
 

 

Abstract—.This paper presents a novel approach to the use 

of a genetic algorithm to evolve a three dimensional lookup 

table which acts as a robotic controller to balance a

beam. The lookup table translates three ball

position, ball speed and beam position, into the mot

and direction required to maintain the ball in balance. 

population comprising these lookup tables 

applying a genetic algorithm using tournament selection, two

point crossover and a mutation rate of two percent

different ranges of motor speeds within the 

successfully evolved, each capable of maintaining the ball in 

balance for over five minutes.  

 
Index Terms—Evolvable robotics, evolution of lookup table

lookup table based robotic controllers,

controller, genetic algorithms  

I. INTRODUCTION 

This paper investigates the use of a 

(GA) to evolve a ball and beam controller by evolving a 

population of lookup tables (LUT) used to control the beam. 

The system developed for this paper (Fig 

parts: i) the graphical user interface (GUI

the motion of the ball and beam with control and d

logging capabilities, ii) the GA, which evolves a populati

of LUTs, iii) the simulation, which models the 

characteristics of the ball-beam system and iv

which provides the new beam motor speed and 

depending on the current ball-beam state. 
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Fig 1.  Block representation and connections between the four units 
were implemented on a computer. 

 

 
 

Manuscript received July 19, 2011; revised August

Mark Beckerleg is with the School of Engineering, AUT University, 

New Zealand. phone: +64-9-9219999, fax: +64

mark.beckerleg@aut.ac.nz) 

John Collins is with the School of Engineering, AUT University, New 

Zealand. (e-mail john.collins@aut.ac.nz) 

Evolving a Three Dimensional Looku

Controller for a 

approach to the use 

three dimensional lookup 

to balance a ball on a 

translates three ball-beam states, ball 

to the motor speed 

maintain the ball in balance. A 

lookup tables was evolved by 

using tournament selection, two-

ssover and a mutation rate of two percent. Four 

within the lookup table were 

of maintaining the ball in 

robotics, evolution of lookup table, 

, ball and beam 

This paper investigates the use of a genetic algorithm 

beam controller by evolving a 

used to control the beam. 

Fig 1) consists of four 

GUI), which displays 

the motion of the ball and beam with control and data 

which evolves a population 

which models the 

beam system and iv) the LUT, 

speed and direction 

 

Look Up

Table

Simulation

o
u
tp
u
t

in
p
u
t

 
Block representation and connections between the four units that 

August 12, 2011.  

Mark Beckerleg is with the School of Engineering, AUT University, 

9219999, fax: +64-9-9219973 (e-mail 

John Collins is with the School of Engineering, AUT University, New 

 

Typically a straight beam is used for a ball and beam 

apparatus, as it simplifies the control system algorithms that 

are required to balance the ball. However in this paper the 

beam is curved as this provides a more complex simulation 

model and algorithm and also means that the ball will never 

reach a static stable state with the motor

The simulation was modeled around a ball and 

system that was developed at AUT University for a student 

project (Fig 2). The physical beam was curved an

infrared detectors that could determine the position of the 

ball, and a stepper motor that could alter the angle of the 

beam. The angular velocity of the beam 

the number of pulses fed into the

The maximum angular velocity wa

maximum pulse rate that the stepper motor could respond 

to. This was 125 pulses per second

of 0.22 degrees per pulse gave a 

of the beam as 27.5 degrees per second.

 

Fig 2.  The physical beam that the simulat
on. 

 

This paper is organized as follows. In section two

background information about the ball and beam and

use of LUT in evolutionary computation

Section three describes the mathematical model of the 

beam. In section four, the GA

reproduction and selection schemes

five, the simulation derivation and implementation

detailed. Section six contains 

process and section seven contains 

conclusions. 

