
 

 

 

  
Abstract— This study deals with the combined effects of  

misclassifications incidental to diagnostics, or a binary response,  

and genotyping, or a discrete covariate, on the statistical power 

of a logistic model testing for a treatment effect. The loss of 

power due to differential and nondifferential misclassifications 

in a response and a covariate, respectively, has not been well 

documented. This paper first obtained a general expression for 

the loss of statistical power due to those misclassifications based 

on the Pitman asymptotic relative efficiency (ARE). Numerical 

studies confirmed the validity of the general expression for a 

reasonable sample size. It revealed that the effect of even low 

misclassification rates is not negligible. Misclassifications in 

both response and covariates should be taken into account when 

determining the sample size. 

 
Index Terms—Pitman Asymptotic Relative Efficiency, 

Sample Size, Statistical Power, Genetic-Disease Association 

Study.  

I. INTRODUCTION 

 A binary logistic regression is one of the most popular 

models for genetic disease association studies, biomedical 

data analysis, and epidemiological studies. The loss of 

statistical power due to nondifferential misclassifications in a 

response or covariates has been well documented [1-2], 

however, the loss due to differential misclassifications in a 

response with a discrete covariate subject to nondifferential 

misclassifications has not been reported yet. As for an 

example of misclassification in a response, consider an 

ordinary cancer clinical trial where the effect of a treatment is 

diagnosed based solely on diagnostic imaging. The response 

is inevitably subject to differential errors, since the diagnosis 

is subjective rather than objective. We investigated the power 

of a logistic model with a binary response subject to 

differential misclassifications and a covariate subject to 

nondifferential misclassifications using the Pitman ARE [3]. 

An application to a genetic disease association study is 

demonstrated. 
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II. PITMAN ASYMPTOTIC RELATIVE EFFICIENCY 

To compare two statistical testing procedures A and B, if A 

requires n1 observations and B requires n2 observations to 

achieve the same power, the efficacy of A relative to that of B 

is often compared by the ratio n1/ n2. Especially, for large 

samples, asymptotic relative efficiency (ARE) is used for the 

comparison. The earliest and most popular approach to ARE 

was introduced by the lecture notes of Pitman in 1978 [4]. It is 

practical that the measure of ARE does not depend on a 

particular alternative. Also, the relationship between the 

Pitman ARE and the asymptotic correlation of test statistics is 

widely examined [3] [5]. 

Definition (Asymptotic Relative Efficiency) 

If two consistent estimators Wn and Vm for ( )τ θ  are such that 
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then, Pitman asymptotic relative efficiency (ARE) of Vm with 

respect to Wn is defined as  
2
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To understand the usefulness of ARE, let us suppose that the 

asymptotic variances of Wn and Vm are equal for particular 

values of n and m; that is, 2 2/ /
W V

n mσ σ=  holds. It then 

follows that the power of the test based on Wn is equal to the 

power of the test based on Vm. In other words, in order to 

retain the same power when replacing Wn by Vm, it is 

necessary and sufficient that n/m= ( , )
m n

ARE V W . Thus ARE 

directly tells us the sample size necessary to attain the same 

power as a standard test.  

 

III. METHOD 

Let Y and Z denote a binary response (0=non-responder, 

1=responder) and an explanatory variable, respectively. We 

consider a test for association between Z and Y when Y is 

binary and related to Z by the logistic relationship: 

 

ln{Pr( 1| ) / Pr( 0 | )}Y Z Y Z zα β= = = + . 
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The null hypothesis of no association is given by 0β = , and 

can be assessed by one of three asymptotically equivalent 

tests: the Wald test, the likelihood ratio test, or the score test 
[6]. The score test is of the form:  
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where 
i

Y  and 
i

Z  are the values of Y and Z for the i th of 

n subjects, /
i

Y Y n= ∑ , and /
i

Z Z n= ∑ . When 0β = , 

( , )Q Y Z is asymptotically N(0,1). Then, suppose that we can 

only observe *Z , the surrogate of Z, and that the values of Y
*
 

observed for Y are subject to misclassification and we test for 

association with a statistic * *( , )Q Y Z . That is, we use a test 

with (1), but replacing Z and Y by Z
*
 and Y

*
, respectively. 

