
 

Abstract—The aims of this paper is to introduce the IEEE 
754  standard  for  the  formal  method  B  by  introducing  the 
floating-point  numbers.  We first  introduce the four different 
rounding modes for B method and then we introduce the four 
essential  arithmetic  operations,  i.e  addition,  subtraction, 
multiplication and division for this method. 

Index  Terms—Abstract  Machines,  AMN,  Formal  method, 
IEEE 754, VDM 

I. INTRODUCTION

HE  B Method is a formal specification method based 
around  Abstract  Machine  Notation  (AMN  in  short) 

which  allows  for  highly  accurate  expressions  of  the 
properties  required  by  specifications.  Recall  that  formal 
methods  consist  of  writing  formal  descriptions,  analyzing 
those  descriptions  and  in  some  cases  producing  new 
descriptions for example refinements from them.

T

The B-Method is a set of mathematically based techniques 
for the specification, design and implementation of software 
components.  Systems  are  modeled  as  a  collection  of 
interdependent  Abstract  Machines,  for  which  an  object-
based approach is employed at all stages of development. An 
Abstract Machine is described using the Abstract  Machine 
Notation (AMN). A uniform notation is used at all levels of 
description,  from  specification,  through  design,  to 
implementation. AMN is a state-based formal specification 
language in the same school as Vienna Development Method 
(VDM) and Z method.  An Abstract  Machine comprises a 
state together with operations on that state. In a specification 
and   design of  an Abstract  Machine the state  is  modeled 
using notions like sets, relations, functions, sequences.
The operations are modeled using Pre- and Post-conditions 
using AMN. One can then prove in a fully automated fashion 
that these properties are unambiguous, coherent and are not 
contradictory. This allows us to mathematically prove that 
these properties are taken into account as the design stages 
progress.
The  formality  of  the  description  allows  us  to  carry  out 
rigorous analysis. By looking at a single description one can 
determine useful properties such as consistency or deadlock-
freedom.  By  writing  different  descriptions  from  different 
points  of  view  it  is  possible  to  determine  important 
properties such as satisfaction of high level requirements or 
correctness  of  a  proposed  design.  However,  this  formal 
specification can only use a set of natural numbers and no 
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floating-point numbers yet. Therefore, introducing the IEEE 
754 standard for B method is very interesting by introducing 
different rounding modes and the four essential  arithmetic 
operations.
In  this  paper,  we use  the  representation  of  floating  point 
numbers in a computer to introduce the IEEE 754 standard 
for  B  method.  We  also  prove  how  rounding  can  be 
performed  and  how  limited  error  is  induced  to  limited 
precision  with  operations  like  addition,  subtraction, 
multiplication and division. The importance of the rounding 
is illustrated by the Patriot Missile failure [2]. The cause was 
an  inaccurate  calculation  of  the  time  since  boot  due  to 
computer arithmetic errors.
This  paper  is  organized  as  follows.  Sections  II  and  III 
describe  the  representation  and  specification  of  floating-
point numbers. Section VI presents a formal description of 
how floating-point  numbers  are  used  to  approximate  real 
numbers.  We  also  introduce  the  four  different  rounding 
modes for  B method. In section V, we introduce the four 
essential  arithmetic  operations,  i.e  addition,  subtraction, 
multiplication and division for B method.

II.REPRESENTATION

A. Floating-Point Number 

The  floating-point  numbers  [3]  can  be  represented  as 
follow:         x = s.m.βexp

where  s  denotes  the  sign  of  x (s2∈ {−1,  1}),  β is  the 
floating-point  base  (usually  2  or  10),  m is  called  the 
mantissa,  also  known  as  the  significand,  and  exp is  the 
exponent of x.

For example, the floating-point number (fpn) 3.1416 can 
be written on the floating-point base 10 and precision 5 as .
31416.101, or 314.16.10-2.

