
Sliding Mode Control for Flexible Joint using
Uncertainty and Disturbance Estimation
Pramod D. Shendge*,Member, IAENG,Prasheel V. Suryawanshi**,Member, IAENG

Index Terms—sliding mode control, uncertainty and distur-
bance estimation, flexible joint.

Abstract—This paper proposes sliding mode control based
on uncertainty and disturbance estimator (UDE), for trajectory
tracking control of flexible joint robotic system. UDE is used
to estimate plant uncertainty and disturbances. The controller
does not requires knowledge of plant uncertainty and external
disturbance. Reaching phase is eliminated for robustification.
The perturbation is efficiently compensated by feedback of the
estimated value. The proposed reference model is to track the
plant states according to this model. The closed loop stability for
this model with uncertainty and disturbance is also proposed.

Index Terms—sliding mode control, uncertainty and distur-
bance estimation, flexible joint.

I. I NTRODUCTION

The problem of joint flexibility has received considerable
attention as the major source of compliance in most present
day manipulator designs. This joint flexibility typically arises
due to gear elasticity, shaft windup, etc., and is important in
the derivation of control law. Perhaps it is more critical to ac-
count for the joint flexibility when dealing with force control
problems, than it is for pure position control. Joint flexibility
must be taken into account in both modeling and control in
order to achieve better tracking performance, for practical
applications. Unwanted oscillations due to joint flexibility,
imposes bandwidth limitations on all algorithm designs;
based on rigid robots and may create stability problems
for feedback controls that neglect joint flexibility. Control
of flexible joint has been an important research topic and
received considerable attention after 1990. The importance
of joint flexibility in the modeling, control, and performance
evaluation of robot manipulators has been established by
several researchers. Spong used a singular perturbation model
of the elastic joint manipulator dynamics and showed force
control techniques developed for rigid manipulators can be
extended to the flexible joint case [1]. A completely linear
algorithm is proposed for composite robust control of flexible
joint robots. Moreover, the robust stability of the closed loop
system in presence of structured and unstructured uncertain-
ties is analyzed. To introduce the idea, flexible joint robot
with structured and unstructured uncertainties is modeled and
converted into singular perturbation form [2].

In literature, a number of feedback control schemes have
been proposed to address the issue of joint flexibility. A
sliding mode control based strategy [3] is proposed that
needs knowledge of the bounds of uncertainty and also the
complete state vector for its implementation. A dynamic
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feedback controller for trajectory tracking control problem
of robotic manipulators with flexible joints is proposed in
[4]. The design requires position measurements on the link
as well as the motor side and the velocities required in the
controller are estimated through a reduced order observer.
Further, robustness of the closed loop system is established
by assuming that the uncertainties satisfy certain conditions.
A singular perturbation approach is employed for the same
task [5], wherein the controller needs measurements of
position and elastic force. A nonlinear sliding mode state
observer is used for estimating the link velocities and elastic
force time derivatives. A Feedback Linearization (FL) based
control law made implementable using extended state ob-
server (ESO) is proposed for the trajectory tracking control of
a flexible joint robotic system in [6]. Controller design based
on the integral manifold formulation [7], adaptive control
[8], adaptive sliding mode [9] and back-stepping approach
[10] are some other approaches reported in the literature.
Most of the schemes that appeared in literature have certain
issues that require attention. Firstly many of them require
measurements of all state variables or at least the position
variables on link and motor side. Next robustness wherever
guaranteed, is often highly model dependent. Also some need
knowledge of certain characteristics of the uncertainties, such
as its bounds. A variable structure observer that requires only
measurement of link positions to estimate the full state of a
flexible joint manipulator is proposed in [11]. Additionally
a reduced adaptive observer that requires the measurement
of link and motor positions is reported in [12] and a MIMO
design for the strongly coupled joints in [13].

The design of robust, model following, sliding mode, load
frequency controller for single area power system based on
uncertainty and disturbance estimator (UDE) is discussed
in [14]. The literature on UDE also mentions control of
uncertain LTI systems [15], model following sliding mode
control [16], Ackermann’s formula for reaching phase elimi-
nation [17], robust model following based on UDE [18]. The
control proposed does not require the knowledge of bounds
of uncertainty and disturbance and is continuous.