Also, we assume that Z and Z
*
 have finite second moments, 

and that usual regularity conditions apply to ensure the 

asymptotic distribution of N(0.1) of (1). When 0β = , Y
* 
is 

not associated with Z
*
 and hence * *( , )Q Y Z is also 

asymptotically N(0,1). However, * *( , )Q Y Z is less efficient 

than ( , )Q Y Z when the null hypothesis does not hold. [1] 

described this loss of efficiency using the ARE of *( , )Q Y Z  

to ( , )Q Y Z  for local alternatives to 0β = , denoted 

ARE(Y
*
:Y). We extend these results to the case where Z is not 

observed, and only a surrogate Z
*
 is available in place of Z.   

 

For practical use, we derived following proposition. 

 

Proposition 

 

The Pitman ARE of (Y
*
, Z

*
) to (Y, Z), denoted as 

ARE(Y
*
,Z

*
|Y,Z) hereafter, is equal to the product of the 

squared correlation coefficient *( , )Y Yρ  between the true 

response and the error-prone response and the squared 

correlation coefficient *( , )Z Zρ  between the true and 

surrogate covariates (See  APPENDIX for the proof). 

 

 This result indicates that in a logistic model, when a binary 

response is subject to misclassification, and a covariate is 

subject to measurement error, the power of a test of the model 

using a sample of size N is approximately equal to the power 

of the corresponding test with the exact response and 

covariate values that uses a sample of size 

N ⋅ * 2 * 2( , ) ( , )Y Y Z Zρ ρ⋅ . Once a sample size N0 is obtained 

for a test with the exact response and covariate values, the 

sample size required to attain the same power for a test using 

error-prone response and covariate values is then obtained by 

dividing N0 by * 2 * 2( , ) ( , )Y Y Z Zρ ρ⋅ , which is usually 

obtained by analytical calculations.  

 

Definition (Nondifferential and differential 

misclassification) 

 

When the misclassifications of a disease to a category occur 

independently from the other classifications to categories, the 

misclassification is called nondifferential. Misclassification is 

called differential otherwise. 

 

It is well-known that nondifferential misclassifications cause 

“attenuation”, or the bias to the null, in the estimation of a 

regression coefficient. In contrast, the effect of differential 

misclassification on the parameter estimate is not so simple. It 

can cause either underestimation or overestimation of the 

parameter depending on the bias of classification. We 

assessed the effects of differential misclassifications on the 

power of the test. 

IV. APPLICATION 

 

We applied the Pitman’s ARE to calculate the sample size 

required to obtain enough power for the association study of 

genetic polymorphisms for response to interferon 

(IFN) –alpha therapy [7]. In the study, we followed the 

patients with metastatic renal cancer and known a certain SNP, 

and the “reduction of tumor mass” would be observed as the 

response variable. Then, the diagnostic of the “reduction of 

tumor mass” with a misclassification rate of 4% would 

normally be regarded as fairly accurate in cancer clinical trials 

[8] [9]. Also, although recently the genotyping error rate is 

getting quite small, the impact of genotyping error could 

easily be taken into consideration for the sample size 

calculation by using the Pitman’s ARE.            

 

Parameter Specification 

 

For genetic-disease association studies, prospective logistic 

regression is the standard method of analysis. The program is 

designed for a cohort study to explore the association between 

single nucleotide polymorphisms (SNPs) and responses of 

treatments. The expected response rate, hereafter denoted by s, 

is usually determined by medical specialists with knowledge 

and experience of the disease of interest. Also, the genetic 

model, or the type of effect of the genotype on patient 

response, or diagnosis, is specified as a parameter of the 

program. This is of intermediate, dominant or recessive type. 

Suppose that C and T denote low and high response rate 

alleles, respectively, which may be replaced by any such 

allele. Then, the genetic model can be coded as Table 1.  

TABLE 1. NUMERIC CODING FOR GENOTYPES BY GENETIC MODEL WHERE C 

AND T DENOTE LOW AND HIGH RESPONSE RATE ALLELES, RESPECTIVELY. 

