

After the original routing region has been transformed into
a graph containing vertices and directed edges, variables (or
decision variables) are used to represent these directed edges.
The name of a directed edge is coded as

E_x1_y1_x2_y2

if the edge starts from vertex (x1, y1) and ends at vertex (x2, y2).
For instance, if there is a vertex whose coordinates are (6, 3)
and it has four neighboring vertices, the names of directed
edges corresponding to the vertex are shown in Fig. 3.

In our MILP formulation of a longest-path routing problem,
the aforementioned names of directed edges are used as
names of variables (or decision variables); variables of this
type are called E-variables. In addition, values of E-variables
represent conditions of directed edges. For each E-variable,
the value of 1 means that the corresponding directed edge
exists in the final routing result. On the contrary, the value of 0
means that the corresponding directed edge does not appear in
the final routing result. Therefore, a solution of a longest-path
routing problem contains a set of E-variables and their final
values.

III. CONSTRAINTS FOR EACH VERTEX
After a longest-path routing problem has been transformed

into a graph which contains vertices and directed edges, each
vertex in the graph belongs to one of the following four types:

(1) The vertex represents a source terminal
(2) The vertex represents a target terminal

(3) The vertex represents an obstacle
(4) The vertex does not represent a source terminal, a

target terminal, or an obstacle

If a vertex represents a source terminal, then one (and only
one) of its outgoing edges will appear in the final routing
result. Moreover, none of its incoming edges will appear in
the final routing result. For the example shown in Fig. 3, if
vertex (6, 3) represents a source terminal, all of the following
constraints must be satisfied:

• E_6_3_6_4 + E_6_3_7_3 + E_6_3_6_2 + E_6_3_5_3 = 1
• E_6_4_6_3 = 0
• E_7_3_6_3 = 0
• E_6_2_6_3 = 0
• E_5_3_6_3 = 0

Likewise, if a vertex represents a target terminal, then one and
only one of its incoming edges will appear in the final routing
result. Additionally, none of its outgoing edges will appear in
the final result.

If a vertex in a transformed graph represents an obstacle in
the original routing problem, then all of the vertex’s incident
edges (which include all the incoming and outgoing edges)
must not appear in the final routing result. Therefore, values
of E-variables for these directed edges must be set to zero.

Finally, if there is a vertex which does not represent a
source terminal, a target terminal, or an obstacle, then it can
be passed by a wire. For each vertex of this type, the number
of incoming edges must be equal to the number of outgoing
edges in the final routing result. Also, the number of incoming
edges appearing in the final result must be less than or equal to
one. Therefore, in the example shown in the Fig. 3, the
following constraints must be satisfied if vertex (6, 3) belongs
to this type:

• E_6_4_6_3 + E_7_3_6_3 + E_6_2_6_3 + E_5_3_6_3 =

(a) (b)

Fig. 2. (a) The numbering of rows and columns for a rectangular routing
region, and (b) the graph transformed from the original rectangular routing
region.

Fig. 3. Names of directed edges corresponding to a vertex whose
coordinates are (6, 3).

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

E_6_3_6_4 + E_6_3_7_3 + E_6_3_6_2 + E_6_3_5_3
• E_6_4_6_3 + E_7_3_6_3 + E_6_2_6_3 + E_5_3_6_3 ≤ 1

Furthermore, the above two constraints imply that the
number of outgoing edges appearing in the final routing result
must be less than or equal to one.

IV. PREVENTION OF SUBTOURS
Incorrect formulation of longest-path routing problems can

result in routing solutions that contain subtours [6]. Fig. 4
illustrates a routing result which satisfies the constraints
presented in Section III and the number of grid cells visited is
also the maximum (31). However, it contains a subtour and
the routing result is not valid.

To prevent the existence of subtours in routing results, we
adopt the use of U-variables; this type of variables has been
used in the integer linear programming (ILP) formulation of
traveling salesperson problems (TSPs) [6]. The idea of
U-variables is to associate a U-variable with each vertex, so
that the value of the U-variable for vertex vj is greater than the
value of the U-variable for vertex vi if the directed edge
vi → vj appears in the final routing result. By incorporating
this method into our MILP formulation of longest-path
routing problems, subtours will not appear in final routing
results. Furthermore, the method will not generate an
exponential number of constraints.

