

Abstract—The aims of this paper is to introduce the IEEE
754 standard for the formal method B by introducing the
floating-point numbers. We first introduce the four different
rounding modes for B method and then we introduce the four
essential arithmetic operations, i.e addition, subtraction,
multiplication and division for this method.

Index Terms—Abstract Machines, AMN, Formal method,
IEEE 754, VDM

I. INTRODUCTION

HE B Method is a formal specification method based
around Abstract Machine Notation (AMN in short)

which allows for highly accurate expressions of the
properties required by specifications. Recall that formal
methods consist of writing formal descriptions, analyzing
those descriptions and in some cases producing new
descriptions for example refinements from them.

T

The B-Method is a set of mathematically based techniques
for the specification, design and implementation of software
components. Systems are modeled as a collection of
interdependent Abstract Machines, for which an object-
based approach is employed at all stages of development. An
Abstract Machine is described using the Abstract Machine
Notation (AMN). A uniform notation is used at all levels of
description, from specification, through design, to
implementation. AMN is a state-based formal specification
language in the same school as Vienna Development Method
(VDM) and Z method. An Abstract Machine comprises a
state together with operations on that state. In a specification
and design of an Abstract Machine the state is modeled
using notions like sets, relations, functions, sequences.
The operations are modeled using Pre- and Post-conditions
using AMN. One can then prove in a fully automated fashion
that these properties are unambiguous, coherent and are not
contradictory. This allows us to mathematically prove that
these properties are taken into account as the design stages
progress.
The formality of the description allows us to carry out
rigorous analysis. By looking at a single description one can
determine useful properties such as consistency or deadlock-
freedom. By writing different descriptions from different
points of view it is possible to determine important
properties such as satisfaction of high level requirements or
correctness of a proposed design. However, this formal
specification can only use a set of natural numbers and no

Manuscript received January 14, 2011; revised February 28, 2011. This
work was supported in part by the ANR-MUSCADE project and
SAFECODE-INRETS project.

H. Ait Haddou is with the National School of Architecture LRA
Toulouse and National Institute for Transport and Safety Research, 83 Rue
Aristide Maillol, 31100 Toulouse, France (phone: +33-612-935-941; fax:
+33-562-115-049; e-mail: Hassan.ait-haddou@toulouse.archi.fr).

floating-point numbers yet. Therefore, introducing the IEEE
754 standard for B method is very interesting by introducing
different rounding modes and the four essential arithmetic
operations.
In this paper, we use the representation of floating point
numbers in a computer to introduce the IEEE 754 standard
for B method. We also prove how rounding can be
performed and how limited error is induced to limited
precision with operations like addition, subtraction,
multiplication and division. The importance of the rounding
is illustrated by the Patriot Missile failure [2]. The cause was
an inaccurate calculation of the time since boot due to
computer arithmetic errors.
This paper is organized as follows. Sections II and III
describe the representation and specification of floating-
point numbers. Section VI presents a formal description of
how floating-point numbers are used to approximate real
numbers. We also introduce the four different rounding
modes for B method. In section V, we introduce the four
essential arithmetic operations, i.e addition, subtraction,
multiplication and division for B method.

II.REPRESENTATION

A. Floating-Point Number

The floating-point numbers [3] can be represented as
follow: x = s.m.βexp

where s denotes the sign of x (s2∈ {−1, 1}), β is the
floating-point base (usually 2 or 10), m is called the
mantissa, also known as the significand, and exp is the
exponent of x.

For example, the floating-point number (fpn) 3.1416 can
be written on the floating-point base 10 and precision 5 as .
31416.101, or 314.16.10-2.

As it ca be seen, the definition of exponent is not intrinsic
since it depends on the choice of the value of mantissa.

The mantissa m generally composed at least p digits in the
base β and p is then called the precision of x. The exponent
field exp lies between the maximum and minimum exponent,
i.e expmin ≤ exp ≤ expmax.

Once the mantissa is fixed to be an integer, we then have
0 < m < β p, and the computation of floating-point numbers
can be reduced to computation of mantissa as a single
integer.