 

Genotypes     Genetic model                                  

CC CT TT 

Intermediate 0 1 2 

Dominant 0 1 1 

Recessive 0 0 1 

 

Next, expected misclassification rates for the response, the 

false negative rate, the false positive rate, denoted by 
0

ε ,
1

ε  

respectively, must be specified. Table 2 shows the joint 

distribution of Y and Y
*
 where s=Pr(Y=1) denote the 

probability of a responder. The *( | )ARE Y Y can be obtained 

as: 
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* * 2 0 1

0 1 0 0 1 0

(1 ) {1 }
( | ) ( , )

{(1 ) }{1 (1 ) }

s s
ARE Y Y Y Y

s s

ε ε
ρ

ε ε ε ε ε ε
− − −

= =
− − + − − − −

 

TABLE 2. THE JOINT PROBABILITY WHEN THE FALSE POSITIVE RATE AND THE 

FALSE NEGATIVE RATE IS
0ε AND

1ε , RESPECTIVELY, AND THE TRUE 

PROBABILITY OF A RESPONDER IS s . 

TRUE 
Diagnosis Responder  

(Y=1) 

Non-responder 

 (Y=0) 

Responder   

 (Y
*
=1) 

(1-
1

ε )s 
0

ε (1-s) 

Non-responder 

(Y
*
=0) 1

ε (1-s) (1-
0

ε )s 

 

 

Next, the non-differential genotyping errors with an error 

rateδ , as given in Table 2, should be specified. When the 

genotyping error is not assumed, it can be specified as 0δ = .  

TABLE 3. ERROR MATRIX FOR GENOTYPING ERROR. 

 

 TRUE 

Observed C T 

C 1-δ  δ  

T δ  1-δ  

 

Let Z specify the number of allele C in the genotype. Then, Z 

=0, 1, or 2 when the genotype is CC, CT, or TT, respectively. 

Let Z
*
 denote the observed genotype, then  

* *Pr( ) (1 ) (1 )C C Cp Z C p pδ δ= = = − + ⋅ − . 

It is straightforward to obtain the following equation: 

* * 2 2

*

( )
( | ) ( , ) (1 2 )

( )

Var Z
ARE Z Z Z Z

Var Z
ρ δ= = −

2

* *

(1 )
(1 2 )

(1 )

C C

C C

p p

p p
δ

−
= −

−
. 

 

The odds ratio 

 

The codes assigned to the genotypes by the genetic models 

are shown in Table 1. If the genetic model is of intermediate 

type, then (CC, CT, TT)=(0,1,2), and if it is of dominant or 

recessive type, then  (CC, CT, TT)=(0,1,1), (0,0,1), 

respectively. When logistic regression is conducted, the odds 

ratio for genotypes CT and TT compared to CC is ae β  and 
be β , respectively, where (0, a, b) denote the code for (CC, CT, 

TT) determined by the genetic model as depicted in Table 1. 

 

The odds of a response for CC 

 

Let w denote the odds of genotype CC, that is,  

                  
Pr( | )

Pr( | )

responder CC
w

non responder CC
=

−
. 

 

Because the odds of CT and TT are ae wβ and be wβ , 

respectively, and the Hardy-Weinberg equilibrium that the 

frequency of CC,CT,TT is proportional to 2

C
p , 2

C T
p p , 2

T
p , 

where 
C

p , 1
T C

p p= − is the proportion of allele C, T, 

respectively, is assumed to be hold, it follows from the 

definition of s, the overall response rate, that  

  
2 2( ) ( ) 2 ( )

1 1 1

a b

C C T Ta b

w e w e w
s p p p p

w e w e w

β β

β β

⋅ ⋅
= ⋅ + ⋅ + ⋅

+ + ⋅ + ⋅
. 

It is straightforward to show that the equation has a unique 

solution for w in the range 0w > and is easily attained using 

the Newton-Raphson iteration algorithm with initial value 

0w = . 

 

CalculationCalculationCalculationCalculation 

 

The program calculates the sample size and power using 

values of the following items: 

 

1)  Expected proportion of allele C in a population, or Cp  

2)  Effect size: Odds ratio based on genetic models 

3)  The overall response rate s (<0.5) 

4)  The genetic model, or the value of a and b  

5)  A false negative rate of response misclassification 0ε  

6)  A false positive rate of response misclassification 1ε  

7)  Sample size N 

8)  A two-sided significance level P, with a default value of 

0.05 

9)   The number of iterations M, with a default value of 10,000 

10) A non-differential genotyping error rateδ . 

 

The power of a test for the null hypothesis of no association 

between the SNPs and the treatment is obtained according to 

the following steps.  

