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Abstract—This paper is devoted to the study of consensus
tracking problems for multi-agent systems with nonlinear
dynamics, in which dynamics of each follower consists of two
terms: one is given by an inherent nonlinear dynamics and
the other is a simple communication protocol relying only on
the position of its neighbors. The consensus reference is taken
as a virtual leader who gives only its position information
to only its neighbors. In this paper, the consensus tracking
problems are respectively considered under fixed undirected
and directed communication topologies. It is shown that the
consensus tracking can be achieved in finite time under only
the position measurements of the followers and the virtual
leader. Simulation examples are finally given to demonstrate
the effectiveness of the theoretical results.

Index Terms—Nonlinear inherent dynamics, Finite-time con-
sensus tracking, Multi-agent system, virtual leader.

I. INTRODUCTION

IN recent years, consensus problem of multi-agent systems
has attracted much attention among researchers in the

fields of biology, physics, computer science and control
engineering. This is partly due to its broad applications
in many areas such as formation control of unmanned air
vehicles, design of distributed sensors networks, cooperative
control of mobile robots, and so on(see, for example, the
survey paper [1] and references therein). For a cooperative
multi-agent system, consensus means that each agent updates
its state based on local information of its neighbors, such that
all agents reach an agreement on certain quantities of interest
by negotiating with their neighbors.

In the past few years, some theoretical results have been
established in [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
to name a few. In [2], Vicsek et al. proposed a discrete-time
model to simulate a group of autonomous agents moving in
the plane with the same speed but different headings. When
the network topology is a connected graph, Adbababie et al.
in [3] further studied the linear Vicsek model, and proved
that all agents can became a stable state. Lately, the research
of consensus problems for multi-agent systems was also
extended to the case of directed topology ([4], [5], [6], [7],
[8], [9], [10]). In recent literatures, a (virtual) leader-follower
approach has been widely used to the consensus problem
due to the fact that the state of virtual leader can represent
the state of common interest for all other agents. The
consensus with a (virtual) leader is usually called consensus
tracking which means to design a network distributed control
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policy such that all agents can track the (virtual) leader. In
[11], Cao et al. studied a consensus tracking of multi-agent
systems for single-integrator dynamics and double-integrator
dynamics under fixed and switching undirected topologies.
Our objective is to consider the consensus tracking problems
for multi-agent systems with nonlinear dynamics, in which
dynamics of each follower consists of two terms: one is
given by an inherent nonlinear dynamics and the other is a
simple communication protocol relying only on the position
of its neighbors. On the other hand, the communication
can be undirected or directed. Therefore, we consider the
consensus tracking problem under fixed undirected topology
and fixed directed topology. We show that the consensus
tracking can be achieved in finite time under only the position
measurements of the followers and the virtual leader.

This paper is organized as follows. Section II gives some
preliminaries on algebraic graph theory and formally state
of the consensus problem. In sections III and IV, consensus
tracking under fixed undirected and directed communication
topologies are investigated. In section V, some examples are
simulated to verify the theoretical analysis. Finally conclu-
sions and future research directions are given in section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first give a brief introduction to the
algebraic graph theory, and then state our problem.

A. Algebraic graph theory

The communication topology among agents is represented
by a graph G = (V, E ,A), with the set of nodes V =
{v1, ..., vn}, the set of edges E ⊆ V × V, and a weighted
adjacency matrixA = (aij)n×n. Here, each node vi in V cor-
responds to an agent i, and each edge (vi, vj) ∈ E in a
weighted directed graph corresponds to an information link
from agent j to agent i, which means that agent i can
receive information from agent j. In contrast, pairs of
nodes in weighted undirected graph are unordered, where an
edge (vj , vi) ∈ E denotes that agent i and j can receive infor-
mation from each other. The weighted adjacency matrix A of
a weighted directed graph is defined such that aii = 0 for
any vi ∈ V, aij > 0 if (vj , vi) ∈ E , and aij = 0 otherwise.
The weighted adjacency matrix A of a weighted undirected
graph is defined analogously except that aij = aji,∀i 6= j,
since (vi, vj) ∈ E implies (vj , vi) ∈ E . We can say vi is a
neighbor vertex of vj , if (vi, vj) ∈ E .

