
 

  

Abstract—This paper presents results about power system 

stabilizers (PSS) coordination in multi-machine power systems. 

Due to their versatility, power system stabilizers have been 

employed extensively to enhance the power oscillations 

damping. One of the main tasks within this context is to 

estimate the best PSS’s parameters. In this paper, this is solved 

by a neural network. The applicability of the proposal is 

demonstrated by simulation on two test systems. Results show 

that the proposed stabilizers’ coordination is comparable to 

that obtained by a conventional design, without requiring a 

detailed model analysis. 

 

Index Terms—Multimachine grid, power system stabilizer, 

simultaneous tuning, stability. 

 

I. INTRODUCTION 

 variety of controllers have been developed to enhance 

the power oscillations damping. Important efforts are 

made to achieve their best performance. 

A practical PSS must be robust over a wide range of 

operating conditions and capable of damping the oscillating 

modes. From this perspective, the conventional single input 

PSS design approach based on a single machine infinite bus 

(SMIB) linearized model exhibits some deficiencies: 

(i) There are uncertainties in the linearized model resulting 

from the variation in the operating condition, since the 

linearization coefficients are derived typically under 

nominal operating conditions. 

(ii) Various techniques like PID, artificial neural network, 

GA-fuzzy, hybrid neuro-fuzzy, adaptive fuzzy logic, 

simulated annealing, pole-shifting, etc., have been tested to 

achieve tuning under various operating conditions for the 

single input PSS. However, the single input PSS may lack 

robustness in a multi-machine power system. 

In a power system stabilizer, the electrical power �� and 

the rotor angular speed variation ∆ω are calculated from the 

generator’s voltage and current values. In stationary 

operation, deviations in the electrical power are used to 

evaluate the optimum stabilizing signal in terms of the 

amplitude and phase relationship by means of a lead/lag 

filter. 
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Currently, power stations employ conventional PSSs with 

lead-lag structure. Over the last two decades, various PSS 

parameters’ tuning schemes have been developed and 

applied to solve the problem of electromechanical modes 

damping. Modern control techniques have been proposed to 

coordinate the stabilizers [1-8]. 

The PSS parameters’ tuning has been approached by two 

major strategies, sequential tuning and simultaneous tuning. 

In order to obtain the set of optimal PSS parameters under 

various operating conditions, the tuning and testing of PSS 

parameters must be repeated under various operating 

conditions. Therefore, if the sequential tuning method is 

applied to tune the PSS parameters, the parameters tuning 

will become more intricate. On the other hand, in the case 

that the simultaneous tuning method is employed to tune the 

PSS parameters, which can simultaneously relocate and 

coordinate the eigenvalues for various oscillating modes 

under different operating conditions, the long computation 

time could be a drawback in large power systems. 

The adaptive PSS concept may be categorized into two 

research approaches: direct and passive. Direct tuning refers 

to adaptively changing PSS parameters online and thus 

achieving higher controllability of inter-area oscillations [9]. 

In contrary, passive design focuses on optimizing the 

observability of the PSS by adaptively varying the strength 

of the input signals. Although both approaches can enhance 

the stability of inter-area mode, passive designs have not 

been widely explored. The motivation of this paper is to 

investigate the possibility of updating on-line the PSS gains 

to enhance the damping of inter-area oscillations. This is to 

ensure that minimal modifications are done to the existing 

infrastructure. The objective is to adaptively adjust the gains 

in accordance to the present grid operating condition. This is 

achieved by a strategy to update conventional PSSs 

currently operating in power systems that were tuned time 

ago. The main idea is to re-tune basically the PSS’s gains 

through an on-line procedure, which involve a few 

measurements. After that, the same stabilizers may continue 

working properly under different operating conditions and 

topologies. Results show that this idea works adequately, 

independently of the studied power system. 

 

II. MODELING 

A. Power system model 

In this paper, two power systems available in the open 

research are employed in order to exemplify the proposition. 

