

Abstract—How to attract students’ interests in order to

increase the rate of their enrollment in studying computer

science/engineering is an important topic. An introductory

programming course is the most direct and sensitive interface

where students are able to explore the interests and research

potential in this field. Therefore, it is important to develop

appropriate teaching strategies to avoid making this course

tedious. Serious games are widely recognized as an attractive

approach for training and education recently. In this paper, we

present SoccerCode, a serious game-based system for teaching

introductory programming courses in computer science. The

inspiration of the project, the basic architecture and

functionalities are introduced in the paper. Future work

includes technical improvement such as migrating to web-based

system and implementing it systematically in CS introductory

courses.

Index Terms—educational game, serious game, robot soccer,

introductory programming, agent-based modeling.

I. INTRODUCTION

N Computer Science education, an important question is

how to attract new students and motivate their effort in

further study on this discipline. According to a report

published on May 2011(and conducted in 2010) [7], although

the overall declarations and productions of CS/CE bachelor

degrees in U.S universities increased from that in 2009, they

still keep in a level of having greatly dropped down compared

to the data from 1997 to 2004. One critical cause of this

reduction is that as a discipline, computer science/engineering

nowadays has been focusing more on solving practical

matters rather than exploring the traditional excitement of

attempting to mimic/magnify intelligence through computers.

As a result, computer science has become less and less

attractive to newly enrolled college students, comparing to

disciplines such as biology or chemistry which keeps

challenging great questions in nature, science and

human---ourselves. Therefore, to encourage students to enroll

in this field, more efficient educating strategies are necessary.

Traditionally, universities tend to give an introductory

programming course as one of the first several courses for

students who are interested in CS/CE major. This kinds of

courses aim at giving students an overview of computer

Manuscript received July ,26, 2011; revised August 13, 2011; revised

August 16, 2011

M. Wang is currently a Phd student in Department of Computer Science,

Georgia State University, Suit 1407, 34 Peachtree Rd, Atlanta, GA ,30303,

emali: csloader@gmail.com

X. Hu is an associate professor in Department of Computer Science,

Georgia State University, 34 Peachtree Rd, Atlanta, GA ,30303 email:

xhu@cs.gsu.edu

science including programming language, algorithm and data

structure [4], and is the most direct and sensitive interface

for new students to understand the research challenges in

CS/CE. Therefore, it is important to avoid making the

introductory course tedious; the strategy must be attractive

enough to let new students realize the numerous possibilities

of CS/CE discipline but at the same time maintains the

integrity and rigorousness of all the necessary traditional

components.

The popularity of video games provides appropriate

pathways to develop new teaching approach. In fact, games in

education have recently been widely accepted to be effective

for motivating students’ interests. In their research,

Leutenegger and Edgington has investigated the approach to

introduce game developing in introductory programming

course for attracting and lagging students interests.[6].

Similar approach has been applied to Lorenzen and Becker’s

researches [9]. In another research, Ranum [2] and his

cooperators introduced several successful approaches to

teach multi-media manipulation in python as introductory

programming course. All the attempts listed above have

improved the attraction of the courses comparing to

traditional teaching strategies.

While most of existing teaching programs focus on the

programming aspect of the course such as game developing

using certain language, alternative approaches which jump

out of the traditional reorganization, that is, teaching

programming language means teaching student to design and

develop software using that language, and backtrack to the

original critical question in computer science itself, that how

to mimic/magnify human intelligence/behavior through

machine, will probably attract more attentions from students

and expand their research interests.

An environment that compiles students’ code written in

specified programming language or predefined framework to

automaton and visualizing the automaton in user-welcome

interface can be applied for the purpose described above. By

providing simple programming interfaces that users can

define logics for autonomous entity and present the behaviors

corresponding to the defined logics under a game context,

students can get immediate satisfaction as playing general

games. On the other hand, while designing and implementing

automatons, the students won’t miss any traditional

components including data-flow, data structure, simple

algorithm, problem abstracting and basic knowledge of

programming language itself in the course. Such system aims

at increasing users’ programming skill, help them understand

data structure/algorithm, extend their interests in exploring

the basic problem sets of computer sciences.