The Laplacian matrix L = (lij)n×n of graph G is defined
by lij = −aij for i 6= j, and lii =

∑n
j=1,j 6=i aij , i, j ∈

{1, ..., n}. For an undirected graph, L is symmetric positive
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semi-definite. However, L is not necessarily symmetric for a
directed graph.

For simplicity, we denote by In the n×n identity matrix,
and 0m×n the m× n zero matrix. Let 1n = [1, 1, . . . , 1]T ∈
Rn (1 for short, when there is no confusion). λmin(A) and
λmax(A) are the smallest and the largest eigenvalues of the
matrix A respectively.

Definition 1([7]): A directed path from node vi to vj

is a sequence of edges (vi, vj1), (vj1, vj2), ..., (vjl, vj) in a
directed graph G with distinct nodes vjk, k = 1, ..., l.

Definition 2([7]): The directed graph G is said to have a
directed spanning tree if there is a node (called root node)
that can reach all the other nodes following a directed path
in graph G.

Lemma 2.1: ([12]): A undirected graph G is connected if
and only if its Laplacian matrix L has a eigenvalue zero with
multiplicity 1 and corresponding eigenvector 1, and all other
eigenvalues have positive real parts.

Lemma 2.2: ([7]): A directed graph G has a directed
spanning tree if and only if its Laplacian matrix L has
a eigenvalue zero with multiplicity 1 and corresponding
eigenvector 1, and all other eigenvalues have positive real
parts.

Lemma 2.3: ([13]) Kronnecker product ⊗ has the follow-
ing properties: for matrices A,B, C and D with appropriate
dimensions,
(1) (A + B)⊗ C = A⊗ C + B ⊗ C;
(2) (A⊗B)(C ⊗D) = AC ⊗BD;
(3) (A⊗B)T = AT ⊗BT ;
(4) (ξA)⊗B = A⊗ (ξB),where ξ is a constant.

B. Problem statement

In this paper, we consider a multi-agent system that is
made up of one virtual leader (labeled as 0) and n agents
(labeled as agent 1 to n and called followers hereafter). Let
the graph G represent the communication topology of all
followers.

The dynamics of each follower i (i = 1, ..., n) is given by

ξ̇i(t) = f(t, ξi(t)) + ui (t) (1)

where ξi(t) ∈ Rm is the position vector, f(t, ξi(t)) ∈ Rm

is its inherent nonlinear dynamics, and ui(t) is the control
input.

The dynamics of the virtual leader 0 is given by

ξ̇0(t) = f(t, ξ0(t)), (2)

where ξ0(t) ∈ Rm and f(t, ξ0(t)) ∈ Rm are, respectively,
the position states and a nonlinear vector-valued continuous
function to describe the dynamics of virtual leader. Suppose
that f(t, ξ0(t)) 6= 0 i.e. the velocity of the virtual leader (2)
is time-varying.

The consensus tracking problem of the multi-agent system
is to design control inputs ui(t), i = {1, ..., n} such that

lim
t→∞

‖ξi(t)− ξ0(t)‖2 = 0 (3)

for any i and for any arbitrary initial position states.
We suppose that the virtual leader share the same nonlinear

inherent dynamics with all followers, and these nonlinear
inherent dynamics satisfy a Lipchitz-type condition given by
the Definition 3.

Definition 3 ∀ξ, ζ ∈ Rm;∀t ≥ 0, there exists a nonnega-
tive constant l such that

‖f(t, ξ)− f(t, ζ)‖2 ≤ l ‖ξ − ζ‖2 (4)

Here, Definition 3 is a Lipschitz-type condition, which is
satisfied in many well-known systems.

In what follows, the consensus tracking problem under
fixed undirected and fixed directed topologies are considered
in sections III and IV respectively.