Therefore, to represent a floating-point number, we must
clearly define the constants described before. Throughout,
we will adopt the following notations:

• exp refers to exponent;
• frac: refers to mantissa;
• wordsize: refers to the word size.
By definition

wordsize = expsize + fracsize + 1.
• expmax and expmin refer to the maximum and the

Introduction to Floating-Points Arithmetic in B
Method

H. Ait Haddou

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

minimum of exponent respectively.
Remark that the set of all floating point numbers is

defined as an abstract set.

B. The FPN MACHINE

The main purpose of this part is to introduce what we call
the FPN machine. This machine contains the set of all
floating-point numbers. In other words, this set will play the
same role as BIG introduced by Abrial in the [1].

In our case, this set will contain the subset fpn of floating
described in the beginning. Namely, the set of all floating
x = s.m.βexp. Once this set is defined, we can establish the

restriction relation which asserts for any floating- point in
fpn the exponent, sign and mantissa. These functions are
well defined and all arithmetic operations remain valid in
this case.

Now, let x∈ FPN, then x is in the form x = s.m.βexp and
consider the three functions define as fellow:

fexp: FPN → NAT
 x → exp(x);

ffra: FPN → NAT
 x → frac(x);

fsign: FPN → {0, 1}
 x → sign(x).

These three partial functions are well defined and the first
important property of each function is that the pair (x, f*(x))
is a member of the function f, provided x is a member of the
domain of fi where i∈ {sign, fra, exp}.

III.SPECIFICATION

The standard IEEE 754 specifies four floating-point
formats in two groups, basic and extended, with a "single-
precision" and a "double-precision" format in each of the
two groups.

A. Single Precision

The IEEE single precision floating point standard [4]
representation requires a 32 bit word, which may be
represented as numbered from 0 to 31. The first bit is the

sign bit, s, the next eight bits are the exponent bits, exp,
and the final 23 bits are the fraction frac. In this case, the
format is illustrated on table I below.

Single
exp = 8 ∧ wordsize = 32.

The simple extended precision floating point is given by
this relation:

Simple-Extended
exp≥ 11 ∧ wordsize ≥43.

B. Double Precision

The IEEE double precision floating point standard
representation requires a 64 bit word, which may be
represented as numbered from 0 to 63. The first bit is the
sign bit, s, the next eleven bits are the exponent bits, exp,
and the final 52 bits are the fraction frac.

Double
exp = 11 ∧ wordsize = 64.

Similarly, we have the following description for the
double extended precision of floating:

Double-Extended
exp ≥ 15 ∧ wordsizege = 79.

For instance, in single format, the values of constants are

exp=8, frac=23, wordsize=32, expmin=0, exp max=28−1.
In this case, the sign, exponent, and mantissa can be

encoded as a single integer. Namely, one have
sign∈ {0, 1} and exp, frac∈ N. The table II below

shows the layout for single (extended) and double
(extended) precision floating-point values:

TABLE II
IEEE 754 FLOATING-POINT FORMATS

Format Single
Ingle-

Extended Double
Double-

Extended

Expmax +127 1023 +1023 +16383
Expmin -126 1022 -1022 -16382
Exp Bias +127 +1023 +1023 +16383
Precision(bits) 243 32 53 64
Total Bits 3 43 64 80
Sign Bits 1 1 1 1
Exp Bits 8 11 11 15
Frac 23 32 52 64

C. Special Values

1. Zero
Zero is a special value denoted with an exponent field of

zero and a fraction field of zero. Note that −0 and +0 are
distinct values, though they both compare as equal.
2. Denormalized

If the exponent is all 0s, but the fraction is non-zero (else
it would be interpreted as zero), then the value is a
denormalized number. Thus, this represents a number

(−1)s × frac × 2 − 126.
For double precision, denormalized numbers are of the

form
(−1)s × frac × 2 − 1022.

From this we can interpret zero as a special type of
denormalized number.
3. Infinity

The values + and - are characterized by an exponent equal
to expmax and a null mantissa.

expmax ∧ frac = 0.
4. Not a Number

The value NaN (Not a Number) is used to represent a
value that does not represent a real number. NaN’s are
represented by a bit pattern with an exponent of all 1s and a
non-zero fraction.

In the B method we can describe them as
frac = 0 ∧ exp = expmax = 2exp − 1.

The table III summarizes the special values.

IV. ROUNDING

The purpose of this section is to present a formal
description of how floating-point numbers are used to
approximate real numbers.

