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Abstract – All microprocessor based electronic systems are 

designed as repetition of finite time activities. The classical 

infinite Laplace transform (ILT) theory violates this 

fundamental requirement of engineering systems. We show 

that this theory assumes that all signals must exist over the 

entire infinite time interval. Since in engineering this infinite 

time assumption is not meaningful, this paper presents a 

modeling, analysis, and design approach for linear time 

invariant systems using the theory of the finite Laplace 

transform (FLT). 

  

Index Terms – Convolution, finite Laplace transforms, linear 

systems, numerical inversion. 

I. INTRODUCTION. 

Most of our engineering systems run over finite time. 

Consider the example of a robotic arm, picking up an item 

from one place and dropping it in another place and 

repeating the process in, say, less than a second of time. 

Similarly a digital communication receiver system, receives 

an electrical signal of microsecond duration, for example, 

representing the data, extracts the data from the signal, 

sends it to the output, and then goes back to repeat the 

process.  

Our software runs under operating systems (OS) which 

are also nothing but finite state machines. A finite state 

machine is a collection finite number of activities of finite 

durations, repeated asynchronously and/or synchronously 

based on the external as well as internal events. The signals 

and the environment are changing every OS time slice. This 

is the general nature [1] of our technology today.  

In most applications if we examine any internal data of 

the microprocessor using say, JTAG emulators, and plot its 

numerical values over time, the graph will look like a 

stochastic process. There is no steady state at nanosecond 

time scale and 16 or 32 bits data resolution. As an example 

see the Kalman Filter state variable estimate of the position 

of a GPS receiver as shown in the Figure 17 of [2]. The data 

in that graph is shown at the time resolution of seconds and 

still looks like a random function. Our engineering systems 

show steady state results only after filtering, averaging, and 

then displaying at time resolution of the order of seconds. 

The classical Laplace transform theory violates the 

requirements of modern engineering implementations. (a) 

We show that the ILT is valid only for infinite duration 

signals. On the other hand the modern engineering uses 

finite duration signals. (b) ILT models have poles; the FLT 

models do not generate poles. Thus ILT models may 

introduce instability in engineering implementations. (c) 

ILT requires convolution which is not valid for finite 

duration signals. (d) ILT methods are based on steady state 

concepts. Microprocessors do not see steady state in 

engineering implementations. (e) Infinite time theory for 

finite time engineering forces us to introduce software 

patches and kludges to make it work. 

II. THE FINITE LAPLACE TRANSFORM 

The Laplace transform is defined as [3]: 

���� = � ��	
∞

� ��
��
            (1) 

Since the upper limit is infinity, this definition will be 

referred to as the ILT. This infinite limit requires a 

boundedness condition for (1) given by: 

|��
�|  ≤ ���
 ,    0 < � < ∞                    (2)  

It can be shown [3, p. 13] that (1) converges for all ℛ��� >
�. This region is called the region of convergence. Here 

ℛ��� means the real part of the complex variable s. We 

briefly present some basic theories [4] of the FLT. 

The FLT is defined as [4, pp 283-294]: 

ℒ���� = ����� = � ��	
�
� ��
��
  ,   0 < � < ∞                (3)         

We will use F(s) to denote the FLT of a continuous function 

f(t). In (3) t will be referred to as time, [0,T] as finite 

duration interval, s as a complex variable represented by 

x+iy, where x and y are real variables. Since the upper limit 

is finite, the integral (3) always exist. Unlike the ILT, the 

region of convergence of FLT is the entire complex plane.  

An example of the FLT [4] will show that the ILT is 

based on infinite time assumptions. Define the step function: 

��
� = �1    0 ≤ 
 ≤ �
0  !
ℎ�#$%��

&                    (4) 

Using the definition (3) we get the expression for the FLT: 

ℒ��1� = � ��	
. 1. �
�
�            (5) 

= (
	 − (

	 ��	�            (6) 

= (�*+,-

	                      (7) 

We can see from (6) that the FLT has the ILT term 
(
	 and an 

expression involving ��	�. This exponential term will 

always be there in all the FLT expressions. As T goes to 

infinity this exponential term will go to zero.  