III. CONSENSUS TRACKING UNDER FIXED UNDIRECTED
TOPOLOGY

In this section, we consider the fixed undirected topology
case. To satisfy the equation (3), we consider the following
control input (5) which has been used in [11] to solve
consensus problem for single-integrator dynamics case,

ui(t) =− α
n∑

j=0

aij(ξi(t)− ξj(t))

− βsgn(
n∑

j=0

aij(ξi(t)− ξj(t)))

(5)

where α is a nonnegative constant, β is a positive constant,
sgn(·) is the signum function, and aij , i, j = 1, ...n, is the
(i, j)th entry of the adjacency matrix A associated to G. Note
that ai0 > 0(i = 1, ..., n) if the virtual leader’s position is
avaulable to follower i, and ai0 = 0 otherwise.

Using (5), (1)can be rewritten as

ξ̇i(t) =f(t, ξi(t))− α
n∑

j=0

aij(ξi(t)− ξj(t))

− βsgn(
n∑

j=0

aij(ξi(t)− ξj(t)))

(6)

A. Main result

Let M = L+diag(a10, ..., an0), where L is the Laplacian
matrix of G.

Theorem 3.1: Suppose that the fixed undirected
graph G is connected and at least one ai0 > 0 .
If α > lλmax(M)

λ2
min

(M) , then the system (6) satis-
fies ‖ξi(t)− ξ0(t)‖2 = 0 in finite time.

Proof: Let ξ̃i(t) = ξi(t) − ξ0(t), i = {1, ..., n}. Form (2)
and (6),

˙̃
ξi(t) =− α

n∑

j=0

aij(ξ̃i(t)− ξ̃j(t))

− βsgn(
n∑

j=0

aij(ξ̃i(t)− ξ̃j(t)))

+ f(t, ξi(t))− f(t, ξ0(t)),

(7)

Let

ξ̃(t) = [ξ̃T
1 (t), ξ̃T

2 (t), ..., ξ̃T
n (t)]T ,

F (t, ξ̃(t)) = [(f(t, ξ1(t))− f(t, ξ0(t)))T , ..., (f(t, ξn(t))
− f(t, ξ0(t)))T ]T .

Rewrite (7) in the matrix form as
˙̃
ξ(t) =− α(M ⊗ Im)ξ̃(t)− βsgn((M ⊗ Im)ξ̃(t))

+ F (t, ξ̃(t)),
(8)
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where ⊗ stands for Kronecker product.
Because the fixed undirected graph G is connected and at

least one ai0 is positive, M is symmetric positive definite.
Consider the following Lyapunov function candidate

V (t) =
1
2
ξ̃T (t)(M ⊗ Im)ξ̃(t). (9)

Tracking the time derivative of V (t) along the trajectory
(8) yields

V̇ (t) =
1
2
ξ̃T (t)(M ⊗ Im) ˙̃

ξ(t) +
1
2

˙̃
ξT (t)(M ⊗ Im)ξ̃(t)

=
1
2
ξ̃T (t)(M ⊗ Im)[−α(M ⊗ Im)ξ̃(t)

− βsgn((M ⊗ Im)ξ̃(t)) + F (t, ξ̃(t))]

+
1
2
[−αξ̃T (t)(M ⊗ Im)− βsgn(ξ̃T (t)(M ⊗ Im))

+ FT (t, ξ̃(t))](M ⊗ Im)ξ̃(t)

≤− αξ̃T (t)(M ⊗ Im)2ξ̃(t)

− β
∥∥∥(M ⊗ Im)ξ̃(t)

∥∥∥
1

+ lλmax(M)
∥∥∥ξ̃(t)

∥∥∥
2

2

≤− αλ2
min

(M)
∥∥∥ξ̃(t)

∥∥∥
2

2
+ lλmax(M)

∥∥∥ξ̃(t)
∥∥∥

2

2

=− (α− lλmax(M)
λ2

min
(M)

)λ2
min

(M)
∥∥∥ξ̃(t)

∥∥∥
2

2
.