II. BACK G

Historically the ball and beam has been used as a 

standard laboratory apparatus to demonstrate control 

systems. It has also been used as a benchmark for res

in control systems owing to its non

behaviour. Several different control systems such as 

olving a Three Dimensional Looku

Controller for a Curved Ball and Beam System

Mark. Beckerleg, John. Collins 

Typically a straight beam is used for a ball and beam 

the control system algorithms that 

are required to balance the ball. However in this paper the 

beam is curved as this provides a more complex simulation 

model and algorithm and also means that the ball will never 

reach a static stable state with the motor stopped. 

ation was modeled around a ball and beam 

that was developed at AUT University for a student 

The physical beam was curved and had 19 

infrared detectors that could determine the position of the 

and a stepper motor that could alter the angle of the 

The angular velocity of the beam was controlled by 

d into the stepper motor per second. 

m angular velocity was determined by the 

stepper motor could respond 

This was 125 pulses per second. The angular movement 

a maximum angular velocity 

per second.  

 
that the simulated ball and beam was modeled 

This paper is organized as follows. In section two, 

information about the ball and beam and the 

use of LUT in evolutionary computation is provided. 

the mathematical model of the 

the GA with its associated 

reproduction and selection schemes is explained. In section 

the simulation derivation and implementation is 

contains the results of the evolution 

contains the summary and 

GROUND 

beam has been used as a 

standard laboratory apparatus to demonstrate control 

systems. It has also been used as a benchmark for research 

to its non-linear dynamics and 

. Several different control systems such as 

olving a Three Dimensional Lookup Table 

Beam System 
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proportional integral differential (PID) control [1, 2], fuzzy 

logic [3, 4], and neural networks [5, 6] have been studied 

using the ball and beam. The application of a GA to evolve 

ball and beam controllers has also been investigated. In 

particular a GA has been used in robotic controllers to 

evolve the rules and classes of a fuzzy logic controller [7, 

8], the weightings and connectivity of artificial neural 

networks [9, 10], and the coefficients of a PID controller 

[11, 12]. However to the author’s knowledge the use of a 

LUT for the beam controller evolved by a GA has not been 

investigated. 

LUT’s have been used in evolutionary computation in a 

variety of applications, although not as a robotic controller. 

Robotic simulations have been replaced by a LUT, reducing 

the amount of computation required when running the 

simulation and thus the evolution time [13, 14]. Researchers 

have evolved cellular automata by performing a GA on a 

LUT that held the cellular automata rules, to create two and 

three dimensional shapes [15]. Robotic controllers have 

been evolved with a LUT that was encoded with simulated 

DNA sequences in order to create robotic motion that drew 

motifs [16]. Research has also been performed on evolving 

the LUT found within a FPGA’s functional elements using 

custom software to avoid destructive configurations [17].  

The use of a GA to  evolve a robotic controller based on a 

LUT has been performed by the authors on two robotic 

systems including a mobile inverted pendulum [18] and the 

gait of a hexapod robot [19]. 

III. MATHEMATICAL MODEL 

In the model of the beam (Fig 3), the beam position is 

measured as an angle φ from horizontal, and the ball 

position is measured as an angle θ from the centre of the 

beam. The full derivation for the mathematical model has 

previously been described by the authors [20]. The final 

equations for the ball acceleration are given in equations (1) 

and (2). 

 
Fig 3.  The ball and beam showing the relationships between the angles and 
motion. 
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Where 

 g - gravitational acceleration 

 I – moment of inertia of the ball 

 R - radius of curvature of the beam 

 m - mass of the ball 

 r - radius of the ball 

 θ - ball position (angle from the centre) 

 Ø - beam position (angle from horizontal)  

 x – ball position 

 v – ball velocity 

 b – beam position 

 a - acceleration of the ball  

 

 

From physical experimentation on the beam, the value for 

acceleration (a) of the ball was determined as a factor of the 

ball position (x) and beam position (b) in equation (3). 

Placing this into the mechanical modeling we can 

determine the new position of the ball, depending on its 

current position, velocity ��� and acceleration in equation 

(4), and the new speed of the ball dependant on its current 

speed and acceleration in equation (5). The simulation was 

set to a time period of 1 ms in equations (6) and (7). 
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IV. GENETIC ALGORITHM 

Evolutionary computation is an optimization process that 

autonomously searches through a sequence of possible 

solutions to a problem to find a solution that will adequately 

solve the problem. It is modelled on Darwinian evolution, 

‘survival of the fittest’, where a population of solutions is 

evolved. Each solution is evaluated and given a fitness, and 

the solutions with a higher fitness are retained and used to 

create new solutions. These solutions are often referred to as 

individuals or chromosomes, and can be in many forms 

depending on the problem to be solved. A group of 

solutions is called a population. There are several forms of 

evolutionary computation, one of which is the GA. 