Floating-point numbers are represented in computer
hardware as base 2 (binary) fractions. For example, the

decimal fraction 0.125 has value
1000

5
100

2
10
1 ++ , and in

the same way the binary fraction 0.001 has value

8
1

4
0

2
0 ++ . These two fractions have identical values, the

TABLE I
UNITS FOR MAGNETIC PROPERTIES

Sign Exponent Fraction

31 30 29 28 27 26 25 24 23 22 21 … 3 2 1 0

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

only real difference being that the first is written in base 10
fractional notation, and the second in base 2.

Unfortunately, most decimal fractions cannot be

represented exactly as binary fractions. As a consequence,
generaly the decimal floating-point numbers you enter are
only approximated by the binary floating-point numbers
actually stored in the machine.

The problem is easier to understand at first in base 10.

Consider the fraction
3
1 . You can approximate that as a

base 10 fraction: 0.3 or, 0.33 or, better, 0.333 and so on. No
matter how many digits you are willing to write down, the

result will never be exactly
3
1 , but will be an increasingly

better approximation of
3
1 .

In the same way, no matter how many base 2 digits you
are willing to use, the decimal value 0.1 cannot be
represented exactly as a base 2 fraction.

Because of the finite precision of floating-point numbers,
floating-point arithmetic can only approximate real
arithmetic. Every floating-point number is a real number, but
few real numbers have floating-point equivalents.
Consequently, floating-point operations (addition,
multiplication, division, etc.) are generally thought of as
being composed of the corresponding real operation
followed by a rounding step which chooses a floating-point
number to approximate the true result.

A. Definition of function ulp

There are several different definitions of function ulp, see
for instance [5]- [6]. In this work we restrict ourselves to the
original definition due to W. Kahan in 1960 [8]. The term
ulp is an acronym for unit in the last place and the original
definition is: ulp(x) is the gap between the two floating-point
numbers nearest x, even if x is one of them. As told by
Kahan [8], the adoption of the IEEE-754 standard for
floating-point arithmetic has made infinities and NaNs
ubiquitous, and that must be taken into account in the
definition of ulp(x). Kahan now suggests the following
definition: ulp(x) is the gap between the two finite floating-
point numbers nearest x, even if x is one of them. (But
ulp(NaN) is NaN.). In other words, the KahanUlp (x) is the
width of the interval whose endpoints are the two finite
representable numbers nearest x (even if x is not contained
within that interval). The table IV below summarizes the
IEEE 754 standard bounds.

In this paragraph, we recall some properties of the
function ulp(x) regarding different rounding modes.

Property 1 Let X be a flouting point number and x a real
number. Then, with rounding to nearest (RN) and in radix 2,
one have

|X − x| <
2
1 HarrisonUlp(x)X = RN(x)

Note that this property is not true with radices greater than
or equal to 3. The following counter-example in radix 3
explain this situation.

Let X = 1- = 1 – 3-n and take x such that 1< x <1 +
2
1 3

-n. Then HarrisonUlp(x) = 3-n+1, and |x−X| <
2

3 1+− n
 , so that

|x−X| <
2
1 HarrisonUlp(x). But X ≠RN(x).

The following property is proved for any radix:
Property 2 Always with rounding to nearest (RN), one

have

X = RN(x) |X − x| <
2
1 HarrisonUlp(x)

Property 3 For any radix and with rounding to nearest
(RN),

|X − x| <
2
1 KahanUlp(x)X = RN(x)

Property 4 In radix 2,

X = RN(x) |X − x| <
2
1 KahanUlp(x)

Let 1 – 3-n < x < 1 + 3-n, then RN(x) = 1 and

|x − 1| >
2
1 KahanUlp(x).

This example shows that the previous property is not true
in radix 3.

Remark that with rounding to nearest in radix 2, both
Kahan’s and Harrison’s definitions preserve the common
claims listed above.

B. Rounding modes

The IEEE standard has four different rounding modes; the
first is the default; the others are called directed rounding.