As it ca be seen, the definition of exponent is not intrinsic 
since it depends on the choice of the value of mantissa.

The mantissa m generally composed at least p digits in the 
base β and p is then called the precision of x. The exponent 
field exp lies between the maximum and minimum exponent, 
i.e           expmin  ≤ exp  ≤ expmax.

Once the mantissa is fixed to be an integer, we then have 
0 < m < β p, and the computation of floating-point numbers 
can  be  reduced  to  computation  of  mantissa  as  a  single 
integer.

Therefore, to represent a floating-point number, we must 
clearly define the constants  described  before.  Throughout, 
we will adopt the following notations:

• exp refers to exponent;
• frac: refers to mantissa;
• wordsize: refers to the word size.
By definition

wordsize = expsize + fracsize + 1.
•  expmax   and  expmin   refer  to  the  maximum and  the 
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minimum of exponent respectively.
Remark  that  the  set  of  all  floating  point  numbers  is 

defined as an abstract set.

B. The FPN MACHINE

The main purpose of this part is to introduce what we call 
the  FPN machine.  This  machine  contains  the  set  of  all 
floating-point numbers. In other words, this set will play the 
same role as BIG introduced by Abrial in the [1].

In our case, this set will contain the subset fpn of floating 
described in the beginning. Namely, the set of all floating 
x = s.m.βexp. Once this set is defined, we can establish the 

restriction relation which asserts for any floating- point in 
fpn the exponent, sign and mantissa. These functions are 
well defined and all arithmetic operations remain valid in 
this case.

Now, let  x∈ FPN, then x is in the form x = s.m.βexp and 
consider the three functions define as fellow:

fexp: FPN → NAT
                  x → exp(x);

ffra: FPN → NAT
                   x → frac(x);

fsign: FPN → {0, 1}
                  x → sign(x).

These three partial functions are well defined and the first 
important property of each function is that the pair (x, f*(x)) 
is a member of the function f, provided x is a member of the 
domain of fi where i∈ {sign, fra, exp}.

III.SPECIFICATION

The  standard  IEEE  754  specifies  four  floating-point 
formats in two groups, basic and extended, with a "single-
precision" and a "double-precision"  format in each of the 
two groups.

A. Single Precision

The  IEEE  single  precision  floating  point  standard  [4] 
representation  requires  a  32  bit  word,  which  may  be 
represented as numbered from 0 to 31. The first bit is the

sign bit,  s, the next eight bits are the exponent bits,  exp, 
and the final 23 bits are the fraction  frac. In this case, the 
format is illustrated on table I below.

Single
exp = 8 ∧ wordsize = 32.

The simple extended precision floating point is given by 
this relation:

Simple-Extended
exp≥ 11 ∧  wordsize ≥43.

B. Double Precision

The  IEEE  double  precision  floating  point  standard 
representation  requires  a  64  bit  word,  which  may  be 
represented as numbered from 0 to 63. The first bit is the 
sign bit, s, the next eleven bits are the exponent bits, exp, 
and the final 52 bits are the fraction frac.

Double
exp = 11 ∧  wordsize = 64.

Similarly,  we  have  the  following  description  for  the 
double extended precision of floating:

Double-Extended
exp ≥ 15 ∧   wordsizege = 79.

For instance, in single format, the values of constants are

exp=8, frac=23, wordsize=32, expmin=0,  exp max=28−1.
In  this  case,  the  sign,  exponent,  and  mantissa  can  be 

encoded as a single integer. Namely, one have
sign∈ {0,  1} and  exp,  frac∈  N.  The  table  II  below 

shows  the  layout  for  single  (extended)  and  double 
(extended) precision floating-point values:

TABLE II
IEEE 754 FLOATING-POINT FORMATS

Format Single
Ingle-

Extended Double
Double-

Extended

Expmax +127 1023 +1023 +16383
Expmin -126 1022 -1022 -16382
Exp Bias +127 +1023 +1023 +16383
Precision(bits) 243 32 53 64
Total Bits 3 43 64 80
Sign Bits 1 1 1 1
Exp Bits 8 11 11 15
Frac 23 32 52 64