 Existing work of systems in this category focused

SoccerCode: A Game System for Introductory

Programming Courses in Computer Science

Minghao Wang , Xiaolin Hu

I

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

heavily on theoretical and formal environment for A.I design

and programming language. In RoboCode [10], developers

created a tank-war game environment with a java compiler to

compile users’ codes as intelligences for tanks in a 2-D virtual

battlefield. The rule is simple, the tanks with their logics

defined by user fight with each other and the finally survived

one (or team) wins the game. The project is used

world-widely as an industrial level java language learning tool

in professional trainings for new employee by many IT

companies. Alternatively, it also owns large number of fans

among academic researchers who are interested in A.I field.

They even hold global tournament for competing and

evaluating new A.I theories using this platform. On the other

hand, BZRobots [11] is a project which has the similar

concept with RoboCode but has a 3D graphic simulator. In the

field of robot soccer, the organizers of Robot Soccer Cup also

provide a simulation environment for the competitions that

can run without a hardware robot [12]. This software

simulated the environment and equipments as a real robot

soccer matches while the design of internal logic that how to

move, turn or kick for each robot is left for user. This project

is academic and rigorous in a sense of researching rather than

education. With formal programming language constraints

and complex simulator, almost all of these systems are

definitely designed for professionals with fairly enough

programming experiences and advanced knowledge of A.I

algorithm. And the mental model of these systems does not fit

the mental model of novice students who are more likely to be

attracted by interesting and competitive tasks.

On the other hand, pure education oriented systems exist as

well. For example, the project Institute for Personal Robots In

Education (IPRE)[8] has shown great advances in attracting

students interests by providing them an environment that they

can define the robot’s behaviors and interactions with

environment using java programming in CS1 courses.

Comparing to the robot soccer match or virtual battlefield, a

single robot is much easier for student to try ad play with.

Such real-time system is intuitive and attractive enough for

new students to deliver their interests, and is very preferable

for the universities that are able to afford the hardware

financially.

Inspired from the previous work mentioned above, in this

paper, we present SoccerCode, an agent-based, competitive

soccer game system designed for novice students who

majored or have intentions in studying computer

science/engineering. The reason of introducing the form of

soccer game in our project is that as a game, it is interactive

and interesting. As mentioned, for an educational system used

in CS1 courses, attracting learner’s interests and motivating

their interactions with each other is critical. A strict and

complex system requires convincible skills could be

interactive but may fail to stimulate the learner’s interests. On

the other hand, a stand-along modeling intensive approach

could be interesting but may lack the components of games

such as competitions and interactions because the learner

won’t recognize the strength of their work or gain enough

satisfactions. Based on agent-based modeling theory,

SoccerCode provides an interactive but straightforward game

environment that users can define the intelligence for virtual

soccer players. The team who makes more goals on opponent

wins at the end of the game. The system provides flexible

mechanism and various JAVA based control APIs to simplify

the procedure of designing behaviors of autonomous agents

and initializes a virtual robot soccer test bed for learners to

examine wellness of their design by conducting match with

each other. Furthermore, aiming at providing an integrated

educational tool, our system has includes an evaluating

subsystem that enable batch simulations to evaluate the

strength of a student design. The basic idea is to hold matches

between teams designed by students and one that designed by

the teacher, the performance of student’s team will be

evaluated through certain criteria such as number of goals and

loss. By providing such features, this system can be simple

enough but keeps possibility for deeper exploration, where

the progress of students can be evaluated by the teachers

easily as well. The rest of this paper will be organized as

follows. In section 2, the theoretical reference we used for this

project is presented. We demonstrate the abstract

specification of the system in section 3. In section 4 we show

detailed functionality and use cases while section 5 provides

an example of using the system for educational purpose. We

conclude the current work and propose potential trends of

future development of our project in section 6.