1. Round to Nearest rounds to the nearest value; if the
number falls midway it is rounded to the nearest value with
an even (zero) least significant bit, which occurs 50% of the
time (in IEEE 754r this mode is called roundTiesToEven to
distinguish it from another round-to-nearest mode)

2. Round toward 0 directed rounding towards zero
3. Round toward + directed rounding towards positive

infinity
4. Round toward − directed rounding towards negative

infinity.
For the IEEE standard double precision (frac = 52),

numbers x ∈ (1, 1+2-frac) are rounded to:
• 1 if 1 < x _ 1 + 2-52

• 1 + 2-52 if 1 + 2-52 < x < 1 + 2-52

For all but specifically designed numerical analysis
applications, round to nearest is the best rounding mode. In

TABLE III
TABLE OF SPECIAL VALUES

Name exp frac sign expbits fracbits

+0 min-1 0 + 0000000 0000000
-0 min-1 0 - 0000000 0000000
Number min≤e≤max any any any any
+ max+1 0 + 1111111 0000000
- max+1 0 - 1111111 0000000
NaN max+1 0 any 1111111 any

TABLE IV
 IEEE 754 STANDARD BOUNDS

Single Double

Exp bits 8 11

Frac 23 52
ulp 1.19x10-7 2.22x10-16

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

round-to-nearest mode, the nearest representable value is
never more than 1/2 ULP away from the exact result being
rounded, so the error introduced by rounding is never more
than 1/2 ULP. For the other rounding modes, the error is less
than 1 ULP.

As an example of the size of a 1/2 ULP rounding error:
suppose you tried to measure precisely the distance to the
sun (about 149.63700 million kilometers, see table V).

An error of 1/2 ULP in single-precision would put your
measurement off by about 232.5 kilometers; an error of 1/2
ULP in double-precision would put it off by about 8
microns; and an error of 1/2 ULP in quad-precision would
put it off by about 10-17 microns, which is about one
millionth of the diameter of a proton.

Let x be the exact value of any given operation, and x−,
x+ two floating points such that x− ≤ x ≤ x+.

The rounding towards negative infinity is x−, to positive
infinity x+, rounding to zero is x− if x ≥ 0, and x+ if x < 0.
Rounding to the nearest is defined as the number of x− and
x+ which is closest to x, in the event of a tie, this is the case
when x is in the middle of two floating numbers, the IEEE
standard imposes choose one with an even mantissa.

C. Exactly rounded

The important consequence of rounding is the fact that
once the rounding mode is chosen, the result of any
operation is perfectly specified, especially when the result is
unique. We then tell about the exactly rounded also called
correctly bounded.

The IEEE standard 754 imposes the exactly rounded for
the four basic arithmetic operations (addition, subtraction,
multiplication and division) and square root. Thus, a
program using these five operations behaves the same way
on any configuration respecting the IEEE 754 standard,
provided there are no intermediate precision and that the

programming language does not allow the compiler to
change operations if it can produce a different result.

The exactly rounded property allows building proved
algorithms using these five basic operations (TwoSum,
FastTwoSum, Sterbenz, Dekker, see for instance [9]).

The directed rounding toward positive or negative infinity
allows carrying out interval arithmetic [11], i.e. to calculate
for every operation an upper or a lower bound to the exact
value. We do not need the exactly rounded to do this,
the respect of the definition of rounding suffices, but the
correct rounded gives the best possible result. On the other
hand, the IEEE 754 standard imposes nothing for the other
mathematical operations (power, exponential, logarithm,
sinus, etc.) for which no requirement is imposed.

Since real numbers are not yet directly used in B, as we
need to prove properties for both abstraction and
implementation. Real numbers being implemented on all
computers as approximations, we could find combination of
operations that would behave differently as abstraction and
as C code implementation, because of numerical erosion.
Instead, we manipulate big integer numbers. For example, if
we want to represent a speed varying between 0 à 5m/s with

a 0.01 m/s accuracy, define a [0, 500] interval, 0
representing 0 m/s, 500 for 5.00 m/s.

The following theorem, due to Nesterenko-Waldschmid
[10], was used to show that getting exactly rounded results
in double precision could be done with frac _ 1000000.
Remember that computing functions with 1000000 digits is
feasible.

Theorem 1 (Y. Nesterenko and M. Waldschmidt (1995))
Let p/q, r/s be rational numbers, with p ≠ 0 and A, B and

E be positive, real numbers with E ≥ e satisfying
A≥ max (max (p, q), e), B ≥ max(r, s).

Then
|e r/s –p/ |≥ exp(−211 × (logB + loglogA + 2log(E|r/s|+) +

10)x (logA + 2E|r/s|+6logE)×(3.3log(2) + logE)×(logE)-2)
where |r/s |+ = max(1, |r/s |).