The development of systematic methodologies for PSS 

tuning is a problem that requires special attention. Once it is 

determined that a system requires effective damping, 

especially for the electromechanical modes, the fundamental 

problem is to find the best control parameters (static or 
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dynamic). The deficiency of damping can be solved by 

means of power systems stabilizers. However, it is 

necessary to apply a coordination algorithm. In this paper, 

an on-line strategy is applied to re-tune PSSs in order to 

adapt them to new conditions. 

The fourth order dynamic model is utilized for generators 

including a static excitation system [10]. The set of 

equations for each generator becomes: 

 ���� = � − �	                                                                          (1) ���� = 1� (�� − �� − ��)                                                    (2) ���′�� = 1��	′ �−��′ + ��� − ��′ ����                                        (3) 

���′�� = 1��	′
���� − ��′ − ��� − ��′ ����                               (4) 

������ = 1� �−��� + ! �"#�� − "$ + "%��                         (5) 

 

where � (rad) and � (rad/s) represent the rotor angular 

position and angular velocity; ��′  (pu) and ��′  (pu) are the 

internal transient voltages of the synchronous generator; ���  

(pu) is the excitation voltage; �� (pu) and �� (pu) are the d- 

and q-axis currents; ��	′  (s) and ��	′  (s) are the d- and q-

open-circuit transient time constants; ��′  (pu) and ��′  (pu) are 

the d- and q- transient reactances; �� (pu) and �� (pu) are 

the d- and q- synchronous reactances; �� (pu) and �� (pu) 

are the mechanical and electromagnetic nominal torque; � 

is the inertia constant; � is the damping factor; !  and �  (s) 

are the system excitation gain and time constant; "#�� is the 

voltage reference; "$ is the terminal voltage magnitude; "% is 

the PSS’s output signal. 

B. PSS model 

The interaction between stabilizers may increase or 

decrease the damping of certain oscillating rotor modes. To 

have a better performance, a proper coordination of all 

control devices used in the network is required, while also 

ensuring the robustness under different operating conditions. 

A typical static excitation system has "% as input, (5), 

which is the PSS’s output. The structure of a conventional 

PSS connected to the k-th machine consists of a gain, a 

washout unit, units of phase compensation, and an output 

limiter, Fig. 1. The washout unit is used to prevent state 

changes of the input signal by changing the terminal 

voltage. In this paper, both parameters, the gain ' and the 

time constant �, are updated on-line to attain a proper 

performance under different operating conditions, without 

restructuring this control in a power station. In order to 

illustrate the procedure, it is assumed the use of the angular 

velocity deviation, (�) , as the PSS’s input, Fig. 1. 

 
 

 
 
Fig. 1. PSS block diagram. 

To simplify the procedure, it is assumed that �+ = �, and �- = �.. These parameters remain in their original values. 

Of course, these ones could be updated too. 

 

III. PROPOSITION 

The major advantages of the artificial neural networks 

(ANNs) are the controller’s design simplicity, and their 

compromise between the complexity of a conventional 

nonlinear controller and its performance. The B-spline 

neural networks (B-SNNs) are a particular case of neural 

networks that allow to control and model systems 

adaptively, with the option of carrying out such tasks on-

line, and taking into account the power grid non-linearities. 

A B-spline function is a piecewise polynomial mapping, 

which is formed from a linear combination of basis 

functions, and the multivariate basis functions are defined 

on a lattice [11]. 

Through B-SNN there is the possibility to bound the input 

space by the basis functions definition. Generally, only a 

fixed number of basis functions participate in the network’s 

output. Therefore, not all the weights have to be calculated 

each sample time, thus reducing the computational effort 

and time. 

The B-SNN’s output can be described by [11], 

 / = 012                                                                                  (6) 

 

w [ ]Tpwww K21= ,              a [ ]Tpaaa K21=  

 

where 4) and 5) are the i-th weight and the i-th B-SNN 

basis function output, respectively; p  is the number of 

weighting factors. 

