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Abstract – A new improvisation algorithm based on parameter

estimation process for the imitation control of a robotic acoustic

musical device “ROMI”, is presented in this paper. The musical

state representation we have developed for controlling ROMI is a

feature extractor for learning to imitate human players in a duet.

ROMI’s intelligent control architecture also has the ability to

provide player identification and performance training. In this

paper we introduce the robotic device ROMI together with its

control architecture, the musical state representation and focus

on parameter estimation for imitation of duo players by ROMI.

ROMI is aimed at jointly playing two instruments that belong to

two different classes and improvises while assisting others in an

orchestral performance.

Index Terms – State Representation, Improvisation, Musical

Representation, Imitation, Control

I. INTRODUCTION

The objective in our work is to develop a robotic acoustic

musical device that will be jointly playing at least two

instruments while assisting others in an orchestral

performance and also learn to imitate other players using the

same instruments. This intelligence in imitation also provides

player identification and performance training. In this study

we introduce the robotic device together with its control

architecture and focus on our musical state representation and

automatic parameter estimation.

Building an all new acoustic musical instrument which plays

itself by learning from human players and being capable of

improvisation is the main focus of our research. In our work,

instead of observing teachers who are experts in one acoustic

musical instrument playing, we propose to observe groups of

teachers playing instruments from two different musical

groups namely strings and percussion.

Imitation of playing musical instruments and reproduction of

acoustic music has been investigated in the well defined

musical domain of jazz [1,2,3]. Research that focus on the

presence of a single model which is always detectable in the

scene and which is always performing the task that the

observer is programmed to learn [4,5] has been made. Musical

imitation have been handled in many studies, being facilitated

through the use of computer generated music [6,7,8]. Various

new electric musical instruments, including a wearable one

and a PDA based one have been proposed [9,10,11]. A fixed-

function mapping based imitation supporting system has also

been proposed [12]. In our work, we concentrate upon

imitating by ROMI to reproduce acoustic melodies from

human teachers playing two types of instruments. In the next

section, ROMI will be introduced together with its control

architecture. In the third section, we will summarize our

musical state representation that is used for controlling ROMI.

The imitation process will be demonstrated by an example in

the same section as well. Our proposed parameter estimation

process will be presented and discussed in the fourth section.

Section five concludes the paper.

II. DESIGN OF ROMI

Two acoustic musical instruments from two different domains

have been selected: Clavichord and Tubular bells in building

ROMI where its main components are shown in Figure 1.

ROMI utilizes a 2 octave string section with “note A”

frequencies of 110 and 220 Hz and a tubular bells section

having a 1 octave percussion with “note A” frequency of 55

Hz. The sound of the tubular bells section is not chromatic

since the sound production properties of the copper tubes

being used are very sensitive to temperature changes. Sound is

generated by solenoids hitting the copper tubes and the harp

strings as shown in Figure 1a. The string sections loudness is

low compared to the tubes, so we utilize an amplifier for the

string sections sound as shown in Figure 1b.

Sample sound recordings have been collected from two

musicians playing a piano. These recordings are then utilized

for the development of the imitation algorithms after they are

converted to MIDI format by a commercial software. We

developed a software converter which converts these MIDI

representations, which are even incomprehensible to the

human eye, into recognizable note sequences by ROMI

enabling it to gain insight to the musical notes being played.

The control architecture of ROMI is given in Figure 2. Here

two sets of musical signals are separately processed, one for

the clavichord and the other process for tubular bells. The

processing of these signals is never mixed in any of the

application blocks. In learning mode, the human teachers play

the respective musical instrument in an acoustically noise free

environment. These sound samples are recorded by a

microphone and further isolated from possible background

noise by the application of a low pass filter for the tubular

bells and a band pass filter for the clavichord and stored as a

sound signal in WAV format. Then a commercial software is

used to extract the musical notes in the sound signal, the result

is an industrial standard file called MIDI where music is

represented as note ON and OFF note commands. This

process is shown in Figure 2 as “WAV to MIDI Conversion”.

The MIDI file is then processed by our “Feature Extraction”

stage and all recorded samples are stored in a “Sample

Collection”. The feature extraction process converts the MIDI

files into our “Musical State Representation” (MSR) that is

Fig. 1a Tubular Bells and Solenoids, Fig. 1b Stings Section of ROMI
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introduced in the next section. From this point, on all musical

data is represented as three number streams N, M and P.

