


Abstract—This paper describes NUSA, a newly developed

programming-language which is based on orthogonality and
modular programming. Compared to OOPLs (Object-
Oriented Programming Languages) that lack orthogonality,
NUSA is designed with orthogonality in mind. Issues found
during the creation of highly orthogonal language were the
inorthogonality in OOPLs, the real semantic of class,
encapsulation of code and data through module, and the
unbundling of operators from record-type. The result is NUSA,
a highly orthogonal programming-language. NUSA provides
input-output, user-defined types, and user-defined (infix and
prefix) polymorphic operators for user-defined types.
Quantitative comparison with C# in terms of number of
source-code lines is presented from the perspective of
pragmatic advantage.

Index Terms — Orthogonality, Module, Type-based
Encapsulation, Module-based Encapsulation

I. INTRODUCTION

RTOGONALITY is found in many theories surrounding
electronic engineering and programming language.

OFDM (Orthogonal Frequency Division Multiplexing) is
one example in telecommunication [29].

Orthogonal means independent. An orthogonal axis is
independent toward any other axis [1]. Orthogonality
(independence) is desired because we can operate or process
an axis independently [1].

In programming languages, orthogonality takes form in
the uniformity of rules (syntax and semantics; see [2], [14],
[25], [31]). By contrast, C++ is inorthogonal. For example,
comparison operator == cannot be used to compare values
of any type ([28]). Java as defined in [15] is inorthogonal,
that causes several confusions as detailed in [16].
Inorthogonality in programming languages ends up with
requiring users to remember many exceptions in the syntax
and/or semantics ([2], [14], [25], [31]).

The world of programming languages has experienced
progress for several decades. The decade of the 1980s was
dominated by procedural programming, while the decade of
1990s was dominated by OOPLs. OOPLs continued to be
dominant in the decade of 2000s, but approaching the
decade of 2010, a number of lecturers and students within
the movement of The Third Manifesto (TTM for short)

Manuscript received June 2, 2011, revised August 15, 2011. The first

author is with Bisnis Tekno Ultima, Jakarta 12810, Indonesia. Phone: +62-
21-83705972, Fax: +62-21-83706170, e-mailbernaridho@biztek.co.id

The remaining authors’ affiliation is Institut Teknologi September,
Phone: +62-31-5994251. Fax: +62-31-5931237. Department of Electrical
Engineering. Mochamad Hariadi e-mail is mochar@ee.its.ac.id . Ketut E.
Purnama e-mail is ketut@ee.its.ac.id . Mauridhi H. Purnomo e-mail is
hery@ee.its.ac.id

.

pointed out the OOPLs' lack of orthogonality ([5], [6], [7],
[8], [9]), and they created code-translators for highly
orthogonal programming language named Tutorial D in
response to the lack of orthogonality in OOPLs.

The problems that remain unsolved by TTM are the
complexity of the underlying theory (using a concept called
possrep) and the complexity of programming language
(Tutorial D). Tutorial D is very different from C, hindering
its acceptance by industry. TTM has another important
problem: their proposed theory is not related to the theory of
modular programming. Consequently there is nothing in the
Tutorial D that helps implement modular programming.

OOPLs' shortcomings (inorthogonalities) are investigated
in this paper. A programming-language that avoids the
inorthogonalities yet can incorporate polymorphism,
inheritance, encapsulation, and modular-programming is
designed. We propose NUSA programming language to
overcome the inorthogonality.

The rest of this paper is organized as follows: Section 2
explains Type-based Encapsulation, the approach used by
all OOPLs. This section elaborates seven inorthogolities that
are caused by Type-based Encapsulation. Section 3 explains
Module-based Encapsulation, the (opposite) approach used
by NUSA. This section details NUSA solution to the
inorthogonality problems and thus shows the orthogonality
of NUSA. Section 4 shows the pragmatic advantage
(quantitative comparison) of NUSA over one representative
OOPL: C#. Section 5 extracts some conclusions and
describes some future works for the theory of object-
orientation and NUSA programming-language.

II. TYPE-BASED ENCAPSULATION

A. Problem in the underlying theory: bundling of operators

Type-based encapsulation is the theory underlying the
OOPLs. While this term is not yet widely used, we can find
its usage related to OOP in [22], [23], [27] and [30]. In type-
based encapsulation, record-type is used to encapsulate code
(operator) and data. To paraphrase, operators are bundled
into record-type.

