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Abstract—The paper introduces an EEG signals classifier for
classification of vigilance level of a car driver. The classifier is
based on the concept of radial implicative fuzzy system. The
novel in the presented approach is accommodation of S-shaped
fuzzy sets which can handle boundary regions of the relevant
input space. Both structure and parameter learning of the
system are referred to and corresponding classification abilities
are presented.

Index Terms—EEG signals classification, microsleep detec-
tion, radial fuzzy system

I. INTRODUCTION

THE paper focuses on the use of radial implicative fuzzy
systems for classification of electroencephalographic

signals (EEG signals) [1]. Classification of this kind of
signals requires application of special methodologies. Suit-
able classes of by nature inspired computational techniques
are in an extensive use in recent decade. Namely, three
methodologies are well known. These are artificial neural
networks, fuzzy computing and evolutionary computing [2],
[3], [4].

Here we demonstrate an application of a class of fuzzy
systems which is closely linked to the concept of radial
basis neural networks. The relation is due to the radial shape
of employed fuzzy sets [5]. Moreover, so called S-shaped
fuzzy sets are also employed in order to enhance description
capabilities in boundary regions of input space.

A development of such a system consists of several phases.
On main level these are phases of structure and parameter
learning. In our approach the phase of structure learning
consists of initial setting of a rule base of a fuzzy system.
For this purpose GUHA method of exploratory data analysis
is employed [6], [7]. The phase of parameter learning is
performed by application of Levenberg-Marquard algorithm
with the requirement on retention of coherence of the system.
That is, with the requirement on permanent consistency of
system’s rule base [8].

Classification of a car driver vigilance level is the im-
portant issue in connection with the concept of smart cars
[9], [10], [11]. In these cars there are installed different
supporting devices which interoperate with a driver to help
him to drive more safely or effectively.

One of the possible inputs for such a device is an on-line
stream of EEG records taken directly from a driver head.
The signals are analyzed and classified into several vigilance
level classes. In our set up these are classes of mentation,
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wakefulness and microsleep corresponding gradually to the
increasing level of drowsiness.

In next four sections we provide the description of our
approach. Section II introduces the classifier based on the
concept of radial implicative fuzzy system. Section III
describes analyzed EEG data. Section IV deals with the
methodology of learning of the classifier. The last Section V
presents obtained results and concluding remarks.

II. S-RADIAL IMPLICATIVE FUZZY SYSTEMS

In this section we gradually develop the concept of
S-shaped radial (S-radial) fuzzy system. We start with the
concept of implicative fuzzy system, which is further en-
hanced by employment of radial membership functions and
incorporation of S-shaped radial fuzzy sets. The computa-
tional model is presented in the last subsection. The concept
and relevant computational model were described in details
in [5]. Here we give a brief description in order to reader
obtain the basic impression about these systems.

A. Implicative fuzzy systems

Fuzzy systems are generally rule based computational
models [3]. Each single rule represents an individual fuzzy
relation in input-output space encoding a partial knowledge
on a mapping of interest. These partial mappings are ag-
gregated in the rule base of a system and accompanied
by a kind of reasoning algorithm. The algorithm is usually
called the inference engine. An engine produces for a given
input an output which is typically a real number (MISO
configuration), real vector (MIMO configuration), or output
class or vector of classes. In what follows we will work with
the system in MIMO configuration with tree output classes.

An individual rule is given by combination of antecedent
and consequent part. That is why rules are commonly de-
noted as IF-THEN rules. Antecedents operates on multi-
dimensional input space Rn,x = (x1, . . . , xn) ∈ Rn and
consequents (in our configuration) on three-dimensional unit
cube [0,1]3 representing membership degree into particular
classes.

Mathematically, the j-th IF-THEN rule corresponds to
fuzzy relation Rj(x, y) given as

Rj(x, y) = Aj1(x1) ⋆ ⋅ ⋅ ⋅ ⋆Ajn(xn)→ Bj(y), (1)

where
Aj(x) = Aj1(x1) ⋆ ⋅ ⋅ ⋅ ⋆Ajn(xn) (2)

is the antecedent composed by combination of n fuzzy sets
with membership functions Aji(xi). Each of these fuzzy
sets operates on single dimension i. The combination is
performed by a fuzzy conjunction which is represented by a
t-norm ⋆ [3], [12]. Consequent fuzzy sets Bj(y) are actually
vectors from [0,1]3.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011



There are two main approaches to combination of an-
tecedents with conseqents. In conjunctive systems combina-
tion is made by a t-norm, typically by the same which is
emloyed for building the antecedent. In implicative systems
the combination is made by genuine fuzzy implications →
which are the generalizations of classical Boolen implication.