The GA is a repetitive process with three parts including 

a) reproduction, where the genetic operators crossover and 

mutation are used to generate new individuals from the 

surviving population of individuals, b) fitness evaluation, 

which determines how well each individual within the 

population performs, and c) selection, which is the process 

that determines which individuals within the population 

(based on their fitness) will survive to the next generation. 

A. Chromosome 

The chromosome that was used for the ball and beam 

controller was a three dimensional LUT. The LUT’s axial 

co-ordinates connected to the current ball-beam states of 

ball position (nineteen positions), beam position (ten 

positions) and ball speed (three positions). The parameter at 

each co-ordinate within the LUT was the desired motor 

speed and direction required to move the beam into a 

position that would maintain the balance of the ball (Fig 4). 

The LUT was used to control the beam’s motor 

depending on the beam states. This was achieved by 

connecting the simulation’s current ball-beam states to the 

axis of the LUT. The parameter at that location was sent 

back to the simulation to control the simulation’s motor 
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speed and direction. The parameters within the LUT were 

eleven discrete values ranging from 0 to 250, in steps of 25 

giving a maximum of eleven motor speeds. If less speeds 

were required, these numbers were then broken into ranges, 

i.e. for two motor speeds, values less than 128 the motor 

was reversed, while numbers greater than 128 the motor 

was forward. 
 

B
a
ll 
P
o
s
it
io
n

 
Fig 4.  Three dimensional LUT showing 19 ball positions, 10 beam 

positions, 3 ball speeds. 

 

The search space of a chromosome is the total number of 

combinations that the chromosome can have. The fitness 

landscape is the fitness level of each one of these 

chromosomes. In this study, the search space within the 

three dimensional LUT was dependant on the number of 

locations within the LUT, and the number of speeds that 

were employed at each location. The experiments were 

repeated with four ranges of motor speeds. These were two 

(left and right), three (left, stopped and right), five (two left, 

stopped and two right) and eleven speeds (five left, stopped 

and five right).  

The total search space that the GA was required to search 

through was calculated using equation [8] and illustrated in 

Table I. It can be seen that the search space rapidly 

increased as the number of speeds increased. The exponent 

570 was derived from the size of the LUT (19x10x3). 

 

()�*+, ./�+) �  ./))0.1234 56 789 � ./))0.:;!  [8] 

 
TABLE I  SEARCH SPACE WITHIN THE LUT DEPENDENT ON THE NUMBER OF 

MOTOR SPEEDS. 
 

Speeds Search Space

2 3.9 x 10
171

3 9.1 x 10
271

5 2.6 x 10
398

11 3.9 x 10
593

 
 

B. Reproduction and Selection 

The aim of the reproduction and selection scheme is to 

provide a high selection pressure, i.e. to move rapidly up the 

fitness landscape whilst maintaining population diversity. 

This is dependent on both the selection scheme and the 

reproduction method employed. 

The reproduction method used two point crossover with a 

mutation rate of 2%. Two point crossover selects two 

random points within both parent’s chromosomes and 

transposes the chromosome information at these points to 

create two new individuals. In this case the crossover points 

were selected only on the ball position axis (Fig 5).  

 
Fig 5.  Two point crossover cut along the ball position axis. 

 

There are many selection schemes that can be used within 

a GA, such as roulette, rank based, or tournament, with each 

method having its advantages and disadvantages. The 

selection process used in this GA was tournament, where 

the population was divided into groups. One individual 

within that group was selected for reproduction, depending 

on its fitness compared to the others within that group. The 

larger the group size, the higher the selection pressure; 

however with a larger group size diversity could be quickly 

lost. In this GA, a group size of two individuals was used.  

C. Fitness Criteria 

The fitness was determined by how long the ball 

remained balanced on the beam before hitting either end-

stop. At the start of each test, the beam was placed in the 

horizontal position and the ball was at rest. The simulation 

was then run until either the ball hit an end-stop or 60 

seconds had passed. Each individual was tested seven times 

with the ball positioned at seven different locations on the 

beam, giving a total maximum fitness of 420 seconds. 