In this paper it is proposed that ' and � be updated 

through one B-spline neural network, respectively, Fig. 1. 

The angular velocity deviation from its nominal value, ey, is 

the input signal to adapt the gain '. While the generator’s 

active power deviation from its nominal capacity, ez, is the 

input signal to adapt the time constant �. Such election is 

made based on the close relationship between active power 

and velocity respect to the damping, (2). Then the network 

can be described as follows: 

 ' = 66)�78, 4)�                                                                    (7) 
 � = 66)(7:, 4))                                                                     (8) 

 

where ��i denotes the B-spline network which is used to 

update ' and �; wi is the corresponding weighting factor; � = 1,2, …pss number. Fig. 2 depicts a scheme of the 

proposed B-spline neural network. It is noteworthy that this 

block will substitute the wash-out block in Fig. 1, in order to 

introduce an adaptive strategy. 

 

 
 

Fig. 2. B-SNN to update the PSS gains. 
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The appropriate design requires the following a-priori 

information: the bounded values of ey and ez, the size, shape, 

and overlap definition of the basis function. Such 

information allows to bound the B-SNN input and to 

enhance the convergence and stability of the instantaneous 

adaptive rule [11]. Likewise, with this information the B-

SNN estimates the optimal weights’ value. The neural 

networks controllers, (7)-(8), are created by univariate basis 

functions of order 3, considering that both ey and ez are 

bounded within [-1.0, 1.0] pu. 

A. Learning 

Learning in ANN is usually achieved by minimizing the 

network’s error, which is a measure of its performance, and 

is defined as the difference between the actual output vector 

of the network and the desired one. 

On-line learning of continuous functions, mostly via 

gradient based methods on a differentiable error measure is 

one of the most powerful and commonly used approaches to 

train large layered networks in general [12], and for non-

stationary tasks in particular. 

In this application, the parameters’ quick updating is 

looked for. While conventional adaptive techniques are 

suitable to represent objects with slowly changing 

parameters, they can hardly handle complex systems with 

multiple operating modes. The instantaneous training rules 

provide an alternative so that the weights are continually 

updated and reach the convergence to the optimal values. 

Also, conventional nets sometimes do not converge, or their 

training takes too much time [12-14]. 

In this paper, the ANN is trained on-line using the 

following error-correction instantaneous learning rule [11], 
 

4)(�) = 4)(� − 1) + =7)(�)>0(�)>-- 5)(�)                                  (9) 

 

whereη is the learning rate and 7)(�) is the instantaneous 

output error. 

Respect to the learning rate, it takes as initial value one 

point within the interval [0, 2] due to stability purposes [11]. 

This value is adjusted by trial-and-error. If η is set close to 

0, the training becomes slow. On the contrary, if this value 

is large, oscillations may occur. In this application, it settles 

down in 0.0057 for ', and 0.00136 for �. 

It is proposed that during the actualization procedure, a 

dead band is included to improve the learning rule 

convergence. The weighting factors are not updated if the 

error has a value below 5%, 

 

4)(�) = @4)(� − 1) + =7)(�)>a(�)>-- 5)(�), if|7)| > 0.03
4)(� − 1),                              otherwise

F    (10) 

 

This learning rule has been elected as an alternative to 

those that use, for instance, Newton’s algorithms for 

updating the weights [13-14] that require Hessian and 

Jacobian matrix evaluation. (9) has been obtained through 

the minimization of the output’s mean square error, using 

descendent gradient rules. That is the reason because it is 

said that the weights converge to optimal values [11]. 

Thus, the proposition consists fundamentally on 

establishing its structure (the definition of the basis 

functions) and the value of the learning rate. Regarding the 

weights’ updating, (9) should be applied for each input-

output pair in each sample time; the updating occurs if the 

error is different from zero. Respect to the learning rate, it 

takes as initial point one value inside the interval [0, 2] due 

to stability purposes [11]. This value is adjusted through 

trial-and-error; with a value close to zero the training 

becomes slow. Hence, the B-SNN training process is carry 

out continuously on-line, while the weights’ value are 

updated using only two feedback variables. 