II. SYSTEM OVERVIEW

An agent, defined in the area of computer science, is an

autonomous entity with its own decision-making mechanism

and knowledge-base depends on which it performs

accordingly behaviors, interacts with outer world and

retrieves feedbacks. In our system, the context is a 2D ground

with two virtual teams on it. Each soccer agent is an agent

with capability to perceive environment, memorize states and

perform particular actions; it has properties such as position in

the 2D ground, speed of moving, direction it heads to and

various user-defined properties to memorize the states of the

environment. It also provides a programming interface for

defining the internal logic of each agent on the ground. After

the logics are defined, users can watch the match by running a

simulation in the graphic simulator to see performance of their

coded logics. There are three types of matches provided by

the system, 1v1, 2v2, or 3v3, with respectively 1, 2, 3 soccer

agents on each side. The lesser agents on the ground, the

easier logic of each of them is required to perform reasonably

because multiple agents require higher complexity of

cooperation and strategy. Whenever users finish designing

their teams, they can save their team to local disk as an xml

file. By loading saved teams to the ground, a match can be

hold between two users to compare the strength of their A.I

design. We also provide a pre-designed standard team for

each of the 3 game categories; this team is used to evaluate

users’ designs. The evaluation is done by loading users’ teams

and putting them onto the virtual ground against the standard

teams. The results (goals and goals conceded the users’ teams

get) are the bases of the final evaluation of the team design.

This process of evaluations won’t be shown in the 2d graphic

simulator as normal matches, but users can replay them and

investigate the problems by loading the log file of the

evaluations.

The provided system allows user to define properties such

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

as name, initial position of the agents in a user welcome

interface.Robot soccer players are driven by a set of behaviors

defined by users. Each behavior is composed by control code

that using APIs provided by the system. These APIs are

basically a set of functions which users can control the agent

by calling them in user’s code. They include various functions

such as measuring the distance between two objects (soccer

player/goal/ball), perceiving the position of objects,

memorization and performing actions such as moving and

kicking the ball. The APIs restrict the power of users’ codes

and are standard of actions that both teams are able to perform

to make the game fair and impartial.

 For the knowledge-base (which means the knowledge of

each agent about the environment, history and other agents)

part, we use a layered structure to organize the agents’

knowledge-base. The knowledge-base for each agent have

been categorized into three layers: The first layer is global,

which records the system information and is accessible by all

soccer agents of both two teams on the ground and cannot be

modified by user’s code. The second layer is team, which is

only accessible for members of each team. Private is the third

layer whose accessibility is limited within a single individual

agent. Using the latter two layers, users are able to program

their soccer agent to memorize the information, system status

or experience so as to develop clever and tactical soccer

agents. This architecture provides a hierarchical organization

of knowledge-base for each agent; furthermore, it follows the

concepts from domain of programming language to help

learners get a better understanding about the importance of

access control.

a. Programming Interface

b. Game Play Interface

Figure 2.1 Interfaces

Figure 2.1 presents the basic interface of the system. The

programming interface provides text editor that user can write

codes for the behaviors of each robot soccer. The editor

provides highlighting keywords and simple syntax check.

After the behaviors of the robot are defined, users can watch

the match in 2d graphic simulator shown in Figure 1b. The

example shows a 1 vs 1 match.

III. SYSTEM ARCHITECTURE

To demonstrate the system specification, it is important to

introduce the concept of behavior network. For decision

making of each agent, one major concept SoccerCode

adopted is behavior network architecture. Behavior Network

[1][3] architecture embodies the concept of behavior control,

one of the most important control paradigms for adaptive

autonomous agents. Within the behavior network of each

agent, the behaviors are treated as independent computational

models. Typically, a behavior has two modules of codes, one

is excitation and the other is action. The excitation module is

a module that returns threshold value representing that how a

behavior can be excited by external or internal state changes.

The action module is the actual action an agent will perform

after one behavior has been excited. In a single agent, if the

coefficients between behaviors are assigned to non-zero value,

these behaviors form a behavior network which defines how

they affect each other to carry out the final behavior to

perform. We use mutual inhibition/excitation mechanism for

the behavior network connections in our work. It defines

coefficients upon the network connections. For each

simulation step, the agent selects its behavior to perform as

follows,

a. Calculate basic activation for behavior j using

Activation(j)=Excitation(j)

b. Calculate affected activation for behavior j using

Activation(j)=Activation(j)+SUM(i ,

Activation(i)*Coefficient(i,j))

c. Select the behavior with highest activation

That is: only the behavior which has highest calculated

activation can be performed. This mechanism is

straightforward, flexible and skips complex logic flow control

as traditional approach. Also, by defining single behavior

instead of creating a behavior network, users can still turn

back to traditional ways to write procedure-based code for

their soccer agents.

 A. Formulization

We first specify the formulization of system model. We

denote uppercase initials as variable of a set while lowercase

initials as variable of atomic property.