C.  Special Values

1. Zero
Zero is a special value denoted with an exponent field of 

zero and a fraction field of zero. Note that −0 and +0 are 
distinct values, though they both compare as equal.
2. Denormalized

If the exponent is all 0s, but the fraction is non-zero (else 
it  would  be  interpreted  as  zero),  then  the  value  is  a 
denormalized number. Thus, this represents a number

(−1)s × frac × 2 − 126.
For  double  precision,  denormalized  numbers  are  of  the 

form
(−1)s × frac × 2 − 1022.

From  this  we  can  interpret  zero  as  a  special  type  of 
denormalized number.
3. Infinity

The values + and - are characterized by an exponent equal 
to expmax and a null mantissa.

expmax ∧ frac = 0.
4. Not a Number

The value NaN (Not  a  Number)  is  used to  represent  a 
value  that  does  not  represent  a  real  number.  NaN’s  are 
represented by a bit pattern with an exponent of all 1s and a 
non-zero fraction.

In the B method we can describe them as
frac = 0 ∧  exp = expmax = 2exp − 1.

The table III summarizes the special values.

IV.  ROUNDING

The  purpose  of  this  section  is  to  present  a  formal 
description  of  how  floating-point  numbers  are  used  to 
approximate real numbers.

Floating-point  numbers  are  represented  in  computer 
hardware  as  base  2  (binary)  fractions.  For  example,  the 

decimal  fraction  0.125  has  value
1000

5
100

2
10
1 ++ ,  and  in 

the  same  way  the  binary  fraction  0.001  has  value 

8
1

4
0

2
0 ++  . These two fractions have identical values, the 

TABLE I
UNITS FOR MAGNETIC PROPERTIES

Sign Exponent Fraction

31 30 29 28 27 26 25 24 23 22 21    …       3 2 1 0
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only real difference being that the first is written in base 10 
fractional notation, and the second in base 2.

Unfortunately,  most  decimal  fractions  cannot  be 

represented exactly as binary fractions. As a consequence, 
generaly the decimal floating-point  numbers you enter  are 
only  approximated  by  the  binary  floating-point  numbers 
actually stored in the machine.

The problem is easier to understand at first in base 10. 

Consider  the  fraction
3
1 .  You  can  approximate  that  as  a 

base 10 fraction: 0.3 or, 0.33 or, better, 0.333 and so on. No 
matter how many digits you are willing to write down, the 

result will never be exactly
3
1 , but will be an increasingly 

better approximation of
3
1 .

In the same way, no matter how many base 2 digits you 
are  willing  to  use,  the  decimal  value  0.1  cannot  be 
represented exactly as a base 2 fraction.

Because of the finite precision of floating-point numbers, 
floating-point  arithmetic  can  only  approximate  real 
arithmetic. Every floating-point number is a real number, but 
few  real  numbers  have  floating-point  equivalents. 
Consequently,  floating-point  operations  (addition, 
multiplication,  division,  etc.)  are  generally  thought  of  as 
being  composed  of  the  corresponding  real  operation 
followed by a rounding step which chooses a floating-point 
number to approximate the true result.

A. Definition of function ulp

There are several different definitions of function ulp, see 
for instance [5]- [6]. In this work we restrict ourselves to the 
original definition due to W. Kahan in 1960 [8]. The term 
ulp is an acronym for unit in the last place and the original 
definition is: ulp(x) is the gap between the two floating-point 
numbers  nearest  x,  even  if  x is  one  of  them. As told  by 
Kahan  [8],  the  adoption  of  the  IEEE-754  standard  for 
floating-point  arithmetic  has  made  infinities  and  NaNs 
ubiquitous,  and  that  must  be  taken  into  account  in  the 
definition  of  ulp(x). Kahan  now  suggests  the  following 
definition: ulp(x) is the gap between the two finite floating-
point  numbers  nearest  x,  even  if  x is  one  of  them.  (But 
ulp(NaN) is NaN.). In other words, the KahanUlp (x) is the 
width  of  the  interval  whose  endpoints  are  the  two  finite 
representable numbers nearest  x (even if  x is not contained 
within that  interval).  The  table  IV below summarizes  the 
IEEE 754 standard bounds.