Original musical recordings representing models to be used

for player identification and parameter estimation, are also

converted into MSR and is stored in the “Original Scores

Collection”. All data at these stages: the sample being

processed, the Samples Collection being learned by ROMI in

previous sessions and the Original Scores Collection are

converted into our MSR format. The sample being processed

is compared with the corresponding original score at the

“Comparator” and a “Delta” vector is calculated as the

distance of the sample from the original score. All delta

vectors are stored in the “Delta Collection”, therefore the

system not only stores the MSR for each sample but also

stores the delta vector for each sample as well. This

information is utilized by the “Parameter Estimation” process

to estimate the six imitation parameters w, y, x, p, r, q. We are

currently working on adding two applications to our system;

Improvization and Player Evaluation. However, this paper

pertains with the imitation stage where the outline of how

imitation is achieved is explained in the next section. Sound is

reproduced by ROMI and the reproduced sound is fedback to

the system via microphones and control is achieved by

minimizing the difference between the musical information

stored in the MSR with the music generated.

III. MUSICAL STATE REPRESENTATION

In the “Musical State Representation” (MSR) that we have

developed as a feature extractor for controlling ROMI, time

(t) is slotted into 1/64
th

 note duration. The maximum musical

part length is set to 1 minute in our application for simplicity.

This gives 1920 slots of time for each musical part (these

numbers are based on the fact that the control algorithms are

set for 120bpm). At the moment our MSR can work with a

maximum of 256 different musical parts. Each musical part

has a “Sample Collection” of maximum 128 samples

performed by human teachers. MSR for each distinct sample

“j” for a given musical part “g” (MPg) are stored at the

“Feature Extraction” processes’ “Sample Collection” as

shown in Figure 2. Our reason to chose a collection mode

instead of a learning mode, where each new sample updates a

single consolidated data structure, is to keep all available

variations alive for use in improvisation.

Each monophonic voice is represented by two number streams

“N” and “M”, where the number values are whole numbers

between -127 and 128. “0” value for N and M and “-1”,”1”,

“-127” values for M streams have special meanings. Stream N

records the relative pitch difference between consecutive

notes. Stream M records the relative loudness difference

between consecutive notes. The stream itself is a record of the

duration of all notes. When there is a change in the current

note, at least one of the two number streams register this event

in the array structure by recording a non zero number. The

number streams N and M consists of “0” values as long as

there is no change in the current note. Each number in these

streams are equivalent to a 1/64
th

 note duration. Note that for

most people a 1/64
th

 note is incomprehensibly short.

Silence is considered as a note with starting loudness value of

-127. When silence ends the M stream resumes from the last

note loudness value attained before the silence.

If a note has the same note value as the previous note then the

N stream will record a “0” but the M stream will record the

loudness change value of “1” if loudness remains the same.

Starting note value and velocity (loudness) is recorded for

each musical part. ROMI’s cognition system is mostly

focused upon duration, loudness and pitch difference taken in

this order of importance.

The following figures present a visualization of our MSR.

Here the opening part of Lugwig von Beethoven`s Ecossais

has been used as the sample. Figure 3, shows how the original

recording is represented based on our MSR notation. Note

that, the data is in fact a one dimensional array of whole

numbers. To aid in visualization, this array has been continued

from one line below for each 64 consecutive array elements.

The numbers in the first row and column represent this

arrangement. The first note is a special character which stores

the information of its value and velocity. After the first note,

all information is stored as the difference between two

consecutive notes. As long as there are no note changes

streams N and M consists of “0” values and are shown by mid

level gray tone in Figure3 & 4. As shown by the legend to the

right of the figures.
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Fig. 2   Control Architecture of ROMI
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Lighter tones of gray indicate a positive change in N and M

streams; and darker tones of gray indicate a negative change.

Therefore, every move from the mid level gray tone indicates

a note change. Note that the changes in M streams has a larger

scale. Pure black array elements represent a “silence” in M

streams.