Bundling of the operators is the root of inorthogonalities
([7], [8], [9]). This paper lists seven items of
inorthogonality, with five of them universally apply to all
OOPLs (the first two items do not apply to C++ and Oracle
PL/SQL). For simplicity, this paper focuses on the
comparison with C# as defined by [12] and [13].

The record-type is called class in most OOPLs, but not all
(Oracle PL/SQL and Delphi are some exceptions). C# and
C++ use the term class and struct. In the remaining sections
and subsections, the terms class and record-type are
interchangeable, unless otherwise is stated.

NUSA (Neat Uniform Simple Architecture): A
Highly Orthogonal Programming Language

Bernaridho I. Hutabarat, Mochamad Hariadi, Ketut E. Purnama, and Mauridhi H. Purnomo

O

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

B. Inorthogonality #1: On definable user-defined types

Type-based encapsulation limits the user-defined types to
record-types only. This is the first inorthogonality. C# and
Java disallow the user-defined basic types (often called
primitive types) and user-defined collection types. Fig. 1
shows user-defined types in OOPL which are limited to
user-defined record-types. The record-type Complex
depicted in Fig. 1 serves as a basis for other examples in this
paper. The left part of Fig. 2 models the inorthogonality.
Only one axis is present, representing that the user-definable
types are limited to record-type category only.

Fig. 1 Inorthogonal rule #1: User-defined types are limited to
record-types

Fig. 2 User-defined types are limited to record types (left part)

Type categories presented here are the result of observing
textbooks on programming language theory ([2], [14], [25],
[31]). The term type categories is not explicitly listed in
those textbooks, but can be found on publications like [18],
[19], [21], [24], and [32].

C. Inorthogonality #2: Memory Allocation

Type-based encapsulation introduces inorthogonality in
memory allocation. Objects of record-types must be
allocated dynamically. C# source-code in Fig. 1 depicts the
situation.

Source-code in Fig. 3 shows the inorthogonality. Objects
of record-types must be allocated dynamically, while objects
of other type-categories can be allocated statically. The left
part of Fig. 4 models the inorthogonality. Only two axis are
present, representing the fact that only objects of two type-
categories can be allocated statically.

Fig. 3 Inorthogonal rule #2: record-objects must be allocated
dynamically

Fig. 4 Inorthogonal rule #2: Objects of only two type-
categories can be allocated statically

D. Inorthogonality #3: Prohibition of specification of
type of returned value

Type-based encapsulation has inorthogonal rules about
type of returned-value in operator-header. It prohibits
specification of type of returned-value for value-constructor
but requires such specification for other operators. The
source-code in Fig. 5 is rejected because type of returned-
value must be left out. The left part of Fig. 6 shows value-
constructors for record-types cannot contain type of
returned-value.

Fig. 5 Inorthogonal rule #3: value-constructor cannot specify
type of returned-value

Figure 6 Inorthogonal rule #3: prohibition on specifying the
type of returned-value (in left part)

E. Inorthogonality #4: Prohibition of calling the operator
return()

All OOPLs prohibit the call of operator return (or its
equivalents) to return value from constructor. In C#, C++,
and Java; call to return() inside value-constructor operator-
body raises error. The source-code in Fig. 7 demonstrates it.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

Figure 7 Inorthogonal rule #4: value-constructor cannot call
operator return()

Fig. 8: Inorthogonal rule #4: only function returning basic- and
collection-value can call operator return (left part)

The left part of Fig. 8 models the inorthogonality. Type-
based encapsulation permits call to operator return() inside
operator-body only within the body of operators returning
basic-value and collection-value.

F. Inorthogonality #5:Rules on object-declaration

The fourth inorthogonality comes from the rules on object
declaration. Type-based encapsulation enforces the presence
of implicit object (with different enforced names in different
language) in some operators, while at the same time
prohibits the declaration and usage of the same implicit
object in some other operators. The C# source-code in Fig. 9
contains error due to this inorthogonality on object
declaration. The left part of Fig 10 models the inorthogonal
systems that permit and enforce implicit object of record-
type only for dynamic operators.