In our MILP formulation of longest-path routing problems,
the name of a U-variable is coded as

u_x_y

if the U-variable is associated with a vertex whose coordinates
are (x, y). For each directed edge in a transformed graph,
constraints regarding U-variables must be generated. For the
example shown in Fig. 3, the constraint related to U-variables
for the directed edge (5,3) → (6,3) is:

IF (E_5_3_6_3 = 1) THEN (u_6_3 > u_5_3).

However, since the relational operator “ > ” cannot be used in
the standard MILP formulation, we transform the above
constraint into the following:

IF (E_5_3_6_3 = 1) THEN (u_6_3 – u_5_3 ≥ 1).

Note that the value of u_6_3 is now restricted to be greater
than the value of u_5_3 by at least one if the directed edge
exists in the routing result. This constraint can be further
transformed into the following linear inequality:

u_6_3 – u_5_3 + M× (1 – E_5_3_6_3) ≥ 1,

where M is a constant whose value must be sufficiently large.
Therefore, when the value of E_5_3_6_3 is 1, the linear
inequality becomes “u_6_3 – u_5_3 ≥ 1.” On the other hand,
when the value of E_5_3_6_3 is 0, the linear inequality
becomes redundant. Note that the value of E_5_3_6_3 is either
0 or 1.

In the aforementioned linear inequality, since the value of
M can affect the execution time of an MILP solver for solving
formulated problems, it is desirable to find the minimum
value of M. If the minimum value of each U-variable is
defined to be zero, it can be derived that the maximum values

of U-variables can be set to (nr*nc – nob – 1), where nr denotes
the number of rows in the rectangular routing region, nc
denotes the number of columns in the rectangular routing
region, and nob denotes the number of grid cells that represent
obstacles. That is because the number of grid cells that are not
obstacles is (nr*nc – nob) in a routing problem. Thus, the
maximum possible value for the difference of two U-variables
is (nr*nc – nob – 1). As a result, the minimum value of M is
(nr*nc – nob).

In addition to the value of M, U-variables can also affect the
performance of MILP solvers for finding solutions. Although
U-variables can be integers, our experiments show that setting
U-variables as real numbers (instead of integers) can
significantly reduce the execution time of MILP solvers.

V. THE ALGORITHM
The algorithm for transforming a gridded longest-path

routing problem into an MILP problem is detailed in Fig. 5.
The value of Total_Wire_Length is computed as (the sum of
values of all E-variables) + 1. In our implementation of the
algorithm, in addition, output files are in the CPLEX LP file
format [7]. Therefore, many different MILP solvers (e.g.,
IBM ILOG CPLEX, Gurobi Optimizer, and GLPK) can be
used to read the files and generate solutions.

Fig. 4. An invalid longest-path routing result.

Algorithm LongestPathToMILP()
Input. The description of a gridded longest-path routing

problem, which includes (1) the dimension of the
rectangular routing region, (2) the location of the source
terminal, (3) the location of the target terminal, and (4)
locations of obstacles.

Output. The description of an MILP problem which corresponds
to the input longest-path routing problem.

1. Transform the input longest-path routing problem into a
graph (G) which contains vertices and directed edges
(Section II).

2. For each directed edge in G, generate a corresponding
E-variable (Section II).

3. For each vertex in G, generate a corresponding U-variable.
4. Generate a (decision) variable named “Total_Wire_Length.”
5. For each vertex in G, generate corresponding linear

constraints (Section III).
6. For each directed edge in G, generate a linear constraint

which is used for the prevention of subtours (Section IV).
7. Generate the linear constraint: Total_Wire_Length = (the

sum of values of all E-variables) + 1.
8. Write all the generated variables and constraints into a file

(e.g. in the CPLEX LP file format) which represents the
formulated longest-path routing problem. Also, the value of
“Total_Wire_Length” must be maximized.

Fig. 5. The algorithm for transforming a gridded longest-path routing
problem into an MILP problem.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

For a given longest-path routing problem, we can observe
that the number of grid cells (or vertices) is (nr*nc) and the
number of directed edges is bounded by (4*nr*nc). Therefore,
if we assume that n = nr*nc, the total number of variables
(including E-variables, U-variables, and the variable named
Total_Wire_Length) in a transformed MILP problem is
bounded by O(n). Also, since a linear constraint is generated
for each directed edge and at most five constraints are
generated for each vertex, we can conclude that the time
complexity of the proposed algorithm is linear in terms of the
number of grid cells.