(10)

Note that if α > lλmax(M)
λ2

min
(M) , then V̇ (t) < 0.

Next, we prove that V (t) will decrease to zero in finite
time. From (10), when α > lλmax(M)

λ2
min

(M) , V̇ (t) will also satisfy
that

V̇ (t) ≤ −β
∥∥∥(M ⊗ Im)ξ̃(t)

∥∥∥
1

≤ −βλmin(M)
∥∥∥ξ̃(t)

∥∥∥
2

≤ −β

√
2λmin(M)

√
V (t)√

λmax(M)
.

(11)

From (11),
√

V (t) ≤
√

V (0)−
√

2
2

β
λmin(M)√
λmax(M)

t. (12)

Let
√

V (0)−
√

2
2 β λmin(M)√

λmax(M)
t∗ = 0, then

t∗ =

√
2ξ̃T (0)(M ⊗ Im)ξ̃(0)

√
λmax(M)

βλmin(M)
. (13)

Therefore, when t > t∗, we have V (t) = 0. The proof is
completed.

B. Determination of the control parameters
1) Determination of α: α is chosen such that it satisfies

the condition of Theorem 3.1. Indeed, the calculation of the
expression lλmax(M)

λ2
min

(M) can be used to select α.
2) Determination of β: β is chosen according to the

bound of time t∗, see (13). Indeed, first choosing the time
t∗, β can be determined using the following expression

β =

√
2ξ̃T (0)(M ⊗ Im)ξ̃(0)

√
λmax(M)

t∗λmin(M)
.

IV. CONSENSUS TRACKING UNDER DIRECTED FIXED
TOPOLOGY

In this section, we consider the consensus tracking for
multi-agent systems with nonlinear inherent dynamics under
fixed directed topology. We still consider the control input
(5).

Since the graph G is a fixed directed graph, generally
speaking, the matrix M may be asymmetric.

Let the graph G̃ represent the communication topology
of all the followers and the virtual leader. Assume that the
virtual leader has no information about its followers, and
has independent motion. It implies that if the fixed directed
graph G̃ contains a directed spanning tree, then the node
corresponding to the virtual leader 0 is the root node.

Lemma 4.1: Suppose the fixed directed graph G̃ contains
a directed spanning tree, then there exists a symmetric
positive definite matrix S such that the matrix SM+MT S is
also symmetric positive definite.

Proof: Consider the following Laplacian matrix of G̃,

L̃ =
[

M −a0

0T
n 0

]
, (14)

where a0 = [a10, ..., an0]
T

.

Since the fixed directed graph G̃ has a directed spanning
tree, by Lemma 2.2, L̃ has a simple eigenvalue zero with
an associated eigenvector 1, and all other eigenvalues have
positive real parts. Note from (14) that, each element in the
row n + 1 is zero, which implies that all eigenvalues of the
sub-matrix M are not zero. Moreover, note that each row sum
of the matrix L̃ is zero. Using the elementary transformation

to (14), we can find a matrix P =
[

In 1n

0T
n 1

]
, such that

PL̃P−1 =
[

M 0n

0T
n 0

]
. (15)

It implies that all eigenvalues of M are the eigenvalues
of L̃ . Hence all eigenvalues of M have positive real parts.
Using Theorem 1.2 in [14] , there exists a symmetric positive
definite matrix S such that SM + MT S is also symmetric
positive definite. The proof is completed.