In  this  paragraph,  we  recall  some  properties  of  the 
function ulp(x) regarding different rounding modes.

Property 1 Let X be a flouting point number and x a real 
number. Then, with rounding to nearest (RN) and in radix 2, 
one have

|X − x| <
2
1 HarrisonUlp(x)X = RN(x)

Note that this property is not true with radices greater than 
or  equal  to  3.  The  following counter-example  in  radix  3 
explain this situation.

Let X = 1- = 1 – 3-n and take x such that 1< x <1 + 
2
1 3 

-n. Then HarrisonUlp(x) = 3-n+1, and |x−X| <
2

3 1+− n
 , so that 

|x−X| < 
2
1 HarrisonUlp(x). But X ≠RN(x).

The following property is proved for any radix:
Property 2 Always with rounding to nearest (RN), one 

have

X = RN(x) |X − x| <
2
1 HarrisonUlp(x)

Property 3 For any radix and with rounding to nearest 
(RN),

|X − x| <
2
1 KahanUlp(x)X = RN(x)

Property 4 In radix 2,

X = RN(x) |X − x| <
2
1 KahanUlp(x)

Let 1 – 3-n < x < 1 + 3-n, then RN(x) = 1 and 

|x − 1| > 
2
1 KahanUlp(x).

This example shows that the previous property is not true 
in radix 3.

Remark  that  with  rounding  to  nearest  in  radix  2,  both 
Kahan’s  and  Harrison’s  definitions  preserve  the  common 
claims listed above.

B. Rounding modes

The IEEE standard has four different rounding modes; the 
first is the default; the others are called directed rounding.

1.  Round to Nearest  rounds to the nearest  value;  if the 
number falls midway it is rounded to the nearest value with 
an even (zero) least significant bit, which occurs 50% of the 
time (in IEEE 754r this mode is called roundTiesToEven to 
distinguish it from another round-to-nearest mode)

2. Round toward 0 directed rounding towards zero
3.  Round  toward  +  directed  rounding  towards  positive 

infinity
4.  Round toward  − directed  rounding towards  negative 

infinity.
For  the  IEEE  standard  double  precision  (frac  =  52), 

numbers x ∈  (1, 1+2-frac) are rounded to:
• 1 if 1 < x _ 1 + 2-52

• 1 + 2-52 if 1 + 2-52 < x < 1 + 2-52

For  all  but  specifically  designed  numerical  analysis 
applications, round to nearest is the best rounding mode. In 

TABLE III
TABLE OF SPECIAL VALUES

Name exp frac sign expbits fracbits

+0 min-1 0 + 0000000 0000000
-0 min-1 0 - 0000000 0000000
Number min≤e≤max any any any any
+ max+1 0 + 1111111 0000000
- max+1 0 - 1111111 0000000
NaN max+1 0 any 1111111 any

TABLE IV
 IEEE 754 STANDARD BOUNDS

Single Double

Exp bits 8 11

Frac 23 52
ulp 1.19x10-7 2.22x10-16
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round-to-nearest  mode,  the  nearest  representable  value  is 
never more than 1/2 ULP away from the exact result being 
rounded, so the error introduced by rounding is never more 
than 1/2 ULP. For the other rounding modes, the error is less 
than 1 ULP.

As an example of the size of a 1/2 ULP rounding error: 
suppose you tried to measure precisely the distance to the 
sun (about 149.63700 million kilometers, see table V).