D. Double Rounding

Let x be a real number, y the rounding of x in p precision
and z the rounding of y in precision q < p. Then, z is not
always the rounding of x in precision q.

For example, in the case of round to nearest, x =
1.0110100000001 rounded to 9 bits gives y = 1.01101000,
which rounded to 5 bits gives z = 1.0110 while the direct
rounding of x to 5bits gives z’ = 1.0111. We call this the
problem of double rounding.

On x86 architectures, when the three variables are double
precision floatingpoint numbers, to compute c = a + b, by
default, two successive roundings will occur:

1. First in extended precision during the addition,
2. Then in a lower precision when storing the value into

memory.
In most cases, the final result is the correct rounding of

the sum of the two floating-point numbers, but not always.

E. Round-to-nearest-even and round-to-nearest modes

Let x be a fractional number between two consecutive
representable fractional numbers m1 and m2 such that
m1≤ x < m2. Let denote by RNE the round-to-nearesteven
mode and LSB(mi) represents the least significant bit of mi
where i∈ {1, 2}.

The RNE mode rounds x to the nearest representable
number. When x is exactly in the half way between two
representable numbers (tie case), it is rounded to the nearest
even number. RNE is expressed as





 =

+
≤

=
otherwise

,0)LSB(m and
2

m
 xif

)(

2

1
21

1

m

m
m

xRNE

The round-to-nearest mode RN is similar to RNE, except
for the handling of a tie case. When a tie case occurs, RN
unconditionally rounds the number up. RN is expressed as





 +

=
otherwise

,
2

m
 xif

)(

2

21
1

m

m
m

xRN


For the basic floating-point multiplication algorithm, both

TABLE V
EXAMPLE OF THE A SIZE OF A ½ ULP ROUNDING ERROR

Distance 1/2ulp rounding error

km 149.637000 232.5
miles 82718076.3 128.524046

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

RN and RNE can be performed by first adding 2-n to the
normalized product, and then discarding the n less
significant bits of the normalized product. If RNE is
performed, the previously added 2-n should be subtracted
when the tie case occurs and the nearest-up number is odd.
This correction can be made by complementing the least
significant bit of the rounded product.

F. Rounding errors

The major problem of floating is the propagation of
rounding errors due to the problem of “cancellation”, the
final result of any computation including several operations
may be far from the true value, even if in some cases, in the
opposite sign sign.

The Rump two-variate polynomial constitutes an example
to illustrate the rounding error problem:
R(x,y)=1335y6/4+x2(11x2y2 – y6 − 121y4 − 2) +11y8/2+ x/2y

We want to find the sign of R(77617, 33096). Since it is
impossible to stop the propagation of rounding errors, it is
important to bound the final error. To do this, one can bound
the absolute error, the relative error, or bound error on ulps.

 Absolute error
The absolute error is generally used when the upper

bound of the intermediate values are known. For example,
lets compute the following sum: S = t1 + t2 + ... + tn, such
that the intermediates are bounded in absolute value by α,
then each partial sum give rise to a rounding error less than
1/2 ulp(α) using rounding to nearest mode. The final error is
then less than (n−1/2) ulp(α).

Relative error
The relative error is used, when the boundary of

intermediate values. Let * be a mathematics operator, and
for any real numbers a and b we denote by RN(a*b) the
correct rounding of a*b. In this case, Highan [7] shows that
the final relative error of this operation c = RN(a*b) is
(1+β)n−1 where β is such that c = (1+β)(a*b).

V. ARITHMETIC OPERATION

A. Addition, subtraction, multiplication and division

The four essential arithmetic operations are addition,
subtraction, multiplication and division. In this work, we
denote by OP the set of these four operations (add, sub, mul,
div), namely,

OP =:: add | sub | mul | div.
A floating point arithmetic is a mapping which assigns for
each pair of floating point numbers x and y and each op
∈ OP another floating point number, denoted op(x, y),
provided y≠0 when op = div.

The basic floating-point multiplication algorithm is
described as follow:

Let (s1, frac1, exp1) and (s2, frac2, exp2) be representation
of two floating-point numbers. The multiplication of these
two representations gives an approximate result (sp, fracp,
expp) with no regard to rounding. This means that their
mantissas are multiplied, their exponents are added, and
their sign bits are XORed. The intermediate results are sent
to the round, which rounds according to the mode and
destination format as detailed in the previous section.
Observe here that the multiplication stage was decomposed
into operations on the mantissa, exponent and sign. These
three constants are natural numbers and all basic operations
in this set are already defined for B method.