V. SIMULATION 

The simulation used the equations as shown in equations 

[6] and [7]. The simulation was modeled on a 1ms time 

period. A new ball position and speed was calculated every 

1ms time period. Correspondingly the beam movement was 

calculated over a similar period. The maximum beam 

movement was calculated from the real beam system, using 

two maximum motor speeds of 125 and 250 pulses per 

second, or a beam angular velocity of 22.7 and 45.4 degrees 

per second. The motor speed and direction was feed into the 

simulation which was used to calculate the new beam 

position. The new ball speed and position for the next 1ms 

was then calculated and fed back to the LUT. The 1ms time 

period of the simulation was used to give the real time that 

the ball was in motion. 
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VI. GRAPHICAL USER INTERFACE

The GUI (Fig 6) provided simple control of the GA and

allowed the maximum fitness, average fitness

of the simulation time to be recorded. The graphics of the 

beam could be physically turned on or off

motion of the ball and beam to be observed.

the graphics were enabled, the graphical drawing of the

and beam on the display severely slowed

computer program, therefore this feature 

disabled. 

 

Fig 6.  The graphical user interface 

VII. RESULTS 

Initial experiments used a two dimensional LUT 

used only the beam and ball positions. It was found that this 

information alone was not enough to provide a successful 

evolution. The LUT was modified to provide for a third 

parameter incorporating speed. 

Two ranges of experiments were performed with two 

maximum stepper motor pulse rates. The first used 125

pulses per second which equated to a maximum beam 

angular velocity of 22.7 degrees per second.

speed of the actual beam motor and was at 

which the beam could control the ball. The second was 250

pulses per second which equated to a maximum beam 

angular velocity of 45.4 degrees per second. 

experiment, four ranges of motor speeds 

and eleven speeds) were evaluated. 

The first experiments used eleven start positions

between ±18 degrees from the top of the beam.

level for these experiments never reached the maximum 

fitness. Under investigation it was found that 

not fast enough to prevent those ball

extremes from hitting an end-stop. The 

changed to seven ball start positions lying between ±12 

degrees from the top of the beam, with

tested seven times at each start position.

occurred when the ball was balanced for 60 

a maximum fitness of 420 seconds. 

NTERFACE 

provided simple control of the GA and 

fitness, and duration 

. The graphics of the 

be physically turned on or off allowing the 

to be observed. However when 

graphical drawing of the ball 

and beam on the display severely slowed down the 

this feature was usually 

 

Initial experiments used a two dimensional LUT which 

only the beam and ball positions. It was found that this 

information alone was not enough to provide a successful 

o provide for a third 

ranges of experiments were performed with two 

pulse rates. The first used 125 

to a maximum beam 

angular velocity of 22.7 degrees per second. This is the 

speed of the actual beam motor and was at the limit at 

The second was 250 

to a maximum beam 

angular velocity of 45.4 degrees per second. For each 

speeds (two, three, five 

The first experiments used eleven start positions lying 

between ±18 degrees from the top of the beam. The fitness 

never reached the maximum 

fitness. Under investigation it was found that the motor was 

balls starting at the 

The experiment was 

lying between ±12 

of the beam, with each individual 

. A successful run 

60 seconds; giving 

A. Evolved motion of the ball.

The graphs presented in figures 7 to 

relationship between the fitness of the best individ

the population and the number of generations

ranges of motor speeds.  

 

Fig 7.  Two motor speeds, maximum angular velocity 

 

Fig 8.  Three motor speeds, maximum angular velocity of 22.7

 

Fig 9.  Five motor speeds, maximum angular velocity of 22.7

 

Fig 10.  Eleven motor speeds, maximum angular velocity of 22.7

second 

 

 

Evolved motion of the ball. 

in figures 7 to 10 show the 

relationship between the fitness of the best individual within 

the population and the number of generations for the four 

 
angular velocity of 22.70 per second 

 
angular velocity of 22.70 per second 

 
maximum angular velocity of 22.70 per second 

 
maximum angular velocity of 22.70 per 
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The graphs show a step function in the fitness level as the 

evolution had to independently evolve seven start positions. 