Figure 4, shows the MSR for one of the performances of the

same musical part that ROMI “heard” by identifying one of

our human teachers playing it on a piano. It is possible to

“see” the difference with the original score where the “heard”

recording from human teacher has small deviations from the

original score.

Figure 5, shows the difference (Delta Vector) between the

original score and the heard sample played on a piano by one

human teacher. In the representation of the Delta Vector the

value zero is shown with pure white color since the absolute

value of the difference is of importance. In this figure all non

zero array elements represent a note being played by the

human teacher either with a wrong value or at the wrong time

with respect to the original score. The number of non zero

(non white) elements and their intensity is a measure of how

good the performance of the human teacher was “heard”. This

information can be used for parameter estimation and player

evaluation as will be presented in the next section.

Number stream “P” is an event indicator similar to a token

state change in a Petri Net, where P values can assume any

rational number. The event indicator P number stream is

important in our improvisation algorithms. The addition of the

event indicator P to the MSR has eased the detection of tempo

in musical parts. Using the MSR made of N, M and P streams,

ROMI imitates a musical piece based on the following

algorithm. This algorithm uses six user defined parameters

named as “w, y, x, p, r, q” which affect the reproduction

quality of the imitated musical part.

1. Play all notes where Nij(t) has identical value with at least

“w” percent of all j iterations, within a time window of

p slots, with average value of all available non zero

Mij(t) values

2. Play all notes, not already played by step 1, where Mij(t)

has a loudness value in at least “y” percent of all j

iterations, within a time window of r slots, with average

value of all available Nij(t) values

3. Play all notes, not already played by step 1 or 2, where Pj(t)

is not “0” for “x” percent of all available j iterations,

within a time window of q slots, with average value of

all available Nij(t) values and with average value of all

available Mij(t) values

4. If Pj(t) lengths are different, select longest available length

as music piece length with gradually decreased

loudness, starting the decrease with the shortest

available length

The imitation parameters and their effect to imitation

performance are explained next:

w: This parameter is the main note generator. It uses the note

change information, which is stored in the N streams. When a

sufficient number, “w” percent of all samples, have the same

note change value within a time window of “p” slots, the

imitation process executes a note change (plays a note) on

ROMI. The effects of this parameter on imitation performance

is discussed in the next section.

y: This parameter is the secondary note generator. It uses

loudness change information, which is stored in the M streams

in the same mechanism as explained for “w”. A new time

window parameter “r” had been defined other than “p” in

order to gain more control on imitation performance.

x: This parameter is used for generating notes that are in the

original score but were not produced by the note generators

explained above. This parameter is used to track the changes

in N and M streams and generate a note where there has been

sufficient changes in N and M streams to hint the existence of

a note. A new time window parameter “q” had been defined

other than “p” and “r” in order to gain more control on

imitation performance.

p: Due to slight tempo variations or less than perfect teacher

performances, some notes are sounded about 1/64
th

 of a note

before or after they are in the original score. This parameter

controls the width of a time window to group such note values

together. The control unit places the note at the time slot

where majority of the N values are situated. When there is a

draw, the first such slot is chosen.

r: Same as “p” but used for loudness variations.

q: Same as “p” but used for event changes.

IV. PARAMETER ESTIMATION

Our proposed parameter estimation process incorporates an

“Original Scores Collection” where each distinct musical part

is in the form of our MSR. Therefore, each musical part has

Fig. 5   Delta in N & M Number Streams Between the Original Score and

the Played Sample in MSR

Fig. 4 N & M Number Streams for Played Sample in MSR

Fig. 3   N & M Number Streams for Original Score in MSR
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N, M and P number streams in this collection. This original

recording is considered as the “nominal” MSR for a given

musical part and the distance “Delta” for each recorded

sample by human teachers can be evaluated.

If identity of each human teacher is known a priori for each

sample, so it is possible to track the performances of each

human musician if not this process becomes that of player

identification.

Original score information for each musical part enables our

proposed system to measure the “quality” of each imitated

sample j, for a musical part that exists in the Original Scores

Collection, the “nominal” sample, is assumed to have the

highest “quality” if imitation mode is used but not during

improvisation mode. The difference between the MSR of the

nominal sample and the MSR of any given sample j yields

difference “Delta Vector” for each recorded sample j. All

delta vectors for known musical parts are stored in a separate

“Delta Collection”.