An error of 1/2 ULP in single-precision would put your 
measurement off by about 232.5 kilometers; an error of 1/2 
ULP  in  double-precision  would  put  it  off  by  about  8 
microns; and an error of 1/2 ULP in quad-precision would 
put  it  off  by  about  10-17  microns,  which  is  about  one 
millionth of the diameter of a proton.

Let x be the exact value of any given operation, and x−, 
x+ two floating points such that x− ≤ x ≤ x+.

The rounding towards negative infinity is  x−, to positive 
infinity x+, rounding to zero is x− if x ≥ 0, and x+ if x < 0. 
Rounding to the nearest is defined as the number of x− and 
x+ which is closest to x, in the event of a tie, this is the case 
when x is in the middle of two floating numbers, the IEEE 
standard imposes choose one with an even mantissa.

C.  Exactly rounded

The important  consequence of rounding is the fact  that 
once  the  rounding  mode  is  chosen,  the  result  of  any 
operation is perfectly specified, especially when the result is 
unique. We then tell about the exactly rounded also called 
correctly bounded.

The IEEE standard 754 imposes the exactly rounded for 
the four  basic arithmetic  operations (addition,  subtraction, 
multiplication  and  division)  and  square  root.  Thus,  a 
program using these five operations behaves the same way 
on  any  configuration  respecting  the  IEEE  754  standard, 
provided  there  are  no  intermediate  precision  and  that  the 

programming  language  does  not  allow  the  compiler  to 
change operations if it can produce a different result.

The exactly rounded property allows building proved 
algorithms using these five basic operations (TwoSum, 
FastTwoSum, Sterbenz, Dekker, see for instance [9]).

The directed rounding toward positive or negative infinity 
allows carrying out interval arithmetic [11], i.e. to calculate 
for every operation an upper or a lower bound to the exact 
value. We do not need the exactly rounded to do this,
the respect of the definition of rounding suffices, but the 
correct rounded gives the best possible result. On the other 
hand, the IEEE 754 standard imposes nothing for the other 
mathematical operations (power, exponential, logarithm, 
sinus, etc.) for which no requirement is imposed.

Since real numbers are not yet directly used in B, as we 
need to prove properties for both abstraction and 
implementation. Real numbers being implemented on all 
computers as approximations, we could find combination of 
operations that would behave differently as abstraction and 
as C code implementation, because of numerical erosion. 
Instead, we manipulate big integer numbers. For example, if 
we want to represent a speed varying between 0 à 5m/s with 

a 0.01 m/s accuracy, define a [0, 500] interval, 0 
representing 0 m/s,  500 for 5.00 m/s.

The  following theorem,  due  to  Nesterenko-Waldschmid 
[10], was used to show that getting exactly rounded results 
in  double  precision  could  be  done  with  frac  _  1000000. 
Remember that computing functions with 1000000 digits is 
feasible.

Theorem 1 (Y. Nesterenko and M. Waldschmidt (1995))
Let p/q, r/s be rational numbers, with p ≠ 0 and  A, B and 

E be positive, real numbers with E ≥ e satisfying 
A≥ max (max (p, q), e), B ≥ max(r, s).

Then
|e r/s –p/ |≥ exp(−211 × (logB + loglogA + 2log(E|r/s|+) + 

10)x (logA + 2E|r/s|+6logE)×(3.3log(2) + logE)×(logE)-2)
where |r/s |+ = max(1, |r/s |).

D.  Double Rounding

Let x be a real number, y the rounding of x in p precision 
and  z the rounding of  y in precision  q < p. Then,  z is not 
always the rounding of x in precision q.

For  example,  in  the  case  of  round  to  nearest,  x  = 
1.0110100000001 rounded to 9 bits gives y = 1.01101000, 
which rounded to 5 bits gives z = 1.0110 while the direct 
rounding of x to 5bits gives z’ = 1.0111. We call this the 
problem of double rounding.