VI. EXPERIMENTAL RESULTS
The proposed algorithm for transforming longest-path

routing problems into MILP problems has been implemented
in Java programming language. MILP problems (or MILP
problem files) generated by our program are in CPLEX LP
file format [7] so that many MILP solvers can be used to find
solutions. In the experiments, we used CPLEX (version 12.1)
and Gurobi Optimizer (version 3.0.0) to find solutions of
generated MILP problems. All the programs (including our
transformation program and MILP solvers) were executed on
a Linux workstation which had two Intel Xeon E5520
processors and 32 GB of RAM. Note that each of Xeon
E5520 processors has four cores and is capable of executing
programs with up to eight threads. Therefore, the workstation
we used can run parallel MILP solvers with up to 16 threads.

Table I shows the results of our approach and the
comparison of our approach with other longest-path routing
algorithms. Columns 2 and 3 of the table list routing results
(in terms of total wire lengths) generated by the algorithms
proposed in [3]–[5]. The column “Transform. Time” lists the
CPU times used by our program for transforming longest-path
routing problems into MILP problems. The results of using
parallel MILP solvers in finding solutions of generated MILP
problems are shown in the rest of the table. Note that 16
threads were used for running these solvers, and all the
elapsed times were calculated as the average of multiple runs.

As can be seen in Table I, compared with the algorithm
proposed in [3]–[4], our approach generates better solutions
for testcases Data1 and Data9. Also, compared with the
algorithm proposed in [5], our approach generates a better
solution for testcase Data9. In reality, our approach generates
optimal solutions, i.e., longest paths, for testcases Data1
through Data9. For testcase Data10, we suspended the

execution of MILP solvers before they exhausted all the
memory of the workstation. However, Gurobi was able to find
a path whose total wire length was 6,495 in 21 days.

As described in Section II, final values of E-variables,
which are generated by MILP solvers, represent a solution to
the original longest-path routing problem. For example, the
routing result illustrated in Fig. 1(b) can be represented as:

[E_6_1_6_2=1, E_7_2_7_1=1, E_7_1_8_1=1, E_8_1_8_2=1,
E_6_2_7_2=1, E_8_2_8_3=1, E_5_3_4_3=1, E_4_3_4_4=1,
E_6_3_5_3=1, E_7_3_6_3=1, E_8_3_7_3=1, E_4_4_3_4=1,
E_3_4_3_5=1, E_5_5_5_4=1, E_5_4_6_4=1, E_6_4_7_4=1,
E_7_4_8_4=1, E_8_4_8_5=1, E_2_5_1_5=1, E_1_5_1_6=1,
E_2_6_2_5=1, E_3_5_4_5=1, E_4_5_5_5=1, E_8_5_7_5=1,
E_7_5_7_6=1, E_3_6_2_6=1, E_4_6_3_6=1, E_5_6_4_6=1,
E_6_6_5_6=1, E_7_6_6_6=1, Total_Wire_Length=31]

Note that U-variables as well as E-variables whose values are
zero are not listed.

To measure the scalability of a parallel MILP solver in
finding solutions of formulated longest-path routing
problems, we used CPLEX to solve a number of formulated
problems with different number of threads; the results are
shown in Table II. Note that all the elapsed times were
calculated as the average of multiple runs. In general, by using
more threads in running the solver, less execution time is
required. For the example of testcase Data8, by using 16
threads in running the solver, more than 3,700x speed-up can
be achieved.

While longest-path routing problems belong to the class of
NP-hard [3]–[4], shortest-path routing problems can be
solved in polynomial time [8]. By minimizing (instead of
maxmizing) the value of Total_Wire_Length in the algorithm
shown in Fig. 5, the modified approach can be used to find
shortest paths. Table III shows the results of using parallel
MILP solvers in finding shortest paths. As can be seen in the
table, shortest-path routing problems can be solved
efficiently.

VII. CONCLUSION
We proposed an MILP formulation to gridded longest-path

routing problems. The proposed algorithm is capable of
transforming a longest-path routing problem into an MILP
problem. The algorithm is efficient since the time complexity
is linear in terms of grid cells in the original routing problem.
After a longest-path routing problem has been transformed
into an MILP problem, parallel MILP solvers can be used to

Table I. Comparison of Our Approach with Other Routing Algorithms for Solving Longest-Path Routing Problems.