The expression (6) will become ILT, only if the second 

part of (6) is zero, which in turn means T is infinity. From 

(5) we see that even if the integration limit is infinity, the 

definition (4) will keep the second part in (6). Thus (6) will 

become ILT only when the function f(t) is nonzero over the 

entire infinite interval. Thus whenever we are using the ILT, 

we are assuming that the signals exist for infinite time.  

It is also worth noting at this time that (7) does not have a 

pole at s=0, because the numerator goes to zero as s 

approaches zero. This property of 0/0 indeterminate form, is 

a very distinguishing feature of the FLT. For later references 

we also record the FLT pairs [4]. 

�.
 ↔ (�*+�,+0�-

	�.                  (8) 

sin $
  ↔
 4
	5645 −  ��	� 4

	5645 cos $� − ��	� 	
	5645 sin $�             (9) 

cos $
 ↔
 	
	5645 −  ��	� 	

	5645 cos $� + ��	� 4
	5645 sin $�           (10) 
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From the fundamental theorem of calculus [5, p. 142] we 

know that if f(t) is continuous on [a,b] and F(t) is the 

antiderivative or integral of f(t) defined by 

��
� = � ��
� �
   then   � ��
��
 = ��:� − ��;�<
.   

In the above fundamental theorem if we define 

���, 
� = � ��	
 ��
��
   then it is clear that 

FLT: ���, �� − ���, 0�        (11) 

ILT: −���, 0�        (12) 

It is easily seen from (11) and (12) that the ILT has been 

defined in such a way that F(s,∞) is zero and we only have –

F(s,0) in (12), the part that we always get in the FLT.  

It seems that the FLT theory was first introduced by Dunn 

[6]. Later another paper was published by Debnath [7], 

which is also available as a chapter in the book by Debnath 

[4]. The objectives of both papers were to extend the ILT 

theory to cover a larger class of Laplace transformable 

functions. The motivation of this paper is driven by the 

finite time requirement [8, pp. 73-88] of engineering.  

III. THE FLT PROPERTIES 

In this section we discuss some of the important 

properties of the FLT theory relevant to system engineering.  

A. Analyticity 

The proof of analyticity is not given in [4] or [6] or in any 

other places as far as we know. Yamamoto [9] points to the 

Paley-Wiener theorem for the proof. A function F(s) of 

complex variable s is analytic at a point s0 if F(s) has a 

derivative in some neighborhood of s0. A function F(s) is 

called an entire function if it has derivatives at each nonzero 

point in the finite complex plane [5, p. 73].  

 

Theorem: The complex FLT function F(s) satisfies the 

following conditions: 

(a) ���� = =�>, ?� + %@�>, ?� is defined over the 

entire complex plane, 

(b) The first order partial derivatives of u and v exist at 

all points s=x+iy in the plane, and 

(c) The partial derivatives are continuous and satisfy 

the Cauchy-Riemann equations 

=A = @B  ,    =B = −@A  ,  at all points in the plane. 

Therefore �′��� exists at all points in the complex plane and 

F(s) is an entire function. 

 

The proof follows the lines of the ILT similar to [3, pp. 

124-125]. For any s=x+iy in the finite plane we can write: 

���� = � ��	
�
� ��
��
 = � ���A6CB�
�

� ��
��
  

= � ��A
�
� cos ?
  ��
��
 + % � ��A
�

� sin ?
  ��
��
  

= =�>, ?� + %@�>, ?�         (13) 

It is clear from (13) that u and v are well defined and exist 

since the functions are continuous and the integration is over 

finite duration. Also, 

=A = D
DA E� ��A
�

� cos ?
  ��
��
F =
� D

DA ���A
 cos ?
 ��
��
��
�                                                  (14) 

The partial derivative in (14) can be moved from outside the 

integral to inside because of finite duration and the 

continuity of all functions involved. Thus unlike in the ILT 

case there are no absolute or uniform convergence issues to 

be considered. Hence we can write from the last expression 

=A = � D
DA ���A
 cos ?
 ��
��
��

�
  

= � −
��A
 cos ?
 ��
��
�
�                                    (15) 

Similarly we can show that 

@B = � D
DB �−��A
 sin ?
 ��
��
��

� =
� −
��A
 cos ?
 ��
��
�

�                                                  (16) 

The above two expressions, (15) and (16), show that 

=A = @B . Similarly we can also show that =B = −@A  . These 

equality conditions on partial derivatives, called Cauchy-

Riemann conditions [5, p. 66], indicate that the derivative of 

F(s) exists for all s in the entire plane and thus by definition 

F(s) is an entire function. ■ 

The proof of the Paley Weiner theorem can be found in 

Rudin [10, pp. 180-185].  