In this paper, SMC is proposed to control flexible joint
manipulator with uncertainty and disturbance. A nonlinear
disturbance is considerd here and reaching phase is elimi-
nated for robustification. The plant model is controlled to
follow the desired states and the uncertainty and disturbance
is estimated with UDE.

The paper is organized as follows: Section II describes the
problem statement. The mathematical model is explained in
Section III and Section IV explains the stability analysis.
A numerical example is explored in Section V. Simulation
results and discussions are presented in Section VI and the
paper concludes in Section VII.
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II. PROBLEM FORMULATION

Reviewing the continuous plant defined as,

ẋ(t) = Ax(t) + Bu(t) + d(t) (1)

y = Cx(t)

A = Anc + ∆A B = Bnc + ∆B

Here ‘nc’ denotes the normal part of uncertain continuous
time system.x(t) is n-dimensional plant state vector,u(t)
is control input vector,d(t) is external disturbance.∆A and
∆B are the uncertainties in the system matrix.

Assumption 1:The uncertainties∆A,∆B and distur-
banced(x, t) satisfy matching conditions given by,

∆A = BD ∆B = BE d(x, t) = Bv(x, t) (2)

The system (2) can now be written as,

ẋ(t) = Ax(t) + Bu(t) + Be(t) (3)

y = Cx(t)

where,e(x, t) = Dx + Eu + v(x, t).
Reference model that generates desired trajectory as a LTI

system can be defined as ,

ẋm(t) = Amxm(t) + Bmum(t) (4)

ym(t) = Cmxm(t)

Assumption 2:The choice of model is such that,

A − Am = BL (5)

Bm = BM (6)

Control objective is to find a control input ‘u’ that makes
the states of the plant; asymptotically track the response of
a reference model (4).

Assumption 3:The lumped uncertaintye(x, t) is such
that,

ė 6= 0, for i = 1, 2, . . . , (r − 1) (7)

ė = 0, for i = r (8)

where,r is any positive integer.

A. Design of Control

The main objective of this controller is to eliminate
uncertainty and disturbance in the system and command a
desired tip angle position.

In this section, a model following control is designed
with help of method suggested in [16].

Define a sliding surface [17]

σ = bT x + z (9)

where,

ż = −bT Amx − bT bmum z(0) = −bT x(0) (10)

Equation (10) for the auxiliary variablez defined here is
different from that given in [17]. By virtue of the choice of
the initial condition onz, σ = 0 at t = 0. If a controlu can
be designed ensuring sliding, thenσ̇ = 0 implies;

ẋ = Amx + bmum (11)

and hence fulfills the objective of the model following.
Using (4), (9) and (10) gives,

σ̇ = bT Ax + bT bu + bT be(x, t) − bT Amx − bT bmum (12)

= bT bLx − bT bMum + bT bu + bT be(x, t)

Let the required control be expressed as,

u = un + ueq (13)

Selecting,

ueq = −Lx + Mum − (bT b)−1kσ (14)

where,k is a positive constant.
From (12) and (14) we get,

σ̇ = bT bun + bT be(x, t) − kσ (15)

The lumped uncertaintye(x, t) can be estimated; as given
in [15]. Rewriting this equation,

e(x, t) = (bT b)−1(σ̇ + kσ) − un (16)

It can be seen that lumped uncertaintye(x, t) can be
computed from (16), which cannot be done directly.

Let the estimate of the uncertainty be defined as,

ê(x, t) = e(x, t) Gf (s) (17)

Using (16) and (17)

ê(x, t) = [(bT b)−1(σ̇ + kσ) − un]Gf (s) (18)

where,Gf (s) is strictly proper order, low pass filter, with
unity gain and enough bandwidth. With such a filter,

ê(x, t) ∼= e(x, t) (19)

Error in the estimation is,

ẽ(x, t) = e(x, t) − ê(x, t) (20)

B. UDE with first order filter

If Gf (s) is proper first order, low pass filter, with unity
gain defined as,

Gf (s) =
1

τs + 1
(21)

where,τ is small positive constant.