In our setting we work with residuated fuzzy implications
which are derived from corresponding t-norms by process
of residuation [3], [12]. Generally, for a t-norm ⋆ which
is a mapping t from [0,1]2 to [0,1], i.e., a, b ∈ [0,1],
t(a, b) ∈ [0,1] generalizing Boolean conjunction, we have
the residuated implication→ given as i(a, b) = supc t(a, c) ≤
b. The most common examples of t-norms and corresponding
implications are product t-norm t(a, b) = a ⋅ b and Goguen
implication →P (derived from product): a →P b = 1, if
a ≤ b, otherwise a →P b = b/a; and minimum t-norm
t(a, b) =min{a, b} and Gödel→M implication (derived from
minimum) a→M b = 1, if a ≤ b, otherwise a→M b = b.

B. Radial fuzzy systems

Radial fuzzy systems use radial functions for represen-
tation of membership functions of employed fuzzy sets.
Radial functions are well known from the area of radial basis
neural networks [2]. A radial function Φ(x) is determined by
its central point and one-dimensional (typically decreasing)
function applied on a norm of a distance from this central
point. Mathematically,

Φ(x) = act(∣∣x − a∣∣b), (3)

where x ∈ Rn, aj ∈ Rn is the central point, ∣∣ ⋅ ∣∣b is a
scaled norm on Rn and act is a decreasing function act(z) ∶
[0,∞)→ [0,1], such that act(0) = 1 and limz→∞ act(z) = 0.

In this paper the norm is considered to be scaled ℓp
norm which is defined as ordinary ℓp norm for p ∈ [1,∞)
and vector of scaling parameters b = (b1, . . . , bn), bi > 0.
Formally,

∣∣u∣∣b = (∑
i

∣ui∣p

bpi
)
1/p

. (4)

The choice p = 2 gives the scaled Euclidean norm.
The idea of radial fuzzy system is based on the notion of

radial property. The radial property refers to the fact that the
combination of individual fuzzy sets by a t-norm creates a
multi-dimensional radial fuzzy set with the same shape. This
property is not trivial in the sense that not all t-norms can
be combined with arbitrary shapes of fuzzy sets. Formally,
for a given act function and t norm ⋆ the following equation
holds

act(∣x1 −a1∣b1)⋆ ⋅ ⋅ ⋅ ⋆act(∣xn −an∣bn) = act(∣∣x−a∣∣b). (5)

Most prominent examples are combinations of product
t-norm with Gaussian radial fuzzy sets and minimum t-norm
with triangular shapes. The examples of these radial fuzzy
sets are presented in Fig. 1. However, for example, the
combination of triangular shape by product does not result
into multi-dimensional triangular shape.
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Fig. 1. One dimensional (a) triangular and (b) Gaussian radial fuzzy set.

Fig. 2. One dimensional (a) S-shaped triangular and (b) Z-shaped Gaussian
radial fuzzy set.
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Fig. 3. Two dimensional S-shaped fuzzy sets.

C. S-shaped radial fuzzy systems

S-shaped fuzzy sets are the extension of the bell-shaped
radial fuzzy sets to S-shaped or (Z-shaped) ones. The graph-
ical examples are presented in Fig. 2 for S-shaped triangular
and Z-shaped Gaussian fuzzy set.

Mathematically, these shapes are created by application of
positive u(+) or negative part u(−) functions on ui arguments.
We have u

(+)
i = ui for ui ≥ 0 and u

(+)
i = 0 otherwise; u(−)i =

−ui for ui ≤ 0 and u
(−)
i = 0 otherwise. Finally, the norm

defined in terms of formula (4) i.e.,

∣∣u∣∣sb =
⎛
⎝∑i
∣u(+−)i ∣p

bpi

⎞
⎠

1/p

(6)

becomes to be scaled seminorm.
As it is shown in [14] the radial property is retained with

scaled norm replaced by seminorm. Graphical examples in
two dimensions are presented in Fig. 3.

D. Computational model

The computational model of radial and S-radial fuzzy
implicative systems is presented here (the difference is in
replacement of scaled norm by a scaled seminorm). First,
the individual rules are combined into the form of single
fuzzy relation which assembles into a fuzzy rule base. In the
case of implicative systems individual rules are combined by
fuzzy conjunction. The minimum is the most typical case.
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Formally, we have

RB(x, y) =min
j
{Rj(x, y)} =min{Aj(x)→ Bj(y)}. (7)

The inference engine of implicative fuzzy systems actually
seeks for outputs which are fully compatible with given
input. For individual rules these are those classes yk for
which the following inequality holds: Aj(x) ≤ Bj(yk),
i.e., these are those classes evaluating the fuzzy implication
Aj(x) → Bj(yk) to one. Let us denote by Ij(x) the set
of such a classes. To obtain final output the intersection of
these sets is taken in order to obtain the set of classes which
is compatible with whole rule base. That is, the classes from
this set are compatible with knowledge stored in the rule
base of the fuzzy system.