B. Taylor Series 

One of the fascinating properties of functions of complex 

variables is that if it is analytic then it has all the derivatives. 

Thus F(s) has the Taylor series expansion around the origin 

and is valid over the entire complex plane [5, pp. 189-192]. 

���� = ∑ H�I����
J!

∞
JL� �J         (17) 

Therefore F(s) can be approximately expressed by: 

���� ≈ ;� + ;(�( + ;N�N + ⋯ + ;P�P                          (18) 

Interestingly the expression (17) is not valid for the ILT.  

C. The FIR Filter  

A Finite Impulse Response (FIR) filter uses the sampled 

values of the continuous time input signal and is defined as 

a linear combination of present and previous values of the 

input signal. A FIR filter is defined as [9, 11, pp. 148-158]: 

Q�R� = ∑ ℎ�S� R�TP�(
TL�          (19) 

 

Here H(z) is the transfer function of the FIR filter, z is the 

variable for the Z-Transform, and h(k) is the k-th time 

sample of the impulse response of the continuous time 

signal. Thus H(z) is a polynomial in z and has no poles in 

the Z-plane. The FLT shares these two properties with the 

FIR filter. It is worth noting also that the expressions (18) 

and (19) are very similar. We can say that the FLT is the 

continuous time equivalent of the discrete time FIR filter.  

D. Stability 

The stability concept is related to the behavior of a 

function f(t) as t approaches infinity. Since in engineering 

infinite time is not meaningful, the usual stability concept is 

also not meaningful. The final value theorem lim
→∞ ��
� =
lim	→� ����  is not applicable in finite time engineering. 

Moreover as FLT does not have poles, the corresponding 

time function cannot go to infinity.  

A microprocessor never sees a steady state function. In 

every OS time slice T, the signals are changing. The signals 

in communication systems may change at rates faster than T. 

Thus the steady state ILT concept does not exist in the 

engineering systems. The FLT systems can be used the way 

we use the FIR filter problems. 

The notion of frequency response [12] will also not be 

meaningful for finite time engineering. The working system 

environment changes every time slice T. These concepts are 
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related to the ILT, associated poles, infinite time, and are 

not meaningful for the FLT and in modern engineering.  

E. The Inverse FLT 

For the ILT theory the inverse is defined by the following 

relation [3, pp. 152-157]: 

��
� = (
NXC � �
	A6C∞

A�C∞ ������        (20) 

Here x > α, and α is defined in (2). It can be shown that (20) 

is equivalent to the following contour integral: 

��
� = (
NXC Y �
	

Z ������                 (21) 

 

Here the contour C is taken appropriately to cover all the 

singularities on the left of the vertical line, called Bromwich 

line, passing through the point α. Normally (21) is computed 

using the relation 
(

NXC Y �
	
Z ������ = ∑ lim	W[\

�� ) RT��
	P
TL( ����        (22) 

 

Here zk is a pole of F(s). The approach based on (22) is 

known as the residue method. Since the FLT does not have 

any poles, the method in (22) cannot be used to find the 

inverse of the FLT functions.  

Thus one of the very useful methods for the ILT is no 

longer valid for the FLT. However, as mentioned before, 

many authors [6, 7] have treated the two terms in expression 

(11) separately using separate contours. In the following 

section we present a numerical method for the inversion of 

the FLT that uses the analyticity property of the combined 

expression (11). 

IV. NUMERICAL INVERSION 

Probably Bellman was the first person to introduce the 

numerical approach concept in Laplace transform theory. 

Bellman [13, pp. 135-155] uses positive real integers for s 

before integrating the ILT equation (1) as real and 

imaginary integrals. [14], [15] give a summary of recent 

most popular numerical methods, including Post-Widder 

and Talbot’s methods. Numerical inversion of the ILT is 

also an ill-posed problem as pointed out in [16].  

