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Abstract—Maximum Likelihood estimator (ML) has shown
excellent performance of Direction Of Arrival (DOA) estimation
in Multiple Input Multiple Output (MIMO) array. However, the
computation burden of MIMO ML is very large. In order to
resolve this problem, a novel MIMO Maximum Likelihood DOA
Estimation based on Metropolis-Hasting Sampling (MIMO
MHML) is proposed, which combines Markov Monte Carlo
method with MIMO Maximum Likelihood DOA estimator.
MIMO MHML regards the power of the MIMO ML spectrum
function as a target distribution up to a constant scalar, and
uses Metropolis-Hasting sampler to sample from it. Simulation
results show that MIMO MHML provides similar performance
to that achieved by the MIMO ML method, but its computa-
tional cost is reduced greatly.

Index Terms—Maximum Likelihood estimator (ML), Direc-
tion Of Arrival (DOA), multiple-input multiple-output (MIMO)
array, Metropolis-Hasting (MH) Sampling, computational com-
plexity

I. INTRODUCTION

THE idea of Multiple Input Multiple Output (MIMO)
has been recently become a hot research for its poten-

tial advantages. MIMO radar has been proposed as a new
radar system with various applications[1][2][3]. According
to the array configuration, MIMO radar is classified into
two categories. The first one is called distributed MIMO
radar[1][4]. In this scenario, all the transmit array elements
are widely separated and radiate independent signals to
different look-directions of the target, such that each of
the components extracted by the matched filters at the
receiver contains independent information about the target