With the aboveGf (s) and in view of (16), (18) and (20),

ẽ(x, t) = (1 − Gf (s))[(bT b)−1(σ̇ + kσ) − un] (22)

= τ ė(x, t)Gf (s)

The error in estimation varies withτ , enabling design of
un as,

un = −ê(x, t) (23)

Combining (23) and (18)

un = −(bT b)−1(σ̇ + k)Gf (s) + Gf (s)un (24)

Solving for un gives,

un =
(bT b)−1

τ
(σ +

kσ

s
) (25)
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III. M ATHEMATICAL MODEL

We consider a single link manipulator, with revolute joint
actuated by DC motor and model the elasticity of the joint
as a linear torsional spring with stiffnessK. The equations
of motion for this system as taken from [19] are,

Iq̈1 + MgL sin(q1) + K(q1 − q2) = 0

Jq̈2 − K(q1 − q2) = u (26)

where,q1 andq2 are the link and motor angles respectively,
I is the link inertia,J being the inertia of motor,K is the
spring stiffness,u is the input torque, andM andL are the
mass and length of link respectively. The tracking problem
for the system of (26) is to find a control which ensures
q⋆
1(t)−q1(t) = 0 for given initial states whereq⋆

1(t) is desired
trajectory forq1(t).

The equations of motion for the Quanser’s Flexible Joint
module as given in [20] are,

θ̈ + F1θ̇ −
Kstiff

Jeq
α = F2Vm

θ̈ − F1θ̇ +
Kstiff (Jeq + Jarm)

JeqJarm
α = −F2Vm (27)

where,

F1

∆
=

ηmηgKtKmK2
g + BeqRm

JeqRm

and

F2

∆
=

ηmηgKtKm

JeqRm

The parameters are :θ is motor load angle,α is link
joint deflection,ηm is the motor efficiency,ηg is the gearbox
efficiency,Kt is the motor torque constant,Km is the back
EMF constant,Kg is the gearbox ratio,Beq is the viscous
damping coefficient,Rm is the armature resistance,Jeq is
the gear inertia,Kstiff is the spring stiffness,Jarm is the link
inertia, andVm is the motor control voltage.

Considering the output of the system asy = θ + α, the
dynamics (27) in terms ofy andθ is re-written as,

ÿ =
Kstiff

Jeq
F3y −

Kstiff

Jeq
F3θ (28)

θ̈ =
Kstiff

Jeq
y −

Kstiff

Jeq
θ − F1θ̇ + F2Vm (29)

whereF3

∆
=

(
1 −

Jeq + Jarm

Jarm

)
.

Defining the state variables as,x1 = y, x2 = ẏ = ẋ1,
x3 = θ, x4 = θ̇ = ẋ3, the dynamics (28)–(29) become,

ẋ1 = x2

ẋ2 =
Kstiff

Jeq
F3(x1 − x3)

ẋ3 = x4

ẋ4 =
Kstiff

Jeq
(x1 − x3) − F1x4 + F2Vm (30)

The state space form for (30) can be written as,

ẋ = A x + B Vm (31)

where,ẋ = [ẋ1 ẋ2 ẋ3 ẋ4]
T

A =




0 1 0 0
Kstiff

Jeq
F3 0 −

Kstiff

Jeq
F3 0

0 0 0 1
Kstiff

Jeq
F3 0 −

Kstiff

Jeq
F3 −F1




B =




0
0
0
F2




For the desired output, the relative outputy can be
differentiated in proper manner. In order to satisfy the model
following conditions, the above system (31) is converted to
phase variable form by using the transformation,

Z = Tx

Then the Eq. (31) can be written as [6],

ż = A z + B Vm (32)

where,ż = [ż1 ż2 ż3 ż4]
T

A =




0 1 0 0
0 0 1 0
0 0 0 1

0 −
KstiffF1

Jarm
−

Kstiff (Jeq + Jarm)

JeqJarm
−F1




B =




0
0
0

Kstiff F2

Jarm




IV. STABILITY ANALYSIS

Using Eq. (17)

ê(x, t) = e(x, t) Gf (s) (33)

ChoosingGf (s) from Eq. (21)

ê(x, t) = e(x, t)
1

τs + 1
ê(x, t)(τs + 1) = e(x, t)

ê(x, t)(τs) + ê(x, t) = e(x, t) (34)

Simplifying Eq. (34) and using Eq. (20)