We present here a numerical inversion method that takes 

advantage of the analyticity property of the FLT functions. 

This approach is unique to the FLT; however it has some 

similarity with the FIR filter methods. The objective is to 

find the time function f(t) from the known FLT function 

F(s). Since F(s) is analytic, it has the Taylor series: 

���� � � ��	
�
� ��
��
 � ;� 9 ;(� 9 ;N�N 9 ;]�] O    (23) 

Expanding the exponential function ��	
 under the 

integral sign, ( ��	
 is an analytic function), and equating 

the like powers of s in (23) it can be shown that 

;J � �)1�J (

J!
� 
J�

� ��
��
          (24) 

Thus the problem reduces to finding f(t) in (24) given all the 

coefficients ^;J , _ � 0,1, O , `a. We expand f(t) in Taylor 

series, assuming that f(t) has all the derivatives, which may 

not be practical even in engineering. 

��
� � :� 9 :(
 9 :N
N 9 :]
] O           (25) 

We can now substitute (25) in (24) and express each 

coefficient an in terms of bn for n=1…N, to get 

;J � ∑ �)1�J (

J!

(

�J6T6(�
�J6T6(P

TL( :T            (26) 

 

For N=4, as an example, using matrix notation we can 

express equation (26) in a more readable form as in (27). 

We can now solve the matrix equation (27) by inverting the 

square matrix to find the b-coefficients {bk}. Clearly, the 

matrix is non-singular, because the columns are 

independent. These b-coefficients can then be used in (25) 

to find the function f(t).  

As an example consider the FLT expression (8) for the 

exponential function. The inverse was generated using the 

Mathematica analysis tool. The Fig.1 shows how the inverse 

compares with the exact exponential function with four 

coefficients of the FLT Taylor series (23). For 10 FLT 

coefficients, the true graph and the numerically 

reconstructed graph match exactly at the resolution of the 

paper. The numerical data are shown in the Table 1. The 

Taylor series based approach appears to be very robust and 

satisfactory even for small number of terms. This does not 

normally happen for FIR filters. 

The Taylor series approach has been used [17] for the ILT 

inversion analytically. Their approach expands the function 

f(t) in Taylor series and evaluates over discrete values of s. 

In our paper we have expanded all functions, f(t), F(s), and 

e
-st over all s. Also our approach is a numerical approach for 

the FLT. 
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 :3 

= (27) 

True exponential data samples 

0.00451658 0.00822975 0.0149956 0.0273237 0.0497871 

0.090718 0.165299 0.301194 0.548812 1.0 

Exponential from inverse FLT with four coefficients 

0.0133275 0.030779 0.0271752 0.0214159 0.0324014 

0.0790315 0.180206 0.354826 0.621791 1.0 

Exponential from inverse FLT with ten coefficients 

0.00451518 0.00823095 0.0149953 0.0273231 0.0497887 

0.090718 0.165299 0.301198 0.548813 1.0 

 

Table 1: Numerical inversion of FLT 
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Fig.1: Inverse FLT using four coefficients 
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V. APPLICATIONS 

Many standard results of the ILT can be extended in a 

straight forward way using the methods shown in [3] to the 

case of the FLT. We only present some results that will be 

required for our main objective and are not available in the 

literature. Consider the FLT of the first derivative: 

ℒ�[� ′�
�] �  � ��	
� ′�
��
�  �
   

�  &��	
��
�|�
�   9 � � ��	
��
��

�  �
                   

�  ��	����� ) ��0� + �����          (28) 

It shows that a first order differential equation (DE) will 

lead to a two point boundary value problem. Note that f(T) 

in (29) is not known because it depends on the solution. The 

other two terms in (28) are same as in the ILT.  