 

IV. TEST RESULTS AND ANALYSIS 

In order to demonstrate that this proposition has 

feasibility, two multimachine power systems of the open 

research are employed. The proposed tuning performance is 

exhibited. To analyze the results, simulations are developed 

under different scenarios: (i) with PSS tuned by 

optimization [15] (static parameters), FXPSS; (ii) with PSS 

tuned by B-SNN (dynamic parameters), ANNPSS. Several 

operating conditions are taken into account. 

A. Case 1 

In this section the 39-bus, 10-generator test system is 

analyzed [16]. To examine the results four conditions are 

presented. Comparisons are made with the response 

obtained using a PSS with fixed parameters, Fig. 3-6; the 

PSSs data is summarized in the Appendix. 

The first condition shows the system’s evolution when it 

is subjected to a three-phase fault at bus-38 with duration of 

95-ms; after that time the fault is cleared. Fig. 3 displays the 

evolution of the speed deviation in generator 2. Quite 

similar results are exhibited. 

 

 
 

Fig. 3. Angular velocity in generator-2, condition 1. 
 

The second condition illustrates the system evolution 

under a three-phase fault in bus-31, lasting for 85ms; after 

that, the fault is cleared without reconfiguration. Fig. 4 

shows that the dynamic behavior of the proposed scheme is 

better than that of the conventional PSS with fixed 

parameters. 

The third case validates the appropriate system evolution 

under a three-phase fault at bus-28, lasting for 85-ms; after 

that time, the fault is cleared by tripping line 26-28. The 

performance of the tuning technique is in accordance with 

conditions 1 and 2. The ANNPSS exhibits very well 

performance adapting itself to the new conditions, Fig. 5. 
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Fig. 4. Reactive power in generator-4, condition 2. 

 

 
Fig. 5. Angular difference δ5-1 considering machine 1 as reference, 

condition 3. 

 

The following condition displays the system evolution 

when the generator’s active power is increased 9 percent, 

while the loads are increased 9 percent. After that, � = 10 s, 

the system experiences a three-phase fault in bus-24, cleared 

without reconfiguration. The response of the neural 

controller has better transient response. 

Fig. 6 presents the excitation voltage behavior in 

generator 10. It is noticed that the transient and steady state 

response exhibit differences between both controllers. The 

variation can be understood considering (5), where the PSS 

signal is injected. Thereby, they can increase or decrease the 

oscillations and steady state error, depending on their 

parameters. Furthermore, the dynamic and static excitation 

voltage behavior has other implication into the system’s 

variables, such as the terminal voltage. If the PSS 

parameters are inappropriate, the controller can cause 

degradation in the generators voltage magnitude and, 

possibly a decrease in the network nodal voltages. At 

generator 3 the pre-contingency voltage magnitude 1.0046 

pu. After the perturbation, its value is 0.9753 pu with 

ANNPSS, and 0.9382 pu with FXPSS, which implies a 

difference of 2.91% and 6.6%, respectively, Fig. 7. 

To quantify the difference between two signals, we use 

the following measure, 

 

GH = IJ �KLMM − K�)N�-��1O$P
$P                                        (11) 

 

where G is the index; Q = 1,2,3, … variable number; � is the 

analysis time. KLMM is a signal obtained by the proposed 

procedure. K�)N  is the same signal, achieved by the 

conventional PSS with fixed parameters. 

This expression is employed to calculate a quantitative 

index to indicate the disparity between both signals. If there 

is no variation between the signals mj becomes zero, while 

the signals are more different this index is bigger. Table I 

presents the bigger index in the previous conditions. 

 

 
Fig. 6. Excitation voltage in generator 10, condition 4. 
 