Testcase Kohira [3-4] Yan [5] Transform.
Time

CPLEX Gurobi
Wire Length Wire Length Wire Length Elapsed Time Wire Length Elapsed Time

Data1 80 82 0.22 s 82 1.29 s 82 1.11 s
Data2 119 119 0.27 s 119 9.83 s 119 4.09 s
Data3 107 107 0.27 s 107 7.05 s 107 4.36 s
Data4 103 103 0.27 s 103 7.69 s 103 5.36 s
Data5 95 95 0.27 s 95 0.92 s 95 0.98 s
Data6 85 85 0.27 s 85 26.58 s 85 139 s
Data7 113 113 0.27 s 113 17.23 s 113 4.34 s
Data8 115 115 0.27 s 115 6.88 s 115 4.45 s
Data9 251 261 0.45 s 263 69.75 s 263 453 s
Data10 6,626 6,636 1.97 s No Solution 29 days 6,495 21 days

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

find solutions. As a result, computational power of multi-core
processors can be exploited. Although the performance of our
approach cannot compete with a number of existing routing
algorithms, the approach can be used to find optimal solutions
or to prove optimality of solutions. Moreover, since high
degrees of scalability can be achieved, the proposed approach
can be attractive when a computer which contains many
processor cores is available.

REFERENCES

[1] M. M. Ozdal, and M. D. F. Wong, “A length-matching routing
algorithm for high-performance printed circuit boards,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 12, December 2006, pp. 2784-2794.

[2] M. M. Ozdal, and M. D. F. Wong, “Algorithmic study of
single-layer bus routing for high-speed boards,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 3, March 2006, pp. 490-503.

[3] Y. Kohira, S. Suehiro, and A. Takahashi, “A fast longer path
algorithm for routing grid with obstacles using biconnectivity
based length upper bound,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol.
E92-A, no. 12, December 2009, pp. 2971-2978.

[4] Y. Kohira, S. Suehiro, and A. Takahashi, “A fast longer path
algorithm for routing grid with obstacles using biconnectivity
based length upper bound,” in Proceedings of Asia and South
Pacific Design Automation Conference, 2009, pp. 600-605.

[5] J.-T. Yan, M.-C. Jhong, and Z.-W. Chen, “Obstacle-aware longest
path using rectangular pattern detouring in routing grids,” in
Proceedings of Asia and South Pacific Design Automation
Conference, 2010, pp. 287-292.

[6] W. L. Winston, and M. Venkataramanan, Introduction to
Mathematical Programming, Thomson Learning, Inc., 2003.

[7] IBM, IBM ILOG CPLEX V12.1 - File Formats Supported by
CPLEX, 2009.

[8] C. Y. Lee, “An algorithm for path connections and its
applications,” IRE Transactions on Electronic Computers,
September 1961, pp. 346-365.

Table II. Elapsed Time of Using CPLEX in Solving Longest-Path Routing Problems with Different Number of Threads.

Testcase CPLEX
1 thread 2 threads 4 threads 8 threads 16 threads

Data1 36.39 s 1x 28.06 s 1.3x 9.58 s 3.8x 4.67 s 7.8x 1.29 s 28.2x
Data2 642.74 s 1x 96.05 s 6.7x 45.30 s 14.2x 16.87 s 38.1x 9.83 s 65.4x
Data8 25,491.82 s 1x 469.27 s 54.3x 100.90 s 252.6x 19.51 s 1307x 6.88 s 3,705x
Data9 10,885.65 s 1x 6,509.02 s 1.7x 5,081.46 s 2.1x 3,092.72 s 3.5x 1,431.35 s 7.6x

Table III. Elapsed Time of Using MILP Solvers in Finding Solutions to Shortest-Path Routing Problems.

Testcase CPLEX Gurobi
Wire Length Elapsed Time Wire Length Elapsed Time

Data1 9 0.01 s 9 0.02 s
Data2 22 0.02 s 22 0.04 s
Data3 12 0.01 s 12 0.03 s
Data4 12 0.01 s 12 0.03 s
Data5 12 0.01 s 12 0.03 s
Data6 12 0.01 s 12 0.03 s
Data7 12 0.01 s 12 0.04 s
Data8 12 0.02 s 12 0.03 s
Data9 8 0.03 s 8 0.05 s
Data10 153 3.83 s 153 11.42 s

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

	I. INTRODUCTION
	II. Preliminaries
	III. Constraints for Each Vertex
	IV. Prevention of Subtours
	V. The Algorithm
	VI. Experimental Results
	VII. Conclusion