Using an example we illustrate how the boundary 

conditions can be determined to solve a DE. Consider a 

second order simultaneous DE taken from [3, p. 65]: 
hB
h
 = −R,    h[

h
 = ?,   ?�0� = 1,   R�0� = 0  

Taking the FLT on both sides results 

�i��� − ?�0� + ��	�?��� =  −j���  

�j��� − R�0� + ��	�R��� = i���  

Solving them we get 

i��� = 	
	56( − ��	� 	

	56( ?��� + ��	� (
	56( R���               (29) 

j��� = (
	56( − (

	56( ��	�?��� − 	
	56( ��	�R���      (30) 

From the expression for Y(s) in (29) we get 

i��� = (
	56( �� − ��	��?��� + ��	�R����        (31) 

Since the denominator of (31) is zero at ± i, the numerator of 

(31) also should be zero at these values to make Y(s) 

analytic at all points in the s-plane. Therefore we must have, 

from (31), 

� − ��	��?��� + ��	�R��� = 0,    ;
  � = ±%  
Substituting these values of s in the above expression we get 

the following two equations 

%�C� − %?��� + R��� = 0 ;      −%��C� + %?��� + R��� = 0   

Solving them simultaneously gives ?��� = cos �, and 

R��� = sin �. These boundary conditions in (29) and (30) 

will help to select the correct solution using (9) and (10).  

VI. CONVOLUTION THEOREM 

Surprisingly, the FLT literatures [4],[6],[7] do not talk 

about the convolution theorem. This property says that if the 

impulse response of a linear time invariant (LTI) system is 

given by h(t) then the response y(t) for any other input u(t) 

can be obtained by the following convolution integral: 

?�
� = � =�m�

� ℎ�
 − m��m        (32) 

It is worth pointing out here that h(t) exists for infinite time 

and therefore y(t) is also defined for infinite time, 

independent of the duration for u(t). Using the convolution 

theorem for the ILT [3, p. 92], (32) can be reduced to 

i��� = Q���. n���                (33) 

The ILT convolution theorem can help us to cascade 

systems to find the combined output from the input U(s): 

i��� = i(���QN��� = n���Q(���QN���       (34) 

In (34) H1 and H2 are two boxes connected in series and Y1 

is the output of the first box. 

We illustrate with an example that the ILT convolution 

theorem cannot be valid for the FLT systems. The idea is 

very basic and can be found in many engineering text books, 

for example [18, pp. 63-75]. We normally overlook the 

point that is important for the FLT, so we present it in 

details. Consider the functions defined below: 

��
� = Q.�� − 
�,      0 ≤ 
 ≤ �        (35) 

o�
� = Q<�� − 
�,      0 ≤ 
 ≤ �        (36) 

Here H(t) is the Heaviside step function defined by 

Q�
� = �1,   
 ≥ 0
0,    
 < 0

&   

They are same as (4) only with different notations. The 

convolution of these two functions gives: 

 ℎ�
� = � ��m�o�
 − m��m

�   

= � Q.�� − m�

� Q<�� − �
 − m���m  

= � Q.�� − m�

� Q<�� − 
 + m��m                             (37) 

It is easy to visualize from (37) that h(t) is a triangle with 

duration 2T. Thus (37) extends beyond the domain of 

definition of the two functions involved. Because of this 

reason if we consider the FLT for only time T, a portion of 

h(t) will not be considered in the FLT, and the convolution 

theorem will not work. This will not be apparent from the 

proof of the theorems for both the ILT and the FLT, because 

both proofs follow almost exactly the same statements as 

shown below. A closer look will show that the theorem 

works for the ILT because the ILT assumes infinite time. 

 

Theorem: If f and g are continuous on �0, �� then the 

FLT relation given below is true: 

ℒ����. ℒ��o� ≠ ℒ��� ∗ o�                                    (38) 

 

The theorem is proved in the following way [3, pp. 91-

93]. Using the definition of the FLT (3) we write 

ℒ����. ℒ��o� = E� ��	s�
� ��@��@F E� ��	t�

� o�=��=F      (39) 

Since all functions are continuous in the square region 

bounded by   0 ≤ = ≤ �  ;_�  0 ≤ @ ≤ � we can move the 

second integral sign in (39) at the left to get 

= � E� ��	�t6s��
� ��@�o�=��=F �@�

�            (40) 

Now we define u+v=t and change the limits of the second 

integral in (40) as shown below 

= � E� ��	
�6s
s ��@�o�
 − @��
F �@�

�           (41) 

Since the function f(t) is zero for t > T, we can change the 

upper limit from T+v to T. If t<v the function g(t-v) is zero, 

so we can set the lower limit v to zero also, without 

affecting the integral and can write: 

= � E� ��	
�
� ��@�o�
 − @��
F �@�

�             (42) 

Again switching the order of integration in (42) we get 

= � E� ��	
�
� ��@�o�
 − @��@F �
�

�         (43) 

Now take the exponential outside the inner integral of (43), 

because the variable of integration is v inside and write: 

= � E��	
 � ��@�o�
 − @��@�
� F �
�

�         (44) 

Since v cannot be greater than t for the function g(t-v) is 

zero in that region, therefore the upper limit T for v can be 

set to t, giving us. 