On x86 architectures, when the three variables are double 
precision floatingpoint numbers, to compute  c = a + b, by 
default, two successive roundings will occur:

1. First in extended precision during the addition,
2. Then in a lower precision when storing the value into 

memory.
In most cases, the final result is the correct rounding of 

the sum of the two floating-point numbers, but not always.

E. Round-to-nearest-even and round-to-nearest modes

Let  x be  a  fractional  number  between two consecutive 
representable fractional numbers m1 and m2 such that 
m1≤ x < m2. Let denote by RNE the round-to-nearesteven 
mode and LSB(mi) represents the least significant bit of mi 
where i∈ {1, 2}.

The  RNE  mode  rounds  x  to  the  nearest  representable 
number.  When  x is  exactly  in  the  half  way between two 
representable numbers (tie case), it is rounded to the nearest 
even number. RNE is expressed as





 =

+
≤

=
otherwise 

,0)LSB(m and  
2

m
  xif 

)(

2

1
21

1

m

m
m

xRNE

The round-to-nearest mode RN is similar to RNE, except 
for the handling of a tie case. When a tie case occurs, RN 
unconditionally rounds the number up. RN is expressed as





 +

=
otherwise 

, 
2

m
  xif 

)(

2

21
1

m

m
m

xRN


For the basic floating-point multiplication algorithm, both 

TABLE V
EXAMPLE OF THE A SIZE OF A ½ ULP ROUNDING ERROR

Distance 1/2ulp rounding error

km 149.637000 232.5
miles 82718076.3 128.524046
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RN and RNE can be performed by first adding 2-n to the 
normalized  product,  and  then  discarding  the  n  less 
significant  bits  of  the  normalized  product.  If  RNE  is 
performed,  the previously added  2-n should be subtracted 
when the tie case occurs and the nearest-up number is odd. 
This  correction  can  be  made  by complementing the  least 
significant bit of the rounded product.

F. Rounding errors

The  major  problem  of  floating  is  the  propagation  of 
rounding errors  due to  the problem of  “cancellation”,  the 
final result of any computation including several operations 
may be far from the true value, even if in some cases, in the 
opposite sign sign.

The Rump two-variate polynomial constitutes an example 
to illustrate the rounding error problem:
R(x,y)=1335y6/4+x2(11x2y2 – y6 − 121y4 − 2) +11y8/2+ x/2y

We want to find the sign of R(77617, 33096). Since it is 
impossible to stop the propagation of rounding errors, it is 
important to bound the final error. To do this, one can bound 
the absolute error, the relative error, or bound error on ulps.

 Absolute error
The  absolute  error  is  generally  used  when  the  upper 

bound of the intermediate values are known. For example, 
lets compute the following sum: S = t1 + t2 + ... + tn, such 
that the intermediates are bounded in absolute value by α, 
then each partial sum give rise to a rounding error less than 
1/2 ulp(α) using rounding to nearest mode. The final error is 
then less than (n−1/2) ulp(α).

Relative error
The  relative  error  is  used,  when  the  boundary  of 

intermediate values.  Let  * be a mathematics operator,  and 
for  any real  numbers  a and  b we denote by RN(a*b)  the 
correct rounding of a*b. In this case, Highan [7] shows that 
the  final  relative  error  of  this  operation  c  =  RN(a*b)  is 
(1+β)n−1 where β is such that c = (1+β)(a*b).

V. ARITHMETIC OPERATION

A. Addition, subtraction, multiplication and division

The  four  essential  arithmetic  operations  are  addition, 
subtraction,  multiplication  and  division.  In  this  work,  we 
denote by OP the set of these four operations (add, sub, mul,  
div), namely,

OP =:: add | sub | mul | div.
A floating point arithmetic is a mapping which assigns for 
each pair of floating point numbers x and y and each        op
∈ OP another  floating  point  number,  denoted  op(x,  y), 
provided y≠0 when op = div.