 
Fig. 7. Voltage magnitude at bus-3, condition 4. 

 
TABLE I 

COMPARATIVE INDEX, FIRST CASE 

 Cond 1 Cond 2 Cond 3 Cond 4 

Variable �- R. �S_+ ���_+	 

Index 0.0013 0.6575 0.2171 1.8615 

 

B. Second case 

The system under test is the New England power system 

consisting in 16-generators and 68-buses [17]. The proposed 

strategy allows achieving a satisfactory coordination among 

the PSSs installed in generators 1-12, and 14-16. The 

reference generator is that in bus 13 (generator 13), Fig. 8. 

Four conditions are evaluated: 

(i) Three-phase fault at bus-34 without reconfiguration. 

(ii) In � = 0.9 s a three-phase fault at bus-29 is simulated 

lasting for 85ms. Then, in � = 8 s, a three-phase fault at bus-

60 is applied. 90 s after the fault is cleared. 

(iii) In � = 0.9 s a three-phase fault at bus-46 is simulated 

lasting for 86 ms, followed by tripping line 46-49. 

(iv) In � = 0.9 s the generator’s active power, excluding 

generator-13, which is the slack bus, is increased 12 percent, 

while the loads are increased 12 percent, both reactive and 

active power. Then, in � = 8 s, the system experiences a 

three-phase fault at bus-43. 

Figs. 9-12 depict the system behavior, where satisfactory 

coordinated performance can be appreciated. Fig. 9 presents 

the active power evolution in generator-1 under condition 1. 

The PSSs data is given in the Appendix. 

Fig. 10 shows that using the proposed updating, the 

power system exhibits softer transient, in comparison to the 

use of conventional PSSs. The ANNPSS has the ability to be 

updated to a new operating condition, improving the system 

performance. Fig. 11 exhibits the neural network 

performance to update the stabilizers parameters, it 

illustrates the updating procedure. Remaining signals have 

similar behavior under each contingency. 
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Fig. 8. 16-generators and 68-buses power system. 

 

 
Fig. 9. Active power in generator-1, Case 2, condition 1. 

 

As shown in Fig’s. 9-12 the adaptive controller 

parameters performance can decrease the oscillations 

amplitude and transient time under different operating 

conditions, respect to the behavior with fixed control 

parameters. Fig. 12 depicts the angular difference of 

generator 5 respect to the slack. It is noteworthy that under a 

load increment, the neural controller response is slower than 

its counterpart with fixed parameters. However, under a 

three-phase fault at bus-43 the adaptive parameters allow the 

controller to exhibit quite well performance, while the 

FXPSS exhibits longer oscillations. Table II present the 

bigger index, (11), on the previous conditions. This example 

is clear for concluding that the tuning scheme has better 

performance for some operation conditions, thus 

guarantying the satisfactory electric net operation under 

different conditions. 

Table III illustrates the steady-state parameters reached 

by the neural network, showing that they are updated under 

different operating conditions. Thus, depending on the 

power system topology, these parameters modify their 

value. 
 

TABLE II 

BIGGER INDEXES, SECOND CASE 

 Cond 1 Cond 2 Cond 3 Cond 4 

Variable �+ �. �+	_+, �S_+, 

Index 1.0218 0.0045 0.5260 1.1474 

 
Fig. 10. Angular velocity of generator-4, Case 2, condition 2. 

 

 
Fig. 11. Time constants evolution in generator 11 and 13, Case 2, condition 

3. 