Figure 9: Inorthogonal rule #5 is on object-declaration

Fig. 10 Inorthogonal rule #5 only objects of record-type can
explicitly be present in method

G. Inorthogonality #6: Rules on operand-passing

Designers of some OOPLs theorize that the operators
should be categorized into dynamic and static ones. While it
looks like the difference between the two categories on
memory allocation strategies only, more significant
differences take place in the matter of operand passing. To
dynamic operators ('dynamic methods') in C# and Java
implicit operand named this is passed (different
programming languages use different names: Smalltalk uses
Self, Eiffel uses Current). To static operands no implicit
operands are passed. This is an inorthogonality. Fig 11
repeats the source-code of Fig 9 emphasizing the difference
on operand passing between operator1 and Complex.

Fig. 11 Inorthogonal rule #6: implicit operand is passed to
dynamic operators (e.g., operator1)

Fig. 12 Inorthogonal rule #6: no implicit operand is passed to
static operators (e.g., operator2)

The left part of Fig 12 models the inorthogonality.
Implicit operand of record-type is enforced for dynamic
operators.

H. Inorthogonality #7: Record-type name

In type-based encapsulation record-type name is
inorthogonal (dependent) toward module-name. Type-name
must equate the module-name. Fig. 13 shows C# source-
code where a record-type named Type1 is enforced to be
created due to the creation of a module-object named Type1.
In other words, the users have no liberty to create record-
type with other name(s). Fig 13 shows object named
Object1 of type Type1.

This inorthogonality has unpleasant consequence. It is
difficult to explain the error within the code like in Fig. 13.
Proper explanation must make use the fact that a class in
OOPLs like C# is a module (a translation unit (called
compilation unit in [12] and [15]), and a record-type Some
operators, a type, and an implicit object in classes are
inorthogonal (dependent) to the class/module. The error in
Fig 11 is in fact due to the inorthogonality #5, #6, and #7.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

Fig. 13 Inorthogonal rule #7: dependent / inorthogonal and
implicit record-type

The left part of Fig. 14 models the inorthogonality.
Module-name in type-based encapsulation enforces
dependent (inorthogonal) record-type name. The right part
models an orthogonal system where no type is implied by or
dependent upon module name.

Fig. 14 Modeling the inorthogonal rule #7 . Left: an enforced
record-type that is dependent upon module name. Right: no
type is dependent upon module name

III. MODULE-BASED ENCAPSULATION

This section describes module-based encapsulation. In
relationship to the previous section, this section presents the
solution to inorthogonality problems. The orthogonality of
NUSA is represented by the 0 or 3 axis in the right part of
seven figures in the previous section.

A. Module can encapsulate code and data

The term 'Module-based Encapsulation' can be found on
[3], [4], [17], [20], [26], and [28]. Module is logical unit of
translation, and the means of encapsulation [17]. Both type-
based and module-based encapsulation encapsulate code and
data. Class in C# and Java are firstly module, and secondly
record-type, as is evident in the seventh item of
inorthogonality. The following subsections describe how
module-based encapsulation in NUSA removes the seven
items of orthogonality.

B. Removing the inorthogonality #1

Fig. 15 shows that NUSA is more orthogonal compared to
C# because it permits user-defined types of all type-
categories. The first user-defined type is basic-type
(hundred). The second one is collection-type (Matrix). The
third one is record-type (Complex). The right part of Fig. 2
models the orthogonality.

Fig. 15 Orthogonal user-defined types

C. Removing the inorthogonality #2

NUSA removes the inorthogonality #2 by permitting
objects of record-types to be allocated statically, just like
objects of basic-types and collection-types. NUSA does not
enforce objects of record-types to be allocated dynamically.
Object definition's syntax is independent (orthogonal)
toward the type of objects (see Fig. 16).

Fig. 16 Orthogonality #2: memory allocation is orthogonal

D. Removing the inorthogonality #3

Fig. 17 shows the result of NUSA's orthogonal syntax for
operator-header and header-declaration. A value-constructor
is an operator. Its syntax is exactly the same with any other
operator. Assuming record-type Complex has been declared,
Fig. 17 shows the declaration of two operators. All operator-
headers consist of these mandatory parts: type of returned-
value, operator-name, and pair of parentheses. The syntax
can accomodate optional parts (like operands, operator-
qualifier) without affecting the orthogonality.

Fig. 17 Orthogonality #3: specification for type of returned-
value is orthogonal

E. Removing the inorthogonality #4

NUSA removes the inorthogonality #4 by requiring ALL
functions to explicitly return values. This semantic applies
to all operators. Fig. 18 shows an example.