The  basic  floating-point  multiplication  algorithm  is 
described as follow:

Let (s1, frac1, exp1) and (s2, frac2, exp2) be representation 
of two floating-point numbers. The multiplication of these 
two representations gives an approximate result (sp, fracp,  
expp) with no regard to rounding. This means that their 
mantissas are multiplied, their exponents are added, and 
their sign bits are XORed. The intermediate results are sent 
to the round, which rounds according to the mode and 
destination format as detailed in the previous section.
Observe here that the multiplication stage was decomposed 
into operations on the mantissa, exponent and sign. These 
three constants are natural numbers and all basic operations 
in this set are already defined for B method.

Using the two representations above, we verify the following 
properties of the mantissa, exponent and sign computation:

signp = sign1 × sign2

expp = exp1 + exp2 + p + bias;
where p represents the number of bits in the fraction.

fracp + 1 > frac1 × frac2

fracp≤ frac1 × frac2.
The division and square root are more difficult to specify 

and verify than the multiplication, addition and subtraction. 
This difficult  comes from the fact  that  the result  of  these 
operations are rational or irrational number. 

By using same notations of multiplication one can prove 
that sign1/sign2= sign1 × sign2.

Let x and y be two floating point numbers and denote by 
op(x, y) the results of the operation op∈ OP. Then, we have 
the following inequalities:

wordsizeop (x,y) ≥ wordsizex  and wordsizeop (x,y) ≥ wordsizey.
Remark that if x = 0 and y≠ 0 the result div(x, y) is a NaN. 
Similarly, sub(+∞,+∞) = NaN.
The floating point subtraction is anti-symmetric if

op(x − y) = −op(y − x) for all x and y.
It is monotonic if x ≤ y implies op(x − z) ≤ op(b − z) for all 
z. Furthermore, subtraction can fail to be anti-symmetric in 
IEEE standard arithmetic only when a rounding mode other 
than the default is used.

Note  also  that  in  arithmetics  with  signed  zeros,  the 
computed value op(x−x) can differ from the computed value 
op(−op(x − x)), but the numeric value y of the result of 
op(x  −  x) still  satisfies  y  =  −y,  and  this  latter  property 
suffices to satisfy anti-symmetry.

Anti-symmetry
op(x − y) = −op(y − x)
op(x − x) = op(−op(x − x))
Monotony
x ≤y op(x − z) ≤op(b − z) for all z.

B. Square Root Implementation

In  this  part  we  restrict  ourselves  to  single-precision 
floating point numbers. To compute square root with correct 
rounding, we first  need to handle special  values,  i.e  zero, 
infinities,  NaNs.  For  these  special  values,  the  B  machine 
respects some known properties of the square root function. 
Therefore, for any floating point number x one have:

{ }+∞−+∈∀ ,0,0x   x = x

x = NaN for x < 0 and x = −1.
Once the square root for special values is specified, we 

now consider  a  floatingpoint  number  x unpacked in three 
fields, sign, fraction and exponent, like in section 1.

Let  x be  a  normalized  single-precision  floating-point 
number and x = sign.frac.2exp with exp an integer between 
-126 and 127.

Since the square root number of floating point is a floating 
point number and it is always positive, then the sign can be 
ometed and the decomposition of  x  can be written as 

x = l.2d,where d = exp/2 , l = t frac  and t=1 or 2  
depending on the parity of exp. Remark here that exp needs 
not be incremented.

Suppose that  the fraction  frac has the binary expansion 
frac = ±1. f1 f2 …f23, then to compute the exact value of x
, under round-to-nearest rounding, reduces to computing the 
exact values of the bits l1l2...l  23l  24... where l1l2...l  23l  24... is 
the binary expansion of l.
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Newton-Raphson method
The  purpose  of  Newton-Raphson  method  is  to  find 

approximations of zeros of differentiable functions. In this 
section,  the  Newton-Raphson’s  method  is  used  to 
approximate the square root function.