 

Step 1: For each subject i, two independent (0,1) uniform 

random variables Ui1 and Ui2  are generated. If Ui1 <pC 

, then one allele is C, otherwise T. In the same way, the other 

allele is determined using Ui2. Genotypes CC, CT and TT are 

coded as 0, a and b, respectively, where a=1 and b=2, a=b=1, 

or a=0 and b=1, depending on whether the genetic model is 

intermediate, dominant or recessive. Next, a (0,1) uniform 

random variable Ui3 is generated, so that the subject is 

determined as a responder when Ui3<w/(1+w), Ui3<e
a β

w/(1+e
aβw) or Ui3<e

bβw/(1+e
bβw), depending on whether 

the genotype is CC, CT or TT, respectively. The subject is 

determined as a non-responder otherwise. 

 

Step2: Logistic regression with responder/non-responder as 

the dependent variable and the genotype as the covariate is 

performed. Then, the maximum likelihood estimate �β and 

the p-value for the null hypothesis that the population 

regression coefficient 0β = , i.e., no association between the 

genotype and treatment. 

 

Step3: Power is obtained as the proportion of simulations in 

which we rejected the null hypothesis. That is, repeating the 

simulation and regression analysis M times, power is 

calculated as the proportion of  the significant results among 

M testing. Then, average of estimates �β is also obtained, 
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which should be approximately equal to β . 

 

Step4: The power obtained in Step3, say F, assumes no 

misclassification. In the presence of misclassification in the 

response/non-response diagnosis and/or the genotyping of the 

covariate, the power of the sample size N is asymptotically 

equal to that of the sample size N･ARE(Y
*
 ,Z

*
|Y,Z) without 

misclassification. Therefore, when misclassifications exist, 

the sample size required to attain the same power as F is 

increased to N･ARE(Y
*
 ,Z

*
|Y,Z)

-1
. To determine the sample 

size for power required, the program should be run several 

times with different sample size. When a sample size 

produces a power close enough to that required, this is the 

sample size that should be used when no misclassification is 

expected. 

V.  RESULTS 

 

As a power of 80% is normally specified by protocols of 

clinical trial, we first obtained the sample sizes required to 

attain this power without misclassification for expected 

response rates of 15%, 20%, 30%, and 40%. Since the 

response used in the study was “tumor mass reduction” 

diagnosed from a two-dimensional image, misclassification in 

response was inevitable as well as the genotyping error  

expected in genomic data. Based on the Pitman ARE, we also 

obtained the sample sizes necessary to attain the power of 

80% for several possible misclassification rates. 

When the intermediate genetic model is used, and the 

population allele frequency of C, 
C

p , and the odds ratio of 

CT to CC are assumed as 0.6 and 3.22 (=e
1.2

), respectively, 

the proportion of the genotypes CC, CT and TT are 0.36, 0.48 

and 0.16, respectively. Then, the odds ratio of TT to CC is 

calculated as 11.0 (=e
2.4

). Table 4 and table 5 list the sample 

sizes required to attain a power of 80% by response rate, 

diagnostic error rate of response, and genotyping error rate.  

TABLE 4. SAMPLE SIZE TO ATTAIN THE POWER OF 80% WHEN 

0.63Cp = AND THE FALSE POSITIVE RESPONSE RATE IS 
1 0 / 2e e= . 

 

    False negative rate ε0 o f response 
Rate

a
 Error

b
 0 0.015 0.02 0.04 0 .06 0.08 0.1  

0.15 0 95  106  110  126  143  161  182  
 0.005  98  108  112  128  146  165  186  
 0.01 100  110  115  131  149  168  190  
 0.02 104  116  120  137  156  176  198  
 0.03 109  121  125  143  163  184  207  
 0.04 114  127  131  150  170  193  217  
  0.05 119  133  137  157  178  202  227  
0.3 0 61 65 67 72 78 85  93 
 0.005  63 67 68 74 80 87  95 
 0.01 64 68 70 75 82 89  97 
 0.02 67 71 73 79 86 93  101  
 0.03 70 74 76 82 89 97  106  
 0.04 73 78 80 86 94 102 110 
  0.05 77 82 83 90 98 106 116 
  
 

With regarding the diagnostic error rate, we assumed in each 

of the simulations that the false positive rate ε1 and false 

negative rate ε0 were set equal to the half of the other, that is 

either ε1= ε0/2 or  ε0= ε1/2. In Table 4-9, Rate
a
 is the rate of 

response, and Error
b
 is the value of genotyping error rate. The 

values of both categories are specified for the calculation.  