Fig. 18 Orthogonality #4: function must call return()

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

F. Removing the inorthogonality #5

Orthogonal syntax in NUSA helps us understand the
errors like shown in Fig. 19. All objects must be declared
explicitly. Errors like in Fig. 19 take place simply because
no object is declared or passed.

Fig. 19 Orthogonality #5: objects must be declared explicitly

G. Removing the inorthogonality #6

Changing the previous code (in Fig. 19) into the new code
in Fig. 20 removes the inorthogonality #6. The code in Fig.
contains no error. In the constructor of Complex, object
named this is declared. In the definition of operator1 object
named this is passed. Operand-passing within operator1 and
operator2 use the same orthogonal syntax. C# requires
different codes for doing what is essentially the same thing.

Fig. 20 Orthogonality #6: objects must be declared or passed
explicitly

H. Removing the inorthogonality #7

Fig. 21 shows NUSA ability to emulate type-based
encapsulation where record-type name equals module-name.

Fig. 21 Orthogonality #7: record-type name is independent
toward module-name; record-type name equals module name

Fig. 22 shows that record-type name in NUSA is
orthogonal toward module-name. NUSA helps
understanding the error in both Fig. 19. Object column2 is
not record-column. Consequently, for any record-object the
user cannot call the dot operator to access column2.

Fig. 22 Orthogonality #7: record-type name is independent
toward module-name; different from module name

IV. COMPARING THE NUMBER OF LINES

We seek pragmatic advantage from NUSA orthogonality.
One idea is to compare the number of source-code lines with
an OOPL. Deliberately C# is chosen.
C# NUSA Percentage (NUSA / C#)

20 18 90.00
24 23 95.83
43 39 90.70
43 36 83.72
55 56 101.82

117 101 86.32
105 112 106.67
99 94 94.95
15 5 33.33

9 5 55.56
34 22 64.71
36 29 80.56
94 61 64.89
12 5 41.67

Table 1 Comparison of C# and NUSA source-code

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

The comparison is drawn using the C# source-code from
books authored by Deitel and Deitel, using Visual C# 2005
and Visual C# 2008 ([10], [11]); with the final line is
adopted from the example in this paper. The result is shown
on Table 1. On two examples NUSA source-code is longer
than C# (with percentage 101.82 and 106.67), but on the
remaining examples NUSA source-code is shorter than C#.

The superiority of NUSA over C# can be seen on the
examples representing final line of comparison. Fig. 23
shows 12-line C# source-code to create a typical Hello
world program. Fig. 24 shows 5-line NUSA source-code for
equivalent program.

Fig. 23 C# source-code for Hello world program

Fig. 24 NUSA source-code for Hello world program

V. CONCLUSION AND FUTURE WORKS

Encapsulation of code and data in type-based
encapsulation is manifested in the bundling of operators
(code) and columns (data) into record-type. This is the root
of the seven items of inorthogonalities in the OOPLs.

Encapsulation of code and data can be manifested in the
modules, i.e., module-based encapsulation. This approach
removes the seven items of inorthogonalities, leading to the
theory of polymorphism and encapsulation that is integrated
with theory of modular programming. Module-based
encapsulation is the theoretical foundation for orthogonal
programming languages that impose less exceptions in the
syntax and semantic. The author plans to use module-based
encapsulation to establish the formal theory for object-
orientation.

The orthogonality in NUSA proves to have pragmatic
advantage: shorter source-code to achieve the same result
produced by OOPLs. In average, the number of lines of
NUSA source-code is 77.91% of C#.

ACKNOWLEDGMENT

The authors thank the Minitry of Information &
Communication Technology for partial funding of the
development of NUSA code-translator. The first author
thanks Prof. Dr. Hery, Dr. Hariadi, and Dr. Ketut for their
suggestions.

REFERENCES
[1] Howard Anton, Elementary Linear Algebra, 9th ed. Wiley: McGraw-

Hill, 1964, pp. 15–64.
[2] Doris Appleby, Julius J. Vandekopple, Programming Languages:

Paradigm and Practice, 2nd ed: McGraw-Hill, 1997.
[3] Marco Cantu, Mastering Delphi 6. Sybex, 2001.
[4] Craig Chambers, David Ungar, Bay-Wei Chang, and Urs Hölzle;

“Parents are shared parts of objects: Inheritance and encapsulation
in SELF, in LISP and Symbolic Computation”, Springer, 2005.