The system of can be described as follows

S={Pr, A, O} (1)

Where Pr is a set of all the properties that available from

system, and holds that

Pr={P_api, P_env, P_rule} (2)

Formula (2) is interpreted as:

P_api={getPosition(), setDirection(), getDirection(),

kick(), move(),……..}

Where P_api os the set of APIs that available for user to set

up their agents’ model

P_env={v_friction, v_collision, v_mspeed..}

Where P_env is the set of physical attributes of the

environment such as Friction, Collision and Speed limit.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

P_rule={r_power, r_accuracy, r_anticipation..}

Where P_rule is the set of coefficient that determines the

randomness and uncertainty of such property the simulation

agents: Power, Accuracy, Anticipation..

Another element, A, in formula (1) is the set of the user

agent that need to be defined by the users. It contains two

subsets: A_team1 and A_team2, each of which represents the

collection of agents in the same team on the square:

A={A_team1, A_team2} (3)

A_team1=A_team2={Agent, team_knowlege_base} (4)

Where team_knowledge_base is the user specified

information only accessible to the agents in the same team

Agent={Agent1,Agent2,Agent3}

Agent1=Agent2=Agent3=

{position, speed, direction, individual_knowledge_base,

BehaviorModel} (5)

Where an agent’s individual_knowledge_base is its

knowledge about the environment that only accessible to itself

BehviorModel={BehaviorNetwork, procedure} (6)

procedure is a singleton behavior that the agent will always

perform which provides a different way from behavior

network for user to define the agents’ internal logic.

BehaviorNetwork={Behaviors, connection, coefficent} (7)

Where connection and coefficient defines how behavors

interact with each other.

Behaviors={Behavior1,Behavior2…..Behaviorn}

Behaviorn={action, excitation}

Where action and excitation defines how the behavior will

be activated and what action the agent will take when it

actives this behavior.

B. Data Flow.

 SoccerCode is a discrete time based system. In each time

step, the simulator thread executes the user defined code of

each agent and calculates its position, speed and direction. It

then updates the knowledge-base(User defined variables) if

specified in the defined code. The graphic engine will then

refresh the interface subsystem using the values updated. A

history record vector is also provided to store a log of the

match procedure and export necessary values to some

particular APIs such as getDistanceBetweenTwoEntities(),

etc.

 For each agent, the execution state transition differs

between behavior network mode and single procedure mode.

In behavior network mode, the agent behaves as follows: It

executes user defined code in the excitation subsystem of each

behavior to determine the initial excitation; it then calculates

the final exicitation value using behavior network and the

coefficiences within it; finally it selects the behavior which

has the highest excitation; and executes user defined action

code in the selected behavior model. The state transition of

behavior network agent can be shown as figure 3.1:

Figure 3.1

In single procedure mode, the agent simply executes the

action code in each step, which is similar to the traditional

way of A.I design. Shown as 3.2:

 Figure 3.2

C. System APIs.

One educational purpose of SoccerCode is to establish the

interests and motivation for learners to explore their

potentials on programming or computer science related topics.

To achieve this purpose, we export various system APIs with

functionalities of controlling agent motion, measuring the

environment perception or creating dynamic knowledge base

to users so they can easily design the logic. The APIs are

categorized into three area: Control APIs, Measurement APIs

and Memory APIs.

a. Control API

APIs in this category can be used to control the motion and

actions of the agent.

Typical instances include:

robotMove(direction, speed);

//move the agent who called this method towards some

direction with some speed

kick(direction, speed);

//kick the ball if the ball is near to the agent who called this

method to some direction with some speed

b. Measurement API

These set of APIs are rules and locators that are likely to be

used as the perception. Without these APIs, agent can hardly

observe the environment. Useful examples are:

getMyId();

 //return the identifying number of the agent who called

this method

getDirection();

//return the current of the agent who called this method

getDistanceBetween(int Object1, int Object2);

//return the distance between one object and another (either

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

goal, player or ball).

getSpeed(int Object);

//return the speed of an object.

c. Configuration API

The variable APIs can be used as to create agents memory

system which stores the information of the environments,

including all accessible states of other objects. This set of

APIs is useful if user intend to challenge a more complex A.I

design such as self-adaptive agents or reinforcement-learning

agents:

createVariable(name, type);

//create a variable with a name and type

setVariable(name, value);

 //set the value of a created variable

As an example of using these APIs, consider the situation

that we want the soccer agent kick the ball towards the

goal-line of the opposite team when the distance between the

ball and target goal-line is shorter than 100. The code of this

behavior should like follows:

If (getDistanceToOppsGoal()<100.0){

 If (ballOnFoot()){

 kick(getDirectionToOppsGoal(), MAX_SPEED);

}

}

Using these simple APIs, users can quickly get involved in

the design procedure and begin their lessons on control flow

and basic programming skill by themselves.