A misclassification rate of 4% would normally be regarded as 

a fairly accurate diagnosis [7], and the response rate of IFN-α 

therapy is known to be around 0.15. When the response rate is 

15%, the false negative diagnostic error rate is 4%, the false 

positive diagnostic error rate is 2%, and the genotyping error 

rate is 3%, the sample size must be increased from 95 to 143 

(a 50% increase) to attain the power of 80% (Table 4). 
On the other hand, when the false positive diagnostic error 

rate is 4% and the false negative rate is half of it, and the other 

settings are the same, the sample size increase is from 95 to 

130 (37%). 

TABLE 5. SAMPLE SIZE TO ATTAIN THE POWER OF 80% WHEN 0.63Cp = AND 

THE FALSE NEGATIVE RESPONSE RATE IS
0 1 / 2e e= . 

 

    False positive rate  ε1  o f response 
Rate

a
 Error

b
 0 0.015 0 .02 0 .04 0.06 0.08 0 .1  

0.15 0 95  102  111  114   125   138   151  
 0 .005 98  104  107  117   128   141   154  
 0.01  100   107  109  119   131   144   158  
 0.02  104   111   114  125  137   150   165  
 0.03  109   117  119  130  143   157   172  
 0.04  114  122  125  137  150   164   180  
  0.05  119  128  131  143  157   172   189  
0.3  0 61 64  68  70 75 80 86  
 0 .005 63 66  67  71 76 82 88  
 0.01  64 67  68  73 78 83 89  
 0.02  67 70  71  76 81 87 93  
 0.03  70 73  75  80 85 91 98  
 0.04  73 77  78  83 89 95 102 
  0.05  77 81  82  87 93 100  107 
  
The actual loss due to the error is tabulated in Table 6 and 

Table 7. When the false negative rate is greater than the false 

positive rate, the power tends to be lower. 

TABLE 6. POWER WITH THE SAMPLE SIZE OBTAINED BY N0･ARE  WHEN 

0.63Cp = AND THE FALSE POSITIVE RESPONSE RATE IS 
1 0 / 2e e= . 

 
    False negative rate ε0 of response 

Rate
a 

Error
b 

0  0 .015 0 .02 0 .04 0 .06 0.08 0 .1 

0 .15 0 0 .802 0 .749 0 .733 0.672 0.598  0.547 0.480  
 0 .005 0 .790 0 .746 0 .726 0.652 0.599  0.532 0.469  
 0.01  0 .783 0 .744 0 .720 0.659 0.585  0.512 0.463  
 0.02  0 .765 0 .720 0 .693 0.631 0.563  0.501 0.430  
 0.03  0 .743 0 .687 0 .670 0.612 0.530  0.482 0.415  
 0.04  0 .714 0 .662 0 .653 0.593 0.505  0.458 0.381  
  0.05  0 .693 0 .651 0 .622 0.550 0.492  0.415 0.351  
0 .3  0 0 .804 0 .770 0 .767 0.717 0.669  0.623 0.577  
 0 .005 0 .786 0 .763 0 .754 0.702 0.655  0.626 0.567  
 0.01  0 .777 0 .746 0 .734 0.692 0.651  0.614 0.551  
 0.02  0 .744 0 .724 0 .720 0.671 0.636  0.574 0.537  
 0.03  0 .741 0 .706 0 .690 0.652 0.590  0.551 0.497  
 0.04  0 .708 0 .684 0 .672 0.630 0.571  0.516 0.467  
  0.05  0 .684 0 .646 0 .640 0.598 0.559  0.500 0.446  
  

TABLE 7. POWER WITH THE SAMPLE SIZE OBTAINED BY N0･ARE  WHEN 

0.63Cp = AND THE FALSE NEGATIVE RESPONSE RATE IS 
0 1 / 2e e= . 