It can be seen that the experiments with two motor speeds 

evolved to successful solutions in less generations and time 

than the other speeds. 

The motion of the ball and beam was observed 

various stages of the evolutionary process

graphical display. In the first stage, the ball would roll 

towards the beam end-stops with little reaction from the 

beam itself. In the next stage the beam would 

ball movement, reversing the motion of the 

the ball would then roll to the opposite end

following stage in the process, the beam moved

oscillating pattern, causing the ball to stay balanced in 

between two points. However after five to ten seconds

ball would break free and gather too much 

beam to prevent the ball from hitting an end stop.

final stage of evolution, the beam was able to keep the ball 

trapped between two points for the full 60 seconds. 

This characteristic oscillation of the beam was seen in all 

motor speed ranges. With only two speeds

in rapid oscillations to keep the ball steady. H

larger number of speeds, the beam would

pace. Eventually the beam evolved to keep the ball 

motionless, with the use of an oscillation

seven start positions. 

It can be seen from the graphs that there are two main 

plateaus in the fitness level near 320 and 360 seconds. 

These plateaus can be explained by the two start positions at 

the furthest point from the center of the beam. These

most difficult points bring the ball to a stable oscillating 

condition, as the ball tends to gather a high speed and is 

difficult to capture. This plateau was more noticeable in the 

five and eleven motor speeds. 

For the five and eleven motor speed range

not be balanced in the middle of the beam. Instead it would 

be gently moved to either end of the beam

centered around that point. This trait can be explained by 

the placement of the ball sensors on the beam. 

beam was designed, the ball sensors were 

with the sensors placed closer together at the ends of the 

beam and further apart in the middle of the be

because it was thought that determining the ball

and speed was more critical near the beam ends. 

Unintentionally however, this gave the evolved controller 

the best location of the ball and its speed 

the beam. Subsequently the evolved controller used the end 

locations to balance the ball. This characteristic was not 

seen with the two and three motor speeds experiments.

Because a simulation was used, when 

with the ball motionless in the center of t

the evolved solution kept the motor off, 

perfectly balanced for the duration of the test.

the two speeds as the motor could not be stopped

move the ball to a stable position.  

B. Evolved chromosome 

An investigation of successfully evolved 

and the corresponding sequence of beam and ball motions

showed different patterns for each evolved chromosome. 

This is because there were multiple ways of successfully 

ep function in the fitness level as the 

evolution had to independently evolve seven start positions. 

It can be seen that the experiments with two motor speeds 

evolved to successful solutions in less generations and time 

the ball and beam was observed in the 

evolutionary process using the 

the ball would roll 

with little reaction from the 

beam would react to the 

the motion of the ball; however 

end-stop. During the 

the beam moved in an 

causing the ball to stay balanced in 

after five to ten seconds the 

and gather too much speed for the 

beam to prevent the ball from hitting an end stop. In the 

the beam was able to keep the ball 

ull 60 seconds.  

This characteristic oscillation of the beam was seen in all 

With only two speeds, the beam moved 

lations to keep the ball steady. However with a 

ould move at a slower 

. Eventually the beam evolved to keep the ball 

oscillation pattern for all 

It can be seen from the graphs that there are two main 

plateaus in the fitness level near 320 and 360 seconds. 

can be explained by the two start positions at 

the furthest point from the center of the beam. These are the 

points bring the ball to a stable oscillating 

tends to gather a high speed and is 

plateau was more noticeable in the 

eleven motor speed range, the ball would 

of the beam. Instead it would 

either end of the beam, and kept 

This trait can be explained by 

the placement of the ball sensors on the beam. When the 

the ball sensors were unevenly spaced 

closer together at the ends of the 

and further apart in the middle of the beam. This was 

it was thought that determining the ball’s position 

and speed was more critical near the beam ends. 

his gave the evolved controller 

the best location of the ball and its speed near either end of 

equently the evolved controller used the end 

This characteristic was not 

experiments. 

when a test was started 

in the center of the upright beam, 

the evolved solution kept the motor off, so the ball stayed 

perfectly balanced for the duration of the test. In the case of 

the two speeds as the motor could not be stopped, it would 

evolved chromosomes 

corresponding sequence of beam and ball motions 

showed different patterns for each evolved chromosome. 