A. Main result

Theorem 4.2: Suppose that the fixed directed graph G̃
contains a directed spanning tree. Using (5) for (1), if α >

2lλmax(S)
λmin(SM+MT S)

, then ‖ξi(t)− ξ0(t)‖2 = 0 in finite time.
Proof: Using the same operation as in the proof of

Theorem 3.1, we can still obtain the equation (8). Consider
the Lyapunov function candidate

V (t) = ξ̃T (t)(S ⊗ Im)ξ̃(t). (16)

Tracking the time derivative of V (t) along the trajectory of
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(8) gives

V̇ (t) =ξ̃T (t)(S ⊗ Im) ˙̃
ξ(t) + ˙̃

ξT (t)(S ⊗ Im)ξ̃(t)

=− αξ̃T (t)(S ⊗ Im)(M ⊗ Im)ξ̃(t)

− βξ̃T (t)(S ⊗ Im)sgn((M ⊗ Im)ξ̃(t))

+ ξ̃T (t)(S ⊗ Im)F (t, ξ̃(t))

− α[(M ⊗ Im)ξ̃(t)]T (S ⊗ Im)ξ̃(t)

− βsgn{[(M ⊗ Im)ξ̃(t)]T }(S ⊗ Im)ξ̃(t)

+ FT (t, ξ̃(t))(S ⊗ Im)ξ̃(t)

=− αξ̃T (t)[(SM + MT S)⊗ Im)]ξ̃(t)

− 2βξ̃T (t)(S ⊗ Im)sgn[(M ⊗ Im)ξ̃(t)]

+ 2ξ̃T (t)(S ⊗ Im)F (t, ξ̃(t))

≤− αλmin(SM + MT S)
∥∥∥ξ̃(t)

∥∥∥
2

2

+ 2lλmax(S)
∥∥∥ξ̃(t)

∥∥∥
2

2
− 2βλmin(S)

∥∥∥ξ̃(t)
∥∥∥

1

=− (α− 2lλmax(S)
λmin(SM + MT S)

)λmin(SM

+ MT S)
∥∥∥ξ̃(t)

∥∥∥
2

2
.

(17)

Note that when α > 2lλmax(S)
λmin(SM+MT S)

, V̇ (t) < 0 .
Next, we prove that V (t) will decrease to zero in finite

time. From (17), when α > 2lλmax(S)
λmin(SM+MT S)

, V̇ (t) will
satisfy that

V̇ (t) ≤ −2β
∥∥∥(S ⊗ Im)ξ̃(t)

∥∥∥
1

≤ −2βλmin(S)
∥∥∥ξ̃(t)

∥∥∥
2

≤ −2β
λmin(S)

√
V (t)√

λmax(S)
.

(18)

From (18),

√
V (t) ≤

√
V (0)− 2β

λmin(S)√
λmax(S)

t. (19)

Therefore, when

t > t∗ =

√
ξ̃T (0)(S ⊗ Im)ξ̃(0)

√
λmax(S)

2βλmin(S)
, (20)

we have V (t) = 0, where t∗ is given by (19). The proof is
completed.

B. Determination of the control parameters

1) Determination of α: Similar to the case in section III.B,
α is chosen such that it satisfies the condition of Theorem
4.2. Indeed, the calculation of the expression 2lλmax(S)

λmin(SM+MT S)
can be used to select α.

2) Determination of β: β is chosen according to the
bound of time t∗. Indeed, choosing the time t∗, β can be
determined using the following expression

β =

√
ξ̃T (0)(S ⊗ Im)ξ̃(0)

√
λmax(S)

2t∗λmin(S)
.

V. SIMULATIONS

Let us consider a multi-agent system consisting of one
virtual leader indexed by 0 and seven followers indexed by
1 to 7, respectively.

For simplicity, we consider that aij = 1 if agent i can
receive information from agent j, aij = 0 otherwise, i ∈
{1, ..., 7} and j ∈ {0, 1, ..., 7}.

A. Case of undirected fixed topology

1) Dynamics of agents: The communication topology is
given in Fig. 1. Suppose that the dynamics of the follower i
(i = 1, ..., 7) is described by the equation (21)

ξ̇i(t) = sin(ξi(t))− α
n∑

j=0

aij(ξi(t)− ξj(t))

− βsgn(
n∑

j=0

aij(ξi(t)− ξj(t))),

(21)

and their initial x positions and y positions are given by
ξx(0) = [ −3 −2.5 2 −1 2.5 −2 1 ] and ξy(0) =
[ 3 2 −1 −2 1.5 1 2 ] respectively.