D. Environment

Another subsystem of SoccerCode is the environment

configuration subsystem. In this subsystem, the physical

features can be configured according to users’ requirement.

Currently, the configurable features include friction, which

will affect the motion of the ball object; collision, which

describes when two agents’ body are engaged, what effect

will be applied to their motions. On the other hand, to provide

variety and uncertainty of the match procedure, we introduce

noise parameters which are automatically applied to

corresponding APIs. For instance, the kick power determines

the uncertainty of power in the action “kick”, which means the

actual speed of the ball after it is being kicked is a random

value based on the power user sets in the action “kick”. The

kick accuracy has the similar effects but determine the

direction that user set to the “kick” action. This subsystem is

mainly responsible for making the match more realistic and

flexible.

E. Evaluation

As an educational tool, we integrated an evaluation

subsystem to evaluate the progress of students in learning

through the game. We defined a standard team that has basic

behavior for each of its member agent and a non-trivial

strategy; we then run matches in batch-executing mode using

the standard team and users’ team. The score will be

evaluated according to the average performance of user’s

team. All the evaluating procedure is saved so that the

matches can be replayed in the 2D ground if necessary

IV. FUNCTIONALITIES

SoccerCode aims at providing a friendly and interactive

interface for easy play. In this section, we briefly describe the

functionalities of the system.

A. Team Configuration

In SoccerCode, there are three match modes currently

available: 1vs1, 2vs2, 3vs3. The 1vs1 mode, which assigns

one single soccer agent to each team, is for beginners while

the later modes are involved with multi-agent and are more

complex. The match is held on a 2D ground. The 2D ground is

divided into two areas; a drag-drop ground panel is provided

for setting the position of agent players for each team. By

selecting an agent player, the behavior model of that agent

will be listed as well as the basic information of that

agent .Initially, all the agent is represented by the name

“Team”+team_side+player_id, and has an empty behavior

model. To create new internal logic of the agent, simply select

an agent and create a new behavior using the behavior

network editor. To define a new variable of the agent, you can

either use createVariable() API in your behavior

bnmodel or just create it manually in the team configuration

panel.

B. Behavior Network Editing

In the pop-up panel of behavior network editor, one can

create, delete, modify behavior/behavior network model of a

single agent. A semantic and symbol checking mechanism is

also provided in the coding area which gives users a report

about what semantic or symbolic error they have made when

their code is not able to get approved and compiled by the

system.

C. Environment Setting

To change the value of friction, collision or the random

coefficients, one can access the configuration panel , this

configuration is also available during simulation procedure

and will immediate affects the simulation.

D. File Management and Model Parsing

One requirement of the system is that when user finished

their designing procedure, they can save their model as a xml

file and load their saved models to the square so as to compete

with others’ or consistently improve their model in the future.

For this purpose, a model parser is provided to convert from a

team model to an xml file or from an xml file to a team model.

All internal logic, knowledge base and player information are

included in the file, i.e, a trained neuron network or

reinforcement learning data map in agent model is portable

and can be migrated to another platform without information

loss.

E. Simulation Control.

SoccerCode uses a 2-D graphic simulator as an engine to

simulate the match and present it in 640*480 animation

frames. During the simulation procedure, one can stop/pause

the match or restart/resume it at any time stamp. The

simulation stops and is then reset if there’s a goal in either side

on the square. The goal and scorer will be recorded and users

can then adjust their agent model, reconfigure their position

and restart the match.

Next section describes how to use these functions to

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

develop a simple 1 player team with the match mode 1v1.

V. DEMONSTRATIVE EXAMPLES

In this section, we give a demonstrative example of

developing a simple soccer agent in a 1 on 1 game to show the

functionalities of the system. In SoccerCode, to define a team

it always involved with several steps: First, choose a mode

from 1v1, 2v2 or 3v3. Note that each team model is not

compatible among three modes; second, for all agents in as

single team, either on the right or the left side of the square,

define their behavior control logic with the API system

provides. This can be done by either loading saved team files

from disk to each side or create new teams and programming

their logic in the interface provided; at last, users can store

their team as an xml file for competition purpose or future

improvements.