Using the two representations above, we verify the following
properties of the mantissa, exponent and sign computation:

signp = sign1 × sign2

expp = exp1 + exp2 + p + bias;
where p represents the number of bits in the fraction.

fracp + 1 > frac1 × frac2

fracp≤ frac1 × frac2.
The division and square root are more difficult to specify

and verify than the multiplication, addition and subtraction.
This difficult comes from the fact that the result of these
operations are rational or irrational number.

By using same notations of multiplication one can prove
that sign1/sign2= sign1 × sign2.

Let x and y be two floating point numbers and denote by
op(x, y) the results of the operation op∈ OP. Then, we have
the following inequalities:

wordsizeop (x,y) ≥ wordsizex and wordsizeop (x,y) ≥ wordsizey.
Remark that if x = 0 and y≠ 0 the result div(x, y) is a NaN.
Similarly, sub(+∞,+∞) = NaN.
The floating point subtraction is anti-symmetric if

op(x − y) = −op(y − x) for all x and y.
It is monotonic if x ≤ y implies op(x − z) ≤ op(b − z) for all
z. Furthermore, subtraction can fail to be anti-symmetric in
IEEE standard arithmetic only when a rounding mode other
than the default is used.

Note also that in arithmetics with signed zeros, the
computed value op(x−x) can differ from the computed value
op(−op(x − x)), but the numeric value y of the result of
op(x − x) still satisfies y = −y, and this latter property
suffices to satisfy anti-symmetry.

Anti-symmetry
op(x − y) = −op(y − x)
op(x − x) = op(−op(x − x))
Monotony
x ≤y op(x − z) ≤op(b − z) for all z.

B. Square Root Implementation

In this part we restrict ourselves to single-precision
floating point numbers. To compute square root with correct
rounding, we first need to handle special values, i.e zero,
infinities, NaNs. For these special values, the B machine
respects some known properties of the square root function.
Therefore, for any floating point number x one have:

{ }+∞−+∈∀ ,0,0x x = x

x = NaN for x < 0 and x = −1.
Once the square root for special values is specified, we

now consider a floatingpoint number x unpacked in three
fields, sign, fraction and exponent, like in section 1.

Let x be a normalized single-precision floating-point
number and x = sign.frac.2exp with exp an integer between
-126 and 127.

Since the square root number of floating point is a floating
point number and it is always positive, then the sign can be
ometed and the decomposition of x can be written as

x = l.2d,where d = exp/2 , l = t frac and t=1 or 2
depending on the parity of exp. Remark here that exp needs
not be incremented.

Suppose that the fraction frac has the binary expansion
frac = ±1. f1 f2 …f23, then to compute the exact value of x
, under round-to-nearest rounding, reduces to computing the
exact values of the bits l1l2...l 23l 24... where l1l2...l 23l 24... is
the binary expansion of l.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

Newton-Raphson method
The purpose of Newton-Raphson method is to find

approximations of zeros of differentiable functions. In this
section, the Newton-Raphson’s method is used to
approximate the square root function.

Several floating-point divide and square root algorithms
are based on the Newton-Raphson iterative method and on
polynomial evaluation. For example if we want to compute s

t the Newton-Raphson method is used, a number of
iterations first calculate an approximation of 1/t , using the
function f(x) = t −1/x.

Take an arbitrary floating-point number x0 and define by
iteration xn as follow: xn+1 = xn – (f(xn)/f’(xn))
Here, f’ denotes the derivative of the function f.
The initial value x0 can be chosen, in the absence of any
intuition about where the zero might lie, by using the
intermediate value theorem.

Example Let a be a positive real number. We want to
compute, using the Newton-Raphson method, the square
root of a. To do this, let define the function f(x) = x2 − a.

The zero of this function is exactly the square root of a.
Newton-Raphson’s method starts with a guess x0 and
iteratively refines this guess.

C. Exact floating point computation

The exact rounding allows proving properties for floating
point system and devising algorithms to make exact
calculation using the floating as building blocks.