The dynamics of the virtual leader 0 is given by

ξ̇0(t) = sin(ξ0(t)), (22)

and its initial and desired positions are given in Fig. 2.
In addition, there are obstacles between the initial position

and desired position of the virtual leader. It is necessary to
choose the trajectory of the virtual leader, so that it can reach
the desired position by avoiding obstacles ( Fig. 2). Here, the
trajectory function of virtual leader is chosen to be ξ0(t) =
[t + sin(t), sin( 1

3πt)]T .

2) Determination of α: The matrix M can be derived from
the topology given in Fig.1.

M =




3 −1 −1 0 0 0 0
−1 3 0 −1 −1 0 0
−1 0 3 0 0 −1 −1
0 −1 0 1 0 0 0
0 −1 0 0 1 0 0
0 0 −1 0 0 1 0
0 0 −1 0 0 0 1




.

Using Theorem 3.1, it is easy to obtain that when α >
lλmax(M)
λ2

min
(M) = 502.0042, the consensus tracking can be

achieved. Here we choose α = 510.
3) Determination of β: We aim to design the simulation

such that the consensus tracking can be achieved in at most
t∗ = 10 s. In order to do that, we have to choose β to be
bigger than 28.09, which can be calculated from (13). Let’s
take β = 29.

4) Simulation results: Fig.3 shows the trajectories of
the virtual leader and the followers. Figs. 4 and 5 show
the position tracking errors of x positions and y positions
respectively. It is easy to see from Figs. 3, 4 and 5 that the
consensus tracking can be achieved in about 0.4 seconds.
This value is remarkably less than the desired bound 10
seconds.
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Fig. 1. The fixed undirected topology of followers and virtual leader
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Fig. 2. Example scenario of obstacle avoidance for all agents
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Fig. 3. Trajectories of the virtual leader and the followers under (21) and
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Fig. 5. Position tracking errors of y positions under (21) and (22).

B. Case of undirected fixed topology

1) Dynamics of agents: The communication topology is
given in Fig. 6. Suppose the dynamics of each follower is
described by

ξ̇i(t) = sin(ξi(t) +
π

4
)− α

∑

j∈N̄i(t)

bij(ξi(t)− ξj(t))

− βsgn(
∑

j∈N̄i(t)

bij(ξi(t)− ξj(t))),
(23)

and their initial x positions and y positions are given by
ξx(0) = [ −2.5 −3 −2.8 −4 −2 −1 −3.5 ] and
ξy(0) = [ 0.5 −1.5 1 −0.5 1.5 2 0.8 ] respec-
tively.

The dynamics of the virtual leader is given by

ξ̇0(t) = sin(ξ0(t) +
π

4
) (24)

and its initial position is given in Fig. 7.
Our aim is that the virtual leader moves along an ellipse.

So the trajectories of the virtual leader is chosen to be
ξ0(t) = [−2cos(t), sin(t)]T .

2) Determination of α: Based on the Fig. 6, the matrix
M is obtained as follows

M =




2 0 −1 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 1 0 0 0 0
0 −1 0 1 0 0 0
0 −1 0 0 1 0 0
0 0 −1 0 0 1 0
0 0 −1 0 0 0 1




Let SM + MT S = In. Then we obtain

S =




0.7227 0.9454 1.6176 0.0714 0.0714 0.0357 0.0357
0.9454 2.0210 3.1134 0.2143 0.2143 0.1071 0.1071
1.6176 3.1134 5.8739 0.1429 0.1429 0.3214 0.3214
0.0714 0.2143 0.1429 0.5000 0 0 0
0.0714 0.2143 0.1429 0 0.5000 0 0
0.0357 0.1071 0.3214 0 0 0.5000 0
0.0357 0.1071 0.3214 0 0 0 0.5000




Using Theorem 4.1, α > 2lλmax(S)
λmin(SM+MT S)

= 16.2584.
Here we choose α = 18.