 

    False positive rate ε1 of response 
Rate

a
 Error

b
 0 0.015 0.02 0.04 0.06 0.08 0.1 

0.15 0 0.792 0.770 0.756 0.715 0.680 0.622 0.574 
 0 .005 0.790 0.762 0.746 0.699 0.656 0.619 0.564 
 0.01 0.783 0.755 0.735 0.697 0.649 0.599 0.561 
 0.02 0.765 0.730 0.721 0.678 0.642 0.582 0.521 
 0.03 0.748 0.711 0.700 0.657 0.607 0.565 0.512 
 0.04 0.721 0.693 0.679 0.634 0.585 0.541 0.486 
  0.05 0.699 0.657 0.651 0.604 0.564 0.508 0.458 
0.3 0 0.801 0.773 0.764 0.735 0.707 0.660 0.619 
 0 .005 0.779 0.761 0.757 0.728 0.696 0.655 0.614 
 0.01 0.777 0.752 0.745 0.718 0.675 0.638 0.603 
 0.02 0.744 0.725 0.721 0.691 0.664 0.620 0.579 
 0.03 0.741 0.708 0.700 0.679 0.638 0.601 0.549 
 0.04 0.713 0.680 0.677 0.639 0.606 0.566 0.520 
  0.05 0.686 0.667 0.653 0.610 0.587 0.537 0.489 
 

Table 8 and Table 9 present the power calculated with 
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samples generated by a simulation. The sample was randomly 

generated as the response variable and genotype covariate 

contained the misclassification error specified. The response 

variable and covariate were generated in the process of Step1 
in the Calculation section. Then, the misclassification was 

made using other uniform random variables Uε. Uδ. If 

Uε ε< (if the subject is a responder, ε=ε0, and if the subject is a 

nonresponder, ε=ε1) then the subjects who were responders 

changed to non-responders, and vice versa.  Similarly, the 

genotype classification was changed by switching the allele 

using the value of the uniform random variable for the subject. 

Then, the power was calculated with the simulated sample of 

size N0. 

 

The corresponding figures in Table 6 and Table 7 agreed well 

to Table 8 and Table 9, respectively, indicating that the 

asymptotic formula is highly accurate for the small sample 

sizes. 

TABLE 8. POWER WITH THE SAMPLE OF SIZE N0 OBTAINED BY SIMULATION 

WITH WHEN 0.63Cp = AND THE FALSE POSITIVE RESPONSE RATE 

IS
1 0 / 2e e= . 

 

    False negative rate ε0  o f response 
Rate

a
 Error

b
 0  0.015  0 .02 0.04 0 .0 6 0.08 0 .1  

0 .15 0 0 .8 02 0.755  0.739  0.686  0.63 2 0.579 0.536 
 0 .005 0 .7 92 0.747  0.732  0.676  0.62 3 0.570 0.523 
 0.01  0 .7 78 0.755  0.721  0.662  0.60 2 0.560 0.510 
 0.02  0 .7 56 0.722  0.712  0.641  0.60 3 0.547 0.490 
 0.03  0 .7 51 0.691  0.689  0.624  0.57 8 0.522 0.489 
 0.04  0 .7 30 0.678  0.678  0.610  0.56 1 0.506 0.460 
  0.05  0 .7 10 0.658  0.647  0.586  0.53 5 0.483 0.446 
0 .3  0 0 .8 04 0.777  0.767  0.735  0.69 9 0.648 0.621 
 0 .005 0 .7 94 0.766  0.757  0.729  0.69 1 0.639 0.610 
 0.01  0 .7 73 0.755  0.740  0.708  0.68 1 0.629 0.585 
 0.02  0 .7 57 0.738  0.725  0.683  0.65 5 0.613 0.589 
 0.03  0 .7 41 0.716  0.700  0.671  0.63 2 0.595 0.556 
 0.04  0 .7 18 0.702  0.685  0.640  0.60 9 0.573 0.539 
  0.05  0 .7 04 0.672  0.665  0.624  0.58 8 0.552 0.520 
  
 

TABLE 9. POWER WITH THE SAMPLE OF SIZE N0 OBTAINED BY SIMULATION 

WITH WHEN 0.63Cp = AND THE FALSE NEGATIVE RESPONSE RATE 

IS
0 1 / 2e e= . 