= � ��	
 E� ��@�o�
 − @��@

� F �
�

�         (45) 

Now we have the convolution expression inside (45). We 

know that the convolution integral in (45) goes beyond T 

and the expression (45) neglects that part of the function 

between [T, 2T], because the limits on the outer integral in 
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(45) is 0 to T, and therefore (45) cannot be equal to (46) 

given below: 

ℒ��� ∗ o�          (46) 

This concludes the proof of the convolution theorem for the 

FLT system. ■ 

The reason that the convolution theorem holds in the ILT 

expressions, is because the ILT expressions are by definition 

valid only for infinite time, as can be seen from (11) and 

(12). Thus we cannot multiply two FLT transfer functions, 

like in (34). In the following section we show how we can 

go around the lack of a convolution theorem and still use the 

FLT theory to design engineering systems.  

VII. SYSTEM DESIGN 

The core idea behind the ILT approach can be described 

with the help of the standard block diagram shown in Fig.2. 

In this figure all variables represent the ILT functions. The 

objective of the design is to find the parameters of the 

controller C(s) so that the error e(t), the inverse ILT of E(s), 

meets the engineering requirements.  

Ideally, of course C(s) could be selected as the inverse of 

P(s) [19, p. 24] but for many reasons that cannot be done. 

However, in the absence of a convolution theorem, and 

finite time constraints, that concept is also not meaningful 

any more. In this section we illustrate the basic idea of the 

FLT based design method using an open loop system and a 

simple differential equations (DE). We will see later that the 

close loop extension is quite trivial. The objective is to 

demonstrate that the ILT based trial and error method can be 

extended to the FLT theory. Consider the plant model: 

uJ
hIB

h
I 9 uJ�(
hI+vB

h
I+v 9 O 9 u(
hB

h

9 u�? � =�
�       (47) 

The FLT of n-th order derivative can be written as 

ℒ�w?�J��
�x � �Jℒ�[?�
�] ) ∑ �TJ�(
TL� ?�J�T�(��0� +

��	� ∑ �TJ�(
TL� ?�J�T�(����  

We use the following simplifying notation 

?J�0, �� = − ∑ �TJ�(
TL� ?�J�T�(��0� + ��	� ∑ �TJ�(

TL� ?�J�T�(����   

Using the above notation FLT of (47) can be written as 

uJ�Ji��� + uJ?J�0, �� + uJ�(�J�(i��� + uJ�(?J�(�0, �� +
⋯ + u(�(i��� + u(?(�0, �� + u�i��� = n���  

Using more simplifying notations the last expression can be 

reduced to 

yJ���i��� + yJ�0, �� = n���        (48) 

In (48) we have borrowed the notation style from the 

software engineering concepts, that is 

yJ��� = ∑ uT�TJ
TL�       and      yJ�0, �� = ∑ uT

J
TL� ?T�0, ��  

Therefore from (48) we can express Y(s) of the plant as: 

i��� = (
zI�	� n��� − zI��,��

zI�	�         (49) 

Similarly the controller model C(s) can be written as: 

n��� = (
Z{�	� |��� − Z{��,��

Z{�	�         (50) 

Even if the initial conditions are zero the right hand side 

of (49) will still be non-zero, because it includes the final 

time values. This is also another reason, besides the lack of 

the convolution theorem, why we cannot multiply two 

transfer functions in the FLT based systems.  

The block diagram in Fig.3 shows the composite open 

loop system. The design objective is to find the unknown 

coefficients of the controller Cm(s), for the known plant and 

the known reference input. Since we cannot multiply the 

two blocks together we must consider the output of the 

individual blocks separately and then feed them to the 

following blocks as shown in Fig.3.    