3) Determination of β: we aim to design the simulation
such that the consensus tracking can be achieved in at most t∗

= 10 s. β must to be bigger than 3.5217 using equetion(13).
Let’s take β = 4.
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Fig. 6. The fixed directed topology of followers and virtual leader
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Fig. 7. Trajectories of the virtual leader and the followers under (23) and
(24). The circle denotes the initial position of the virtual leader, while the
squares denote the initial positions of the followers.

4) Simulation results: Fig.7 shows the trajectories of
the virtual leader and the followers. Figs. 8 and 9 show
the position tracking errors of x positions and y positions
respectively. It is easy to see from Figs. 7, 8 and 9 that the
consensus tracking can be achieved in about 0.2 seconds.
This value is remarkably less than the desired bound 10
seconds.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we consider the consensus tracking for
multi-agent systems with nonlinear inherent dynamics under
fixed undirected and directed communication topologies. It
is shown that the consensus tracking can be achieved in
finite time using appropriate control laws. Some simulation
examples are finally given to validate the theoretical results.
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Fig. 8. Position tracking errors of x positions under (21) and (22).
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Fig. 9. Position tracking errors of y positions under (21) and (22).

As further works, we will consider the second-order
consensus tracking for multi-agent systems with nonlinear
inherent dynamics. On the other hand, since the operation of
most multi-agent systems is naturally delayed, the consensus
tracking with time delay will be also investigated.

REFERENCES

[1] V. Gazi, and B. Fidan, ”Coordination and control of multi-agent
dynamic systems: Models and approaches,” in Proc. of the SAB06
Workshop on Swarm Robotics, ser. Lecture Notes in Computer Science
(LNCS) 4433, E. Sahin, W. M. Spears, and A. F. T. Winfield, Eds. Berlin
Heidelberg: Springer-Verlag,, 71–102, 2007.

[2] T. Vicsek, A. Cziok, E. B. Jacob, I. Cohen, and O. Shochet, ”Novel
type of phase transition in a system of self-driven particles,” Physical
Review Letters, 75(6), 1226-1229, 1995.

[3] A. Jadbabaie, J. Lin, A. S. and Morse, ”Coordination of groups of
mobile autonomous agents using nearest neighbor rules”, IEEE Trans.
Autom. Control, vol. 48(6), 985-1001, 2003.

[4] M. Cao, A. S. Morse, and B. D. O. Anderson, ”Reaching a consensus
in a dynamically changing environment: a graphical approach,” SIAM
Journal on Control and Optimization, 47(2), 575-600, 2008.

[5] L. Moreau, ”Stability of multiagent systems with time-dependent com-
munication links,” IEEE Transactions on Automatic Control, 50(2),
169-182, 2005.

[6] R. Olfati-Saber, ”Consensus problems in networks of agents with
switching topology and time-delays,” IEEE Transactions on Automatic
Control, 49(9), 1520-1533, 2004.

[7] W. Ren, and R. W. Beard, ”Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Transac-
tions on Automatic Control, 50(5), 655-661, 2005.

[8] F.Jiang, and L. Wang, ”Finite-time information consensus for multi-
agent systems with fixed and switching topologies,” Physica D, 238,
1550-1560, 2009.

[9] W. Yu, G. Chen, and M. Cao, ”Consensus in directed networks of
agents with nonlinear dynamics,” IEEE Transactions on Automatic
Control. DOI: 10.1109/TAC.2011.2112477, 2010.

[10] M. Cao, and J. Kurths,”Second-order consensus for multiagent systems
with directed topologies and nonlinear dynamics,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B,40(3), 881-891, 2010.

[11] Y. Cao, and W. Ren, ”Distributed coordinated tracking with reduced
interaction via a variable structure approach,” IEEE Transactions on
Automatic Control. DOI: 10.1109/TAC.2010.2049517, 2010.

[12] F. R. K. Chung, ”Spectral Graph Theory,” American Mathematical
Society,, 1997.

[13] R. A. Horn, and C. R. Johnson,(eds.), ”Matrix Analysis,” Cambridge
Univ. Press, 1988.
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