 

 
Fig. 12. Angular difference of generator 5 considering machine-13 as 

reference, Case 2, condition 4. 
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TABLEIII 

PSS ADAPTIVE PARAMETERS IN STEADY STATE 

Parameters Cond 1 

After 

fault 34-

bus 

Cond 2 Cond 3 

After 

fault 46-

bus 

Cond 4 

After 

fault 43 

bus 

After 

fault 29-

bus 

After 

fault 60-

bus 

' 

495.3486 

35.6189 

261.6139 

288.2834 

304.0524 

536.2815 

764.5362 

211.1964 

381.5372 

103.2673 

627.5677 

103.9179 

441.0833 

847.9418 

351.9842 

611.0226 

282.7528 

848.2500 

685.0289 

304.0524 

73.1612 

208.8702 

410.1681 

717.9996 

314.3699 

141.3750 

819.0843 

717.9229 

847.9418 

351.9842 

610.9814 

679.3898 

95.1925 

684.9578 

474.2157 

73.1398 

208.7903 

410.1218 

717.9635 

723.6045 

118.1730 

727.9283 

717.9072 

847.9418 

351.9842 

621.5071 

282.7528 

848.2500 

288.2834 

304.0524 

282.7981 

764.5362 

763.1140 

381.5372 

89.2947 

373.8036 

819.0843 

844.0823 

847.9418 

351.9842 

155.8997 

226.0278 

353.2842 

172.9600 

633.3205 

146.1670 

169.5348 

763.1140 

170.8420 

326.8654 

233.4197 

692.6240 

322.7501 

138.6969 

678.7408 

� 

7.4996 

7.4998 

7.5003 

7.5020 

7.5015 

7.5024 

7.5018 

7.5010 

7.5020 

7.5001 

7.4994 

7.4966 

7.5015 

7.5035 

7.5071 

7.5000 

7.4998 

7.5018 

7.4995 

7.4999 

7.5001 

7.4998 

7.5001 

7.5004 

7.4999 

7.4986 

7.5003 

7.5060 

7.5061 

7.5058 

7.5005 

7.5020 

7.5034 

7.4996 

7.4997 

7.5011 

7.5004 

7.5012 

7.5005 

7.5003 

7.5009 

7.5027 

7.5178 

7.5143 

7.5113 

7.5017 

7.4991 

7.4982 

7.4977 

7.4982 

7.4987 

7.4991 

7.4989 

7.4977 

7.5020 

7.5001 

7.5006 

7.5229 

7.5281 

7.5261 

7.4737 

7.4787 

7.4759 

7.4791 

7.4963 

7.4741 

7.4835 

7.4965 

7.4714 

7.4800 

7.4738 

7.4487 

6.9568 

6.9883 

7.0893 �+ = �, 0.08 0.08 0.08 0.08 �- = �. 0.015 0.015 0.015 0.015 

 

V. CONCLUSION 

The aim of the paper is to show the performance of 

adaptive PSSs parameters as a mean to enhance power 

system oscillations. In order to attain such purposes a B-

spline Neural Network-based is proposed. With this neural 

adaptive scheme, the possibility to implement the on-line 

updating parameters is potential due to it has learning ability 

and adaptability, robustness, simple algorithm and fast 

calculations, and not exclusive but inclusive, nature to get 

better solution under hardware’s constraints. This is 

desirable for practical hardware implementation in power 

stations. 

Unlike the conventional technique, the B-spline NN 

exhibits an adaptive behavior since the weights can be 

adapted on-line responding to inputs and error values as they 

arise. Also, it can take into account nonlinearities, un-

modeled dynamics, and un-measurable noise. Simulations 

on two multi-machine power systems under different 

disturbances and operating conditions, demonstrate the 

effectiveness and robustness of the proposed strategy. 

APPENDIX 

PSS data 39-bus, 10-generator test system: ' = [435; 197; 593; 202; 212; 197; 535; 534; 267; 220]; � = 7.5; �+ = �, = 0.080; �- = �. = 0.0150, the time 

constants have the same value for all machines. 

PSS data 68-bus, 16-generator test system: 

' = [372; 169; 508; 172; 182; 169; 458; 457; 228; 188; 85;  491; 506; 508; 211]; � = 7.5; �+ = �, = 0.080; �- = �. = 0.0150, the time constants have the same value 

for all machines. 
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