The imitation process uses the six user defined parameters.

Three of these parameters, w, y, x, define an averaging factor

to be used in note reproduction by the imitation process of

ROMI. The other three, p, r, q, define a time window in which

this averaging function will be used. Changing these

parameters effect the output quality.

The idea used to calculate Delta, can be used in a similar

approach to estimate these user defined parameters controlling

the imitation process. For each recorded sample set, collected

from the same musician for a given part, modifying the w, y,

x, p, r, q parameters to find a minimum for the associated

Delta is possible. This is the output of the 3
rd

 line in the

algorithm above. Delta is not calculated for each separate

sample but it is calculated for all the available samples by the

same human teacher playing the same musical part.

At the end of test runs, the parameter estimation step showed

us that there is no unique value set for minimizing the delta

for these parameters but a range of parameter values has to be

generated for very close Delta values. The test runs also

showed that choices for p, q, r parameters are limited, since

their value is in fact connected to the time granularity, or

resolution, of the MSR. The w, y, x parameters can attain

larger ranges. Due to the structure of the imitation process

these parameters are not independent. The choice for one

effects the plausible values for the others. For the test runs of

the parameter estimation process, six samples for piano part

Ecossais from Ludwig von Beethoven has been recorded by

ROMI from two different human teachers.

The effects of different values for the imitation parameters are

shown in the following figures. Each graph in these figures

have been generated using the imitated piano parts musical

reproduction, being compared with the original score. Some

imitation parameters are set to fixed values to show the effects

of changing others. Deltak values have been used for one of

the human teachers, total number of samples processed is six.

Figures 6 and 7 show how Deltak values are effected by

changes in the main note generator parameters “y” and “w”.

Parameters “y” and “w” effect the imitation performance in a

similar way. Values below 20 for either parameter generate

many notes that are not in the original score, resulting in high

Deltak values. If either one of these parameters is kept around

70-90 the imitation performance is of acceptable quality. Note

that, due to the nature of the calculation for Deltak values, it is

not possible to zero out the Deltak values.
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The range of Deltak values are effected by the number of

samples processed with larger number of samples resulting in

higher Deltak values. However this does not change the shape

of the given graphs with the local minimum still being

achieved around 70-90 for these parameters. Values above 95

for either parameter generate less notes than the original score

resulting in higher Deltak values.
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Figure 8 shows the effects of parameter “x” on imitation

performance. This parameter has less impact on imitation

performance compared to “w” and “y” parameters. This is

understandable since the imitation algorithm generates notes

based on N, M and P streams in this order. This results in

most of the notes already being produced by the N and M

streams with P stream having fewer opportunity to generate a

note and effect the imitation performance. For values below

25 this parameter generates notes that are not in the original

score. For values above 95 it generates less notes than the

original score. Figure 9 shows the effects of parameter “p”.

Graphs for parameter “r” have the same shape and effect the

imitation performance in a similar way as explained here for

parameter “p”.

Fig. 6   Deltak for Varying y Values with 10 Different w Values

Fig. 8   Deltak for Varying y Values with 10 Different x Values

Fig. 7   Deltak for Varying w Values with 10 Different y Values
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This parameter is used by the first note generator using N

streams and has the greatest impact on note production. The

value 1 will produce less notes than the original score. Values

2 and 3 are optimal. Values above 3 produce more notes than

the original score by combining two consecutive notes into

one, increasing Deltak. The second jump in Deltak at “p” value

8 is due to the fact that more notes that is not in the original

score are produced for every note shorter or equal to a quarter

note within the time window defined by “p”. Even bigger

jumps in Deltak should be expected for values 12 and 16 for

this parameter.
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V. IMPROVISATION BY RELAXATION OF IMITATION

PARAMETERS

In our studies we have seen that it is possible to use

Improvisation by Relaxation of Imitation Parameters (IRIP) as

a low level improvisation tool; whose parameters are defined

within time intervals controlled by a higher level

improvisation algorithm. This is an interesting subject that we

are currently investigating. The initial results are presented in

this section.