If I(x) = ⋂j Ij(x) contains more than one class, the
classification is taken as the class with the maximum sum
of Bj(yk) values. Sum is taken over all js (rules).

The important question however is, how to assure that the
intersection is non-empty for each possible input x. This
question of coherence is discussed in [5] and [14]. Here we
only mention that there can be done study on this issue and
it is possible to put conditions on parameters of fuzzy sets
in order to the whole system be coherent.

III. EEG DATA

The electroencephalographic data (EEG data in short)
which we analyze were obtained during experimental ses-
sions held at the Joint Laboratory of System Reliability
(JLSR) located at the Czech Technical University in Prague.
The data were scanned via 19-th channel measuring cap from
the driver’s head as shown in Fig. 4.

Fig. 4. A driver with measuring cap with electrodes.

Volunteer drivers, mainly students or professional drivers,
underwent different driving scenarios in test car provided
by AUTO ŠKODA automaker. The car is surrounded by
projection screen and its actuators are interconnected with the
computer controlling the projection. During driving scenarios
EEG signals were recorded and classified into appropriate
classes by experts on the basis of objective (reaction time
on a random acoustic signal) and subjective marks (face
grimace, closing eyes).

The resulting database consists of 766 records classified
into the following three classes:
● mentation (218 cases) - this class corresponds to

a higher mental activity and higher vigilance level (the
driver is performing simple counting)

● wakefulness (210 cases) - the driver is asked not to do
any mental activity and to try to be relaxed while still
driving

● microsleep (338 cases) - records classified into this class
correspond to situation when the driver has long reaction
time on an acoustic signal, get off the road or even got
asleep

The data are preprocessed by transformation from time to
frequency domain by means of Welch’s Fourier transform.
Each time record is transformed into 30-dimensional vector.
In each dimension intensity of signal at each of frequencies
from 1 to 30 Hz is stored. Graphically this process is
demonstrated in Fig. 5
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Fig. 5. EEG spectrum in time (left) and frequency (right) domain.

IV. CONSTRUCTION OF CLASSIFIER

In this section we introduce both phases of structure and
parameter learning of S-radial implicative fuzzy system for
classification of EEG spectrograms.

A. Structure learning

Structure learning is the process of selection of number of
IF-THEN rules and initial setting of their parameters. For this
purpose we use GUHA method of exploratory data analysis
[6], [7].

The method as other similar ones works with an initial data
matrix. In our setting, in the matrix each row corresponds
to one record and columns to 30 frequencies + 1 column
indicates the classification. Each column is endowed by set
of its categories which are in fact intervals establishing the
covering of range of signal activity in each of frequencies.
Categories in the classification column correspond to indi-
vidual classes of driver’s vigilance.

The process of categorization transforms a data matrix
into the dichotomized matrix of zero and ones with the
same number of rows. Columns then correspond to individual
categories. In each cell, there is value one if the intensity at
corresponding frequency falls into the corresponding cate-
gory, otherwise there is zero.

The exploratory engine of the method works with hypothe-
ses on data and checks by statistical test their validities. The
tests are in fact tests on contingency tables corresponding to
individual hypotheses. A GUHA hypothesis consists of an-
tecedent and consequent which are bounded by a generalized
quantifier.

Ancedents and consequents (together called cedents) are
in fact Boolean conjunctions of individual categories of
given length. Each cedent then can be evaluated by one
or zero with respect to the values stored in corresponding
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TABLE I
FOUR-FOLD TABLE

consequent (C) non(C)

antecedent (A) a b

non(A) c d

cells of dichotomized initial data matrix and according to
rules of classical Boolean logic. After the evaluation over
whole dichotomized data matrix we obtain the following
contingency table (four-fold table) I.

In this table a is the number of records satisfying simul-
taneously both antecedent and consequent, b is the number
of records satisfying A but not satisfying C, c the number of
records not satisfying A but satisfying C, and finally d is the
number of records simultaneously not satisfying antecedent
and consequent. Clearly, a + b + c + d gives the number of
records (rows) in the database, hence in our case 766.

A generalized quantifier is given by its associated function
which is a Boolean function operating on four-fold tables
mapping them into one or zero. If the evaluation is one
then the hypothesis is taken as valid in data (supported by
statistical test) and unvalid if the evaluation is zero.

As the example we present FEQ (founded equivalence)
quantifier, which has two parameters base ∈ N and cp ∈
(0,1].

FEQ base, cp(a, b, c, d) =

= { 1 if a ≥ base and a+c
a+b+c+d ≥ cp,

0 otherwise.

