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Abstract- As stated originally the four – color problem asked 
whether it is always possible to color the regions of a plane 
map with four colors such that regions which share a common 
boundary ( and not just a point ) receive different colors. In 
the long and arduous history of attacks to prove the four color 
theorem many attempts came close, but what finally succeeded 
in the Apple – Haken proof of 1976 and also in the recent 
proof of Robertson ,Sanders, Seymour and Thomas 1997 was 
a combination of some old ideas and the calculating powers of 
modern – day computers. Thirty years after the original proof, 
the situation is still basically the same, no pure mathematical 
proof is in sight. Now I give in my paper such a pure 
mathematical proof. 
 
Index Terms-Paradoxical Set, Chromatic Number, List Chromatic 
Number, Dual Graph. 
 
 

I. INTRODUCTION 
 

The four color problem asks whether it is always possible to color 
the regions of a plane map with four colors such that regions 
which share a common boundary ( and not just a point ) receive 
different colors. Coloring the regions of a plane map is really the 
same task as coloring the vertices of a plane graph . We place a 
vertex in the interior of each region ( including the outer region ) 
and connect two such vertices belonging to neighboring regions by 
an edge through the common boundary. 

 
 

II. PROOF OF THE FOUR COLOR PROBLEM 
 
The resulting graph G , the dual graph of the map M, is then a 
plane graph , and coloring the vertices of G in the usual sense is 
the same as coloring the regions of M. Because of this 
construction we may as well concentrate on vertex – coloring 
graphs drawn on the 2 – sphere S2 and will do so from now on 
.Note that we may assume that G has no loops or multiple edges 
,since these are irrelevant for coloring .  
  
First note that adding edges can only increase the chromatic 

number. In other words,when H is a subgroup of G, then l  ( H ) 


l  ( G )  certainly holds . l  is the list chromatic 

number.Hence we may assume that G is connected. 
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Since ordinary coloring is just the special case of list coloring, we 
obtain for any graph G  

 
  (G ) ≤ l  ( G )  (1)  

where    (G ) is the ordinary chromatic number.  

 
Now we consider the given map M ( including the outer region ) 
and its' dual graph G (including the vertex in the interior of the 
outer region) The regions of M exhaust all of S2 . 
 
Thus S2 is SO3 – paradoxical using the regions of the map M 
(some of the employed elements of SO3 may coincide with the 
identity of SO3) . Now we color the vertices of the dual graph G in 
such a way that the two vertices at the two ends of any edge of the 
graph G receive different colors, and such that the number of 
colors used is a minimum. Let n be the minimum number of 
different colors used. For each color i ( i = 1,2,……,n ) we collect 
all the regions of the map M with the property that the vertices of 
G in the interiors of all of these regions have the same color  i . Let 
Ai be the union of the collection of all such regions.  
 

Ai  = 
im

k 1

Rk (2) 

 
Where  
Rk ( K=1 ,2 ,…, mi )  are the regions of the map M with the  
property that the vertices of G in the interiors of all these regions 
have the same color i. 
mi, the number of these regions Rk ( K=1 ,2 ,…, mi) 
 
For any f   SO3 acting on S2 , and for any function  f  in general , 
we have  
  

f (Ai ) = f (
im

k 1

Rk ) = 
im

k 1

f ( Rk ) (3)  

 
This means that S2 is SO3 – paradoxical using the new subsets Ai ( 
i = 1,2,….,n ). We call these subsets Ai ( i = 1,2,….,n ). the 
derived subsets based on minimum coloring of a given map M . 
 
We can then obtain immediately the following easy theorem: 
 
Theorem 1: S2  is SO3 – paradoxical using the derived subsets Ai ( 
i = 1,2,….,n ). The number of these subsets n equals the minimum 
number of colors used.   
 
We mention now the following known theorem:  
 
Theorem 2: S2 is SO3 – paradoxical using four regions and the 
four cannot be improved.   
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What about the greatest lower bound of all the possible minimum 
numbers of colors used in all possible cases? 
  
According to this theorem 2 and in reference to theorem 1 above 
,we assert that whenever an  SO3 – paradoxical decomposition of 
S2 is given using derived subsets in the sense of theorem 1 above , 
the greatest lower bound of all possible numbers of these subsets 
is four, and the four cannot be improved . 
 
Therefore, according to theorem 1 above, the greatest lower bound 
of all minimum numbers of colors used to color any graph ( or 
map ) is four, and the four cannot be improved. This concludes the 
proof of the four color conjecture.  
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