The values of imitation parameters that minimize Deltak

produce an output very similar to the original score, or the

median of the samples. Improvisation can be achieve with

limited success, by relaxation of the imitation parameters that

result in non-minimum Deltak. Most of the imitation

parameters give higher Deltak if used below or above certain

values. However our tests showed that the values that produce

less notes than the original score are less suitable for

improvisation.

If imitation parameters are further relaxed the system tends to

drift too much out of the original scores note frequency range.

The resultant improvisation is more exiting due to higher

variations but the overall musical part becomes fuzzy. We

propose to use a partial application for the improvisation if the

imitation parameters are further relaxed. For example, a mask

as shown in Figure 10, can be applied. In this mask the white

slots represent where the original score will be played back by

the imitation algorithm and the black slots represent where the

imitation parameters are very relaxed. For example the

“black” slots set at y=50, w=50, x=50, p=2, r=2, q=3; and

imitation parameters for the “white” slots set at y=85, w=85,

x=55, p=3, r=3, q=4.

There can be many other choices for defining such a mask.

For example, there can be masks with not only two sets of

imitation parameter values (one for imitation and one for

improvisation) but with more sets of varying values. Such an

approach will add even more variations into the musical part.

But then the obvious question is what controls the selection of

such masks? The answer maybe “a higher level of

improvisation algorithm”. There are some ground rules that

we have discovered during test runs. These rules can be

outlined as:

1. Short periods of IRIP does sound like a wrong note has

been played. Therefore we suggest that the minimum

duration for an IRIP part must be at least 1 seconds.

2. Long periods of IRIP tend to drift out of the scale of the

musical piece being played. This is due to our MSR. The

most common result of the IRIP is the addition of the

same note at a very close time interval of the original

note. Since MSR is a difference representation, this

addition of new notes in improvisation drift the note

sequences out of the scale of the musical piece. This

results the rest of the musical piece being played at a

different pitch. To limit this effect, our proposition is that

these intervals should not be larger than 2 seconds. And at

certain intervals the musical piece should be returned to

one absolute note value.

3. The starting time of an IRIP should be snapped to a grid

of 1/8
th

 note durations. This helps to ensure that the IRIP

has the same tempo as the musical piece.

4. The duration of an IRIP should be multiples of 1/8
th

 note

durations. This helps to ensure that the IRIP has the same

tempo as the musical piece.

5. If more than one IRIP is going to played in a musical

piece. We advice to put imitation parts between IRIP

parts, that are at least the same length of the last IRIP

being played. This gives the listener the necessary clues

at what the modal of the musical piece is.

The example in Figure 11 helps to visualize these ground

rules. In this mask the white slots represent where the original

score will be played back by the imitation algorithm and the

black slots represent where the imitation parameters are very

relaxed. The gray slots are where we recommend the start of

an IRIP should be snapped to.

VI. CONCLUSION

Our studies for a higher level improvisation algorithm has two

areas of investigation. One is to develop an improvisation

algorithm based on n-grams including velocity information.

The second one is to develop a patching algorithm which will

analyze the current imitation and the generated improvisation

and decide where to patch the improvisation. In this way our

work will have a new approach to improvisation. Our current

idea of how this patching could be implemented is to analyze

the imitation and improvisation as a signal and match the

Fig. 9   Deltak for Varying p Values with 10 Different y Values

Fig. 10   Mask for Improvisation Intervals, Black Slots Represent Where

Imitation Parameters are Very Relaxed

Fig. 11   Visualization of ground rules for successful implementation of

IRIP
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slopes of imitation and improvisation signals at the entry and

exit points of the improvisation.

We experimented with our MSR to increase its performance

in fast notes. The idea was to increase the time granularity of

the system by defining a smaller time window; for example

each time slot is a 1/128
th

 note. However, if granularity of the

discrete time model is increased, in order to pinpoint notes,

the system shows a strong tendency to produce extra notes

that were not intended. To limit this tendency p, r, q values

can be increased, which effectively reduces the system to one

with lower granularity.

Using the Delta Vector in Figure 5 is like ROMI listening to

the “sound” of the Delta Vector for each wrong note. This

leads to the possibility of user profiling by ROMI. In fact the

data is readily available in the MSR of each sample to assess

many aspects of the musician playing the musical part.

Gathering this information was not a planned initial goal of

this study. However, this is an important result that led to a

valuable profiling by product.
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