In our demonstrative examples, we design an agent without

behavior network, that is, simple procedure based agent for a

1vs1 match. We set up the game mode to 1 vs 1 mode, that is,

each team of the match will have only one agent.

We then create the behavior “Attack Forward Run” in the

behavior editor and use the APIs we supported to control the

action of the agent according to its observation.

Here we define the logic as follows; when the agent is not

close enough to the goal, it simply moves towards goal and at

the same time avoid players of other side and try to maintain

the ball around itself. If the agent is close enough to the goal,

then it stop maintaining the ball and simply kick it to the goal

with max speed.

Figure 5.1 Design the relationship between behaviors

By decomposition the single procedure we mentioned

above, a behavior network version of the example is shown as

follows; the conditions and its action are defined as single

behavior and connected with network. This will enforce the

behavior selection mechanism for decision making. This

mechanism is actually more flexible in a sense that it provides

more dynamic interactions among components of the

behavior controls.

Finishing designing procedure, one can adjust the position

within half of the square owned by the team or configure the

environment variables such as friction or randomizing

coefficients and switch to simulation panel to match.

VI. CONCLUSION

In this paper, we present SoccerCode, an agent based

soccer simulation game system that can help motivate

interests and intentions to participate of learners in computer

related area. A hierarchy of the system architecture is defined

and each system component is described in different levels,

either abstractly or practically. We have incorporated this

system as one of the tools for teaching Java programming in

the course CSC2310: Principles of Programming in Spring

2011 at Georgia State University. Students learned how to set

up a 1v1 robot soccer game and to program basic movements

of robots using the Java language taught in the class. They

showed strong interests in the tool and provided positive

feedbacks. We plan to incorporate this tool in future CSC

2310 courses and formally assess how effective the tool is in

helping students’ learning. Furthermore, to improve the

usability and interactivity of the motivation of this project we

described, we aim at distributing it to the web based platforms

for further improvement.

REFERENCES

[1] A. Marino, L. E. Parker, G. Antonelli, and F. Caccavale, “Behavioral

Control for Multi-Robot Perimeter Patrol: A Finite State Automata

Approach”, Proceedings of IEEE International Conference on

Robotics and Automation (ICRA), 2009

[2] D. Ranum,, B, Miller., J. Zelle,., M. Guzdial,. Successful Approaches

to Teaching Introductory Computer Science Courses with Python,

Special Session, SIGCSE’06, March 1-5, 2006, Houston, Texas, USA.

[3] F. Qiu, X. Hu, BehaviorSim: A Learning Environment for

Behavior-based Agent, Proc. The 10th International Conference on the

SIMULATION OF ADAPTIVE BEHAVIOR (SAB'08), 2008

[4] G. M. Schneider, “The introductory programming course in computer

science: ten principles”, ACM SIGCSE Bulletin - The papers of the

SIGCSE/CSA technical symposium on computer science education

Homepage Vol 10 Issue 1, February 1978

[5] K. Becker “Teaching with games: the minesweeper and asteroids

experience," J. Comput. Small Coll, 17(2), 23-33, 2001

[6] S. Leutenegger, J. Edgington, “A Games First Approach to Teaching

Introductory Programming” Proceedings of the 38th SIGCSE

technical symposium on Computer science education, vol 39, issue 1.

[7] S. Zweben Undergraduate CS Degree Production Rises; Doctoral

Production Steady, Computing Research News, 2011, vol 23 No 3

[8] T. Balch; L Summet and others, Designing Personal Robots for

Education: Hardware, Software, and Curriculum, Pervasive

Computing 2008, Vol 7, issue 2 , pp. 5–9.

[9] T. Lorenzen., W. Heilman,, “Cs1 and cs2: write computer games in

java! “ SIGCSE Bull., 2002 vol 34 issue 4 , pp. 99-100,

[10] The RoboCode Project, available : http://robocode.sourceforge.net

[11] The BZRobot Project, available: http://my.bzflag.org/w/Main_Page

[12] The RoboSoccerCup Simulator, available:

http://sourceforge.net/apps/mediawiki/sserver/index.php?title=Main_

Page

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