 

    False positive rate ε1 of response 
Rate

a
 Error

b
 0 0.015  0.02 0 .04 0.06 0.08  0 .1 

0 .15 0 0 .792 0.761  0 .761 0.721  0.690 0 .641 0.606  
 0.005  0 .784 0.754  0 .752 0.711 0.682 0 .636 0.596  
 0 .01 0 .783 0.760  0 .738 0.711 0.658 0 .634 0.586  
 0 .02 0 .757 0.737  0 .730 0.685  0.647 0 .608 0.567  
 0 .03 0 .742 0.715  0 .708 0.661  0.629 0 .587 0.550  
 0 .04 0 .730 0.697  0 .697 0.651  0.609 0 .567 0.531  
  0 .05 0 .705 0.684  0 .664 0.626  0.584 0 .552 0.513  
0 .3  0 0 .801 0.783  0 .773 0.738  0.720 0 .679 0.650  
 0.005  0 .795 0.777  0 .763 0.731  0.710 0 .671 0.641  
 0 .01 0 .783 0.765  0 .754 0.722  0.686 0 .649 0.635  
 0 .02 0 .763 0.740  0 .737 0.709  0.678 0 .642 0.619  
 0 .03 0 .744 0.724  0 .712 0.684  0.650 0 .617 0.594  
 0 .04 0 .722 0.699  0 .693 0.663  0.637 0 .602 0.570  
  0 .05 0 .701 0.681  0 .680 0.648  0.609 0 .582 0.545  
  
 

VI. DISCUSSION 

 

We investigated the impact of misclassifications of both the 

response variable and a covariate on the power of the test 

based on the logistic regression model. The impact was 

demonstrated with an application to a genetic disease 

association study. Even with the realistic error rate 

assumptions, dramatic increases of sample sizes should be 

taken into account when designing genetic disease association 

studies. As far as the authors are concerned, this is the first 

time to obtain the Pitman asymptotic relative efficiency to 

demonstrate the impact of misclassifications incidental to 

both a response variable and a covariate simultaneously. We 

observed a trend that the differences between the powers 

obtained by sample size calculated using ARE and those 

obtained by simulation got larger as the misclassification 

errors became larger. This might suggest that larger sample 

size were preferred to support the asymptotic property we 

showed when data were contaminated by large errors. 

Although we dealt with just a locus, an extension to multiple 

loci will be accomplished using the approach described in 

[10] for the sample size calculation of multivariate logistic 

regressions. Since SNPs tend to be highly correlated, sample 

size inflation should be taken into account, too. Also, as the 

Pitman ARE can be applied to continuous variables, our 

approach can be extended to other multivariate regression 

models. We will be able to see similar trends in other 

regression analysis.    

 

APPENDIX 

Let (Zi, Zi
*
, Yi, Yi

*
) denote independent observations 

following the logistic regression model in Section III. 

Further, we set a local alternative
0

/ nβ β= , where 
0

β is a 

constant not depending on n. 

Define 1( ) Pr( 1 | ) [1 exp{ ( )}]p Z Y Z Zα β −= = = + − + . Since 

Z
*
 is a surrogate for Z, it follows that 

 
*Pr( 1 | , ) ( )

i i i i
Y Z Z p Z= =  

 

and 

 
* * *

1 0
( ) Pr( 1| , ) (1 ) ( ) {1 ( )}

i i i i i i
p Z Y Z Z p Z p Zε ε= = = − + − , 

 

where
0

ε ,
1

ε  is the false negative rate, the false positive rate, 

respectively, of Y and  

 

Let ( )G z  and *( | )H z z  denote the distribution function of 

Z  and the distribution function of *Z given Z , respectively. 

The overall response rate is obtained as  

 

( 1) ( 1 | ) ( ) ( ) ( )E Y E Y Z z dG z p z dG z= = = = =∫ ∫  

 

Denote the numerator and denominator of (1) by 

( , )U Y Z and ( , )I Y Z , respectively. Then, the conditional 

expectation of * *( , )U Y Z  given Z and *Z  is  

 

* * * *

1 0

1

[ ( , ) | , ] ( ){(1 ) ( ) (1 ( ))}
n

i i i

i

E U Y Z Z Z Z Z p Z p Zε ε
=

= − − + −∑
 

 

Therefore, the unconditional expectation is 
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* * * *

0 1
[ ( , )] (1 )( 1){ [ ( )] ( ) [ ( )]}E U Y Z n E Z p Z E Z E p Zε ε= − − − −

 

since 
* * *

[ ( )] ( ) ( | ) ( )E Z p Z z p z dH z z dG z= ∫∫ . 