Several  floating-point divide and square root algorithms 
are based on the Newton-Raphson iterative method and on 
polynomial evaluation. For example if we want to compute s

t  the  Newton-Raphson  method  is  used,  a  number  of 
iterations first calculate an approximation of  1/t , using the 
function f(x) = t −1/x.

Take an arbitrary floating-point number  x0 and define by 
iteration xn as follow: xn+1 = xn – (f(xn)/f’(xn))
Here, f’ denotes the derivative of the function f.
The initial  value  x0 can be chosen,  in the absence of any 
intuition  about  where  the  zero  might  lie,  by  using  the 
intermediate value theorem.

Example Let  a be a  positive real  number.  We want to 
compute,  using  the  Newton-Raphson  method,  the  square 
root of a. To do this, let define the function f(x) = x2 − a.

The zero of this function is exactly the square root of  a. 
Newton-Raphson’s  method  starts  with  a guess  x0 and 
iteratively refines this guess.

C.  Exact floating point computation

The exact rounding allows proving properties for floating 
point  system  and  devising  algorithms  to  make  exact 
calculation using the floating as building blocks.

We consider here a system with the base 2, and a mantissa 
with p bits. We also consider the rounding to nearest mode, 
even if some results are generally true for any base.
Let  denote  by ⊕,  Θand  ⊗the  three  arithmetic 
operations addition, subtraction, multiplication respectively 
with respect to correct rounding.

Correct Rounding (IEEE 754):
a ⊕ b = p (a + b);
a Θb = 0  ⇒  a=b.

The computed value a ⊕b or a Θb is exact when 
a ⊕ b = a + b and a Θb = a − b.

Sterbenz theorem
Theorem  2: Let  x  and  y  like  signed-machine  numbers  

and, without loss of generality, assume that both x and y are  
positive. Suppose that y/2≤ x≤2y. If subtraction is performed  
with a guard digit, and underflow does not occur, then the  
computed value x Θy of x − y is exact.

We  now  consider  a  general  property  known  as 
faithfulness.  This  property  is  very  useful  to  prove  the 
correctness of many computations.

For floating point numbers  x and  y and  op∈ {add,mul,  
sub, div}, let z = op(x, y) exactly such that y ≠ x if op = div. 
Let  s and  t be consecutive floating point numbers with the 
same  sign as  z,  such  that tzs <≤ .  Then  the 
floating point  arithmetic  is  called  faithful  if  op(x,  y)  = s 
whenever 
z = s and op(x, y) is either s or t whenever z≠ x.

As a consequence of this definition, we give this lemma:
Lemma If  a and  b are  floating  point  numbers  with 

mantissa t and basis α such that 1/2≤a/b≤2, then a−b is also 
a  floating  point  number  with  mantissa  t  and  bias  α.  In 
particular,  in  a  faithful  arithmetic,  op  (a  −  b)  =  a  −  b 
exactly.

VI.  CONCLUSION

Formal methods are a particular kind of mathematically-
based  techniques  for  the  specification,  development  and 
verification of software and hardware systems. The use of 
formal  methods  for  software  and  hardware  design  is 
motivated by the expectation that,  as  in other  engineering 
disciplines,  performing  appropriate  mathematical  analysis 
can contribute to the reliability and robustness of a design. 
However, the high cost of using formal methods means that 
they  are  usually  only  used  in  the  development  of  high-
integrity  systems,  where  safety  or  security  is  of  utmost 
importance. This paper presents the IEEE 754 standard for 
B  method by introducing the  floating-point  numbers.  We 
first  introduced  the  four  different  rounding  modes  for  B 
method  and  then  we  have  introduced  the  four  essential 
arithmetic operations.  This work will surely enable the B-
tool software to handle real numbers and thus increase the 
scope of this formal method to cover more complex projects 
that developers could not modelize by using only integers.
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