Parameter base specifies minimal number of records sat-
isfying A&C, usually base = 10% of the total number of
records in data matrix and cp ∈ [0,1] specifies the strength
of equivalence relation between Boolean properties coded by
antecedent and consequent.

The effectiveness of GUHA method lies in its exploratory
nature when during one GUHA run huge number of hy-
potheses is constructed and validated. An user of the method
fixes lengths of antecedents and consequents together with
the number of categories. This makes the exponential rise
of the number of hypotheses tested. Typically, hundreds of
thousands of hypotheses are tested during one run.

B. Application on EEG data

The application on EEG data is almost straightforward. In
the categorization phase we select intervals corresponding
to three categories of low, medium and high intensity of
signal at given frequency. The selection of intervals is based
on equifrequent criterion. That is, in each category there is
(almost) equal numbers of records. The length of antecedents
is set to 4 which is inspired by common aggregation of
frequencies into 4 bands (delta, theta, alpha, beta). The length
of consequent is set naturally to one which corresponds to
individual categories.

The quantifier used is the above introduced founded equiv-
alence quantifier which corresponds to the Fisher indepen-
dence test. The interpretation of such a valid hypothesis is
that under the validity of antecedent (i.e., the evaluation is
one) the conditional probability of consequent is greater than

unconditional one, i.e., validity of antecedent supports the
validity of consequent and vice versa.

The output of GUHA run is a set of valid hypotheses
sorted according to their strength (here it is the value of (a+
c)/766 statistics). The hypotheses indentify the categories
connected with corresponding classes in consequents.

The transformation of found valid hypotheses on parame-
ters of the classifier follows. Central points of categories in
antecedents are mapped to central points of fuzzy sets. For
low and high categories S-radial fuzzy sets are employed.
For medium category a proper radial fuzzy set is employed.
Width parameters are set as halves of corresponding inter-
vals. In consequent fuzzy set, the membership degrees are
set to one for the class in the consequent of hypothesis, for
other to zero.

C. Parameter learning

The process of parameter learning is the process of ad-
justing of initially set parameters. In our application we have
used algorithm described in [13]. The algorithm is based on
the Levenberg-Marquardt method. In each step parameters
are adjusted in such way that the global error is decreased but
the update of parameters is performed only if the coherence
of the system is retained.

The coherence of the system is important issue of sound-
ness of rules in the rule base. The case which applies in our
example follows. Let the output of one rule is wakefulness
class and the output of other rule is microsleep. Then the
intersection of outputs is empty set and the classifier cannot
take a decission. Hence coherence of the system is very
important issue which in fact turns into the inner consitency
of input-output relation represented by a rule base of the
system.

The question of coherence is handled in several papers [8],
[14]. The important result is that checking sufficient condi-
tions for coherence is quadratic in number of rules hence
it does not cause a serious decrease in the computational
capability of the learning algorithm.

V. RESULTS AND CONCLUSIONS

The process of GUHA structure learning finished with the
rule base consisting of 11 rules. Three related to mentation
class, three to wakefulness class and five to microsleep
class. Antecedents of rules operates on 4 dimensional space,
outputs on 3 dimensional (actually on membership degrees
of individual classes). Initially set parameters were adjusted
by the referred parameter learning algorithm.

The above process of development and learning of classi-
fication system was set up in 10-fold cross validation design.
That is, the whole database was split on 10-th parts each with
proportion of individual classes retained; then each nine tenth
of records were selected to form training data and one tenth
to form testing data.

In table II we have the averaged rounded result concerning
the accuracy of the classifier.

The global accuracy of our classifier is 79.2% (607/766).
If only pure radial fuzzy sets are used the accuracy is 69.5%.
So employment of S-shaped radial fuzzy sets brings an
advantage without need for growing number of parameters.
The main reason for this observation is that boundary regions
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TABLE II
ACCURACY OF S-RADIAL FUZZY CLASSIFIER

real class ↓ mentation wakefulness microsleep

mentation 170 13 35

wakefulness 62 144 4

microsleep 38 6 293

of input space can be covered by only one S-shaped fuzzy
set in contrary to a chain of pure radial fuzzy sets.

The other specific property of our approach is that the
developed classifier has the logical structure of rules. When
parameter learning is performed the coherence is retained.
That is, the rules are created in such a way they do not
constitute a contradictory rule base. Such a rule base can be
further analyzed by means of fuzzy logic in narrow sense
[12].

One possible way of application of coherent rule based
systems is to incorporate them as knowledge bases in ar-
tificial agents which operate on different parts of domain
of interest (for example exploration of a maze). Due to the
construction of the rule base and implicational structure of
individual rules this can be easily done.

The established methodology also allows incorporate a
logical structure to radial neural networks, which is an
interesting topic because neural networks generally represent
rule-free computational models. This is the direction of our
future research.
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