[5] Hugh Darwen, “Valid Time and Transaction Proposals: Language
Design Aspects,” in Opher Etzion, Sushil Jajodia, and Suryanaryan
Sripada (editors), Temporal Database: Research and Practice; 1998.

[6] Hugh Darwen, “An Introduction to Relational Database Theory”
Ventus Publishing, 2009.

[7] C. J. Date, Hugh Darwen; The Third Manifesto: Foundation for
Object-Relational Databases; Addison Wesley; 1998.

[8] C. J. Date, Hugh Darwen, “The Third Manifesto: Foundation for or
Future Database Systems”, 2nd ed, Addison Wesley; 1998.

[9] C. J. Date, Hugh Darwen, The Third Manifesto: Databases, Types,
and the Relational Model. 3rd ed, Addison Wesley; 2007.

[10] H. M. Deitel, P. J. Deitel, “Visual C# 2005: How To Program”, 2nd ed,
Pearson; 2006

[11] P. J. Deitel, H. M. Deitel, “Visual C# 2008: How To Program”, 2nd ed,
Pearson; 2009.

[12] ECMA, “ECMA-334: C# Language Specification,” 4th ed,
ECMAInternational, 2006.

[13] ECMA, “ECMA-335: Common Language Infrastructure (CLI):
Partitions I to VI,”, ECMAInternational, 2006.

[14] Carlo Ghezzi, Mehdi Jazayeri, “Programming Language Concepts,”
3rd ed, Wiley, 1997.

[15] James Gosling, Bill Joy, Guy Steele, “The Java Language
Specification,” Addison Wesley, 1996.

[16] José O. Guimaräes, “The Green Language Type System”, in Computer
Languages, Systems, Vol 35, Dec 2009, pp 435-447, Elsevier

[17] Bernaridho I. Hutabarat, Ketut E. Purnama, Mochamad Hariadi,
“Module, Modular Programming, and Module-based Encapsulation:
Critiques and Solutions” The 5th International Conference on
Information & Communication, Technology, and Systems (ICTS);
2009.

[18] Bernaridho I. Hutabarat; Programming Concepts: with NUSA
Programming Language; Ma Chung Press; 2010.

[19] IBM, “Data Type Categories,” http://publib.boulder.ibm.com
/infocenter/tivihelp/v8r1/index.jsp? topic=/com.ibm.netcool_impact.
doc/im31sg/xF1996263.html, IBM, 2002.

[20] Carine Lucas, Patrick Steyaert;, “Modular Inheritance of Objects
Through Mixin-Methods” Technical Report, Vrije Universiteit
Brussel; 2007.

[21] Microsoft; Data Types (Transact-SQL) in msdn. microsoft.com/en-
us/library/ms187752.aspx, November, 2009.

[22] Peter Müller, Konzepte objektorientierter Programmierung, Lecture
Notes; 2007.

[23] James Noble, Robert Biddle, Ewan Tempero, Alex Potanin, Dave
Clarke, “Towards a Model of Encapsulation,” IWACO (International
Workshop on Aliasing, Confinement and Ownership in object-
oriented programming) ECOOP, 2003.

[24] Oracle, “Developers Guide,” Oracle Corp., 2010.
[25] Robert W. Sebesta, “Programming Language Concepts”, 8th ed.,

Addison Wesley, 2006.
[26] Norbert Schirmer, “Analysing the Java Package/Access Concepts in

Isabelle/HOL”, Concurrency and Computation: Practice and
Experience, John Wiley and Sons; 2003.

[27] Patrick Steyaert, Open Design of Object-Oriented Languages: A
Foundation for Specialisable Reflective Language Frameworks,
Department Informatica, Vrije Universiteit Brussel; 1994.

[28] Bjarne Stroustrup. The C++ Programming Language. 3rd ed, Addison
Wesley; 1997

[29] Andrew S. Tanenbaum; Computer Networks, 4th ed; Prentice Hall;
2003.

[30] David Ungar, Craig Chambers, Bay-Wei Chang and Urs Hölzle;
“Organizing programs without classes,” Springer, 2005.

[31] David A. Watt, “Programming Language Design Concepts,” in John
Wiley and Sons; 2004

[32] Wikipedia, Common Type Systems, http://en.wikipedia.org/wiki/
Common_Type_System; Wikipedia;available 2009

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