A. Design Example 

The following example and its numerical simulation will 

illustrate the details. Consider a first order known plant:  

?} + u? = =�
�,                    0 ≤ 
 ≤ �       (51) 

Here u(t) is the output from the controller and is also the 

input to the plant, and p is a plant parameter of known value. 

Assume also a first order controller with unknown controller 

parameter c and a known input r(t) as in (52): 

=} + ~= = #�
� = 1 ,            0 ≤ 
 ≤ �       (52) 

For simplicity all initial conditions are assumed to be zero. 

The FLT of the controller (52) gives 

�n��� + ��	�=��� + ~n��� = (�*+,-

	   

n��� = (
	6�

(�*+,-

	 − *+,-t���
	6�   

= (�*+,-�	*+,-t���
	�	6��           (53) 

Since U(s) must be analytic we have, from (53), at s=-c, 

1 − ��� + ~���=��� = 0  

This gives the boundary value for u(T) as 

=��� = (�*+�-

�           (54) 

The FLT of the plant (51) gives: 

�i��� + ��	�?��� + ui��� = n���  

Solving for Y(s) we can write 

i��� = (
	6� n��� − *+,-B���

	6�   

We can now substitute for the input U(s) from (53) to get 

i��� = (
	6�

(�*+,-�	*+,-t���
	�	6�� − *+,-B���

	6�   

= (�*+,-�	*+,-t����	�	6��*+,-B���
	�	6���	6��         (55) 

Again using analyticity of Y(s) at s=-p, we get from (55): 

1 − ��� + u���=��� + u�~ − u����?��� = 0  

This produces the the terminal value of y(T) as 

?��� = (�*+�-��t���
������           (56) 

We have assumed p=50 for the plant. First we try c=60 and 

find u(T) and y(T) using (54) and (56). Then we find the 

input to the plant by inverting the controller FLT (53) using 

Taylor series method. Finally we invert the plant (55), again 

using Taylor series, to find the output from the plant. The 

process can be repeated with another trail value for c. The 

results are shown in Fig.4 and Table 2.  

Fig.2: A control system design approach 

P(s) C(s) 
R(s) 

Y(s) 

E(s) + 

- 

n��� = 1
����� |��� − ���0, ��

�����  

i��� = 1
yJ��� n��� − yJ�0, ��

yJ���  
Y(s) U(s) 

R(s) U(s

) 

Fig.3: FLT design principle for controller 
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The signals can be added or subtracted at all points, 

including the feedback points, since the FLT is a linear 

operation, and because we are considering only linear 

systems. Thus it is clear from the above design principle that 

the method can be easily extended for the design and 

analysis of various standard problems in engineering like: 

close loop system design, parameter sensitivity analysis, 

transient characteristics etc.  

The first paper on the application of the FLT to control 

systems was presented by Datko [20]. Using the analyticity 

property of the FLT he has shown how the optimal value for 

the final time can be computed. He has also used the FLT 

theory for quadratic optimal control problem to find the 

terminal conditions. [9] uses a sequence of the FLT to 

generate the ILT to analyze tracking control problem. Rosen 

[21] has assumed the control law as a linear combination of 

exponential functions of the FLT variables between two 

sample intervals. In our paper we have shown how the 

classical ILT based concepts can be extended to find 

continuously varying control functions using the FLT. 

VIII. CONCLUSIONS 

We examined the effect of changing the infinite time 

requirement for the Laplace transform theory on engineering 

applications. The most important feature of the Finite 

Laplace transform (FLT) theory is that they do not introduce 

any poles. Thus it eliminates all stability problems just like 

the FIR filters. It is shown that the FLT does not satisfy the 

convolution theorem. We have given a simple numerical 

method for the inverse FLT, which helps to design finite 

time engineering problems. 
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Fig. 4:  Response graphs for controller c=60 

Plant response 

Controller 

response 

Controller parameter c=60 
Controller output data 
0.418288 .662041 .80409 .88687 .935107 

.963218 .979602 .989147 .994709 .997954 

Plant output data 
.0905053 .266025 .44658 .601706 .723942 

.815463 .881729 .928606 .961183 .983512 

 

Table 2:  FLT controller design data for c=60 
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