We consider here a system with the base 2, and a mantissa
with p bits. We also consider the rounding to nearest mode,
even if some results are generally true for any base.
Let denote by ⊕, Θand ⊗the three arithmetic
operations addition, subtraction, multiplication respectively
with respect to correct rounding.

Correct Rounding (IEEE 754):
a ⊕ b = p (a + b);
a Θb = 0 ⇒ a=b.

The computed value a ⊕b or a Θb is exact when
a ⊕ b = a + b and a Θb = a − b.

Sterbenz theorem
Theorem 2: Let x and y like signed-machine numbers

and, without loss of generality, assume that both x and y are
positive. Suppose that y/2≤ x≤2y. If subtraction is performed
with a guard digit, and underflow does not occur, then the
computed value x Θy of x − y is exact.

We now consider a general property known as
faithfulness. This property is very useful to prove the
correctness of many computations.

For floating point numbers x and y and op∈ {add,mul,
sub, div}, let z = op(x, y) exactly such that y ≠ x if op = div.
Let s and t be consecutive floating point numbers with the
same sign as z, such that tzs <≤ . Then the
floating point arithmetic is called faithful if op(x, y) = s
whenever
z = s and op(x, y) is either s or t whenever z≠ x.

As a consequence of this definition, we give this lemma:
Lemma If a and b are floating point numbers with

mantissa t and basis α such that 1/2≤a/b≤2, then a−b is also
a floating point number with mantissa t and bias α. In
particular, in a faithful arithmetic, op (a − b) = a − b
exactly.

VI. CONCLUSION

Formal methods are a particular kind of mathematically-
based techniques for the specification, development and
verification of software and hardware systems. The use of
formal methods for software and hardware design is
motivated by the expectation that, as in other engineering
disciplines, performing appropriate mathematical analysis
can contribute to the reliability and robustness of a design.
However, the high cost of using formal methods means that
they are usually only used in the development of high-
integrity systems, where safety or security is of utmost
importance. This paper presents the IEEE 754 standard for
B method by introducing the floating-point numbers. We
first introduced the four different rounding modes for B
method and then we have introduced the four essential
arithmetic operations. This work will surely enable the B-
tool software to handle real numbers and thus increase the
scope of this formal method to cover more complex projects
that developers could not modelize by using only integers.

REFERENCES

[1] J. R. Abrial. The B Book: Assigning Programs to Meanings.
Cambridge University Press New York, 1996.

[2] D. N. Arnold (1988). Some disasters attributable to bad numerical

computing. Cambridge University Press [Online]. Available:
http://www.ima.umn.edu/ arnold/disasters/.

[3] W. D. Clinger. “How to read floating point numbers accurately,”
ACM PLDI, 1990 pp. 92–101.

[4] D. Goldberg. “Eee standard for binary floating-point arithmetic,”
New York: ANSI/IEEE, Std. pp. 754-785, 1985.

[5] D. Goldberg. “What every computer scientist should know about
floatingpoint arithmetic,” ACM PLDI, vol 23, no 1, 1991.

[6] J. Harrison. A machine-checked theory of floating-point arithmetic.
Lecture Notes in Computer Science, 1999.

[7] J. L. Boulanger and G. Mariano “Formal modeling of digital circuits
using the B method,” Research rapport, INRETS-ESTAS, 1999.

[8] W. Kahan. A logarithm too clever by half. ., 2004.
[9] D. E. Knuth. The art of computer programming. Addison-Wesley,

1973. vol. 2.
[10] Y. V. Nesterenko and M. Waldschmidt. On the approximatio, of the

values of exponential function and logarithm by algebraic numbers.
Mat. Zapiski, 1996.

[11] A. Neumaier. Interval methods for systems of equations . Cambridge
university press, 1990.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

	I. INTRODUCTION
	II. representation
	A. Floating-Point Number
	B. The FPN MACHINE

	III. Specification
	A. Single Precision
	B. Double Precision
	C. Special Values

	IV. Rounding
	A. Definition of function ulp
	B. Rounding modes
	C. Exactly rounded
	D. Double Rounding
	E. Round-to-nearest-even and round-to-nearest modes
	F. Rounding errors

	V. Arithmetic operation
	A. Addition, subtraction, multiplication and division
	B. Square Root Implementation
	C. Exact floating point computation

	VI. Conclusion