This is because there were multiple ways of successfully 

balancing a ball. A successful evol

part of the parameters in the LUT

values of beam and ball position

to a position on the beam, and beam 

point kept it in place. 

A comparison of the maximum and average fitness (

11) shows the maximum fitness increased

average fitness converging when

reached a plateau. At each plateau i

the population had the same fitness, the 

had been lost. However an investigation of 

chromosome revealed that this was not the case. 

backed by observation of the beam and ball motion a

plateau points. The evolution produced

although no individual chromosome had found a solution 

that would balance the ball when started in either, or both its 

first and last start position. Eventually this 

found and the evolution was completed.

 

Fig 11.  Comparison between the maximum and average fitness, with 

eleven motor speeds and a maximum angular velocity of 22.7

C. Comparison of two maximum motor speeds

Several hundred experiments were performed on both

maximum motor pulse rates and speed ranges. Table II 

provides a comparison of these results showing the 

fitness, number of generations and time 

progress at the end of the evolution.

be seen that the faster motor and minimum number of motor 

speeds had the best results in terms of 

generations and the time taken to come to a successful 

evolution. It was noted that the time taken for the five and 

eleven motor speeds to successfully evolve 

acceptable despite the much larger

due to the constrained motion of the beam and the path that 

the ball took, with only a limited part of the chromosome 

being used for the beam control.
 
TABLE II  COMPARISON OF THE AVERAGE FITNESS

GENERATIONS AND THE AVERAGE TIME TAKEN T

Generation Av fitness Time (s) Generation

118 347726 197

268 364240 592

398 357240 3624

861 359427 25794

22.7 degrees/second

successful evolution did not use a large 

part of the parameters in the LUT, especially at the extreme 

values of beam and ball positions. The ball simply tracked 

beam oscillations around that 

maximum and average fitness (Fig 

s the maximum fitness increased in steps with the 

when the maximum fitness 

ch plateau it was thought that as all 

the population had the same fitness, the population diversity 

an investigation of each 

chromosome revealed that this was not the case. This was 

backed by observation of the beam and ball motion at the 

produced multiple solutions, 

although no individual chromosome had found a solution 

that would balance the ball when started in either, or both its 

Eventually this solution was 

e evolution was completed. 

 
.  Comparison between the maximum and average fitness, with 

eleven motor speeds and a maximum angular velocity of 22.70/sec 

Comparison of two maximum motor speeds 

experiments were performed on both 

or pulse rates and speed ranges. Table II 

se results showing the average 

number of generations and time the evolution was in 

progress at the end of the evolution. From this table it can 

be seen that the faster motor and minimum number of motor 

speeds had the best results in terms of the number of 

time taken to come to a successful 

that the time taken for the five and 

to successfully evolve was also 

larger search space. This was 

motion of the beam and the path that 

the ball took, with only a limited part of the chromosome 

being used for the beam control. 

THE AVERAGE FITNESS, AVERAGE NUMBER OF 

AVERAGE TIME TAKEN TO EVOLVE 

Generation Av fitness Time (s) 

42 268456 35

56 327891 76

98 351811 297

103 349563 467

45.4 degrees/second
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A comparison of the four motor speeds within each 

maximum motor pulse rate is shown in fig

 

Fig 12.  Four motor speeds with maximum beam angular velocity of

per second 
 

Fig 13.  Four motor speeds with maximum beam angular velocity of
per second 

 

From these graphs it can be seen that doubling the motor 

pulse rate had a significant improvement

the system to evolve, especially at the five and eleven speed 

range. The fitness plateau at 320 and 360 seconds can 

clearly be seen. All the solutions had difficulty with either 

one or both of the extreme starting points. 

VIII. CONCLUSION 

It has been demonstrated that a robotic controller

ball and beam system based on a three dimensional lookup 

table can be evolved. While both motor pulse rate

motor speed ranges were capable of being evolved to keep a 

ball balanced more than five minutes, the best evolutionary 

performance was achieved using a limited number of motor 

speeds and a higher motor pulse rate. 
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