 

Taking the derivative with respect to β at β =0, we have 

 

* *

0

[ ( )] (1 ) ( )
d

E Z p Z s s E Z Z
d ββ =

= − , and 

 

* *

0

[ ] [ ( )] (1 ) ( ) ( )
d

E Z E p Z s s E Z E Z
d ββ =

= − , 

 

where we put 1{1 exp( )}s α −= + − . 

Thus,  

 

* * *

0 1

0

[ ( , )] (1 )( 1) (1 ) ( , )
d

E U Y Z n s s Cov Z Z
d β

ε ε
β =

= − − − − . 

 

Similar calculation show that
1

[ ( , )] ( ) ( )
n

i i

i

E U Y Z Z Z p Z
=

= −∑  

from which it follows that  

 

0

[ ( , )] ( 1) (1 ) ( )
d

E U Y Z n s s Var Z
d ββ =

= − − . 

 

On the other hand,  

* * * * 2

* *

1

(1 ) ( )
( , )

n

i

i

Y Y Z Z
I Y Z

n n

=

− −
=

∑
 

 

and 

2

1

(1 ) ( )
( , )

n

i

i

Y Y Z Z
I Y Z

n n

=

− −
=

∑
. 

 

Then, since β  is (1/ )O n , ( , ) / (1 ) ( )
p

I Y X n s s Var Z→ −  

and * *( , ) /
p

I Y Z n → 2 2 *

0 1 0 0 1 0{(1 ) }{1 (1 ) } ( )s s Var Zε ε ε ε ε ε− − + − − − − , 

as n → ∞ . Therefore, the Pitman asymptotic relative 

efficiency of Y
* 
to Y is  

 
* 2

0 1

*

0 1 0 0 1 0

2

{(1 )( 1) (1 ) ( , )}

{(1 ) (1 ) }{(1 (1 ) (1 ) } ( )}

(1 ) ( )

{( 1) (1 ) ( )}

n s s Cov Z Z

s s s s Var Z

s s Var Z

n s s Var Z

ε ε
ε ε ε ε ε ε

− − − −

− − − + − − − − −

−
⋅

− −

 

 

=    

2

0 1

0 1 0 0 1 0

* 2

*

(1 ) (1 )

{(1 ) }{1 (1 ) }

( , )

( ) ( )

s s

s s

Cov Z Z

Var Z Var Z

ε ε
ε ε ε ε ε ε

− − −

− − + − − − −

⋅

 

=     
2

* 20 1

0 1 0 0 1 0

(1 ) (1 )
( , )

{(1 ) }{1 (1 ) }

s s
Z Z

s s

ε ε
ρ

ε ε ε ε ε ε
− − −

⋅
− − + − − − −

,  

 

where *( , )Z Zρ  is the correlation coefficient 

between Z and *Z .  

 

Aside from this, since ( | ) ( ){1 ( )}Var Y Z p Z P Z= − , 

*

0 1 0 0 1 0
( | ) {(1 ) ( ) }{1 (1 ) ( ) }Var Y Z p Z p Zε ε ε ε ε ε= − − + − − − −

, and *

0 1
( , ) (1 ) ( ){1 ( )}Cov Y Y p Z p Zε ε= − − − , the squared 

correlation coefficient between Y and *Y given Z , *Z is 
* * 2

2

0 1

0 1 0 0 1 0

[ ( , | , )]

(1 ) ( ){1 ( )}

{(1 ) ( ) }{1 (1 ) ( ) }

correlation Y Y Z Z

p Z p Z

p Z p Z

ε ε
ε ε ε ε ε ε

− − −
=

− − + − − − −

. 

 

Again, since β is (1/ )O n , as n → ∞  

* * 2

2

0 1

0 1 0 0 1 0

[ ( , | , )]

(1 ) {1 }

{(1 ) }{1 (1 ) }

pcorrelation Y Y Z Z

s s

s s

ε ε
ε ε ε ε ε ε

→

− − −

− − + − − − −

 

 

,or 
2

* 2 0 1

0 1 0 0 1 0

(1 ) {1 }
( , )

{(1 ) }{1 (1 ) }

s s
Y Y

s s

ε ε
ρ

ε ε ε ε ε ε
− − −

→
− − + − − − −

  

 

in probability.  

 

Thus, it follows that  

 
* * * 2 * 2( , | , ) ( , ) ( , )ARE Y Z Y Z Y Y Z Zρ ρ= ⋅ . 
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