τ ˙̂e + ê = e

Adding and subtractingτ ė on LHS and simplifying,

τ ˙̂e + τ ė − τ ė = e − ê

−τ ˙̃e = ẽ − τ ė

˙̃e = −
1

τ
ẽ + ė (35)

Using Eq. (15), (20) and (23)

σ̇ = −bT b ê + bT b e − kσ

= bT b ẽ − kσ (36)

The dynamics of the flexible joint can be represented in
state space form using equations (35) and (36) as,

[
σ̇
˙̃e

]
=

[
−k (bT b)
0 − 1

τ

] [
σ
ẽ

]
+

[
0
1

]
ė (37)

This satisfies the separation principle. The eigen values are
decided by constantk and filter constantτ , thus ensuring
stability. The appropriate choice ofk and τ ensures sliding
variableσ and lumped uncertaintye tend to zero.
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V. EXAMPLE

In order to illustrate the proposed control algorithm, a
single flexible link with flexible joints is considered. Sim-
ulation is performed to demonstrate the effectiveness, of the
proposed control algorithm. Numerical dynamic model of
this system from [20] is as follows;




ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 0
0 0 1 0
0 0 0 1
0 −10007 −837 −28







x1

x2

x3

x4




+




0
0
0

10007


 Vm (38)

The initial conditions arex(0) = [0 0 0 0]. This
nominal values of the various flexible joint parameters are
from [20]: Kstiff =1.248 N − m/rad, ηm=0.69, ηg=0.9,
Kt=0.00767 N − m, Kg = 70, Jeq=0.00258 kg − m2,
Jarm=0.00352kg − m2, Rm=2.6 Ω.

The model to be followed is assumed as;



ẋm1

ẋm2

ẋm3

ẋm4


 =




0 1 0 0
0 0 1 0
0 0 0 1
0 −560 −320 −85







xm1

xm2

xm3

xm4




+




0
0
0

160


 Vm (39)

with initial conditions arexm(0) = [0 0 0 0]. The
disturbanced(t) = 2 sin(t), is sinusoidal with amplitude 2
and frequency 1rad/sec and uncertainty in the plant is 40%.

VI. SIMULATION

The simulation studies reveal the results as shown in Fig.
1 – Fig. 4. Fig. 1 and Fig. 2 show the results fork = 1
and k = 5 respectively, when the value ofτ is 10 ms.
Fig. 1(a)–1(d) are the plant states i.e. displacement, velocity,
acceleration and jerk, whenk = 1 andτ = 10 ms. The plant
and model states are plotted in this window. Fig. 1(e) shows
the control torque required and the Fig. 4(f) shows sliding
variable (σ). The uncertainty in the plant is considered 40%
(in both i.e. state matrixA and input matrixB). The tracking
performance is improved as the gaink is increased to 5. This
is shown in Fig. 2(a)–2(f).

Fig. 3 and Fig. 4 shows the results fork = 1 andk = 5
respectively, when the value ofτ is 1 ms. The figure reveals
the ability of the controller, to drive the system to follow
the reference model. It is easily observed that system is
robust even in presence of parameter variations and external
disturbance. Controller is able to force the plant to follow
the given model inspite of parameter variations.

VII. C ONCLUSION

In this paper, a trajectory tracking controller for flexible
joint system, based on uncertainty and disturbance estimation
(UDE) is proposed. The uncertainties and disturbance is
estimated and compensated in the system performance. This
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Fig. 1: State tracking, Control and Sliding variable forτ = 10
ms andk = 1
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Fig. 2: State tracking, Control and Sliding variable forτ = 10
ms andk = 5
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Fig. 3: State tracking, Control and Sliding variable forτ = 1
ms andk = 1
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Fig. 4: State tracking, Control and Sliding variable forτ = 1
ms andk = 5

is demonstrated through simulation. The control strategy
includes Ackerman’s method, which eliminates reaching
phase to robustify the system. UDE is used to estimate
the uncertainties and disturbance. The model is decided and
control is designed to force the plant trajectories to track the
model states. The plant follows the model states, even in the
presence of uncertainties and disturbance. The results prove
that the system performance is robust to parameter varia-
tions and external disturbances. The tracking performance is
improved as the filter time constantτ becomes small. The
performance also shows marked improvement as the value
of k is increased. The performance can be further improved
by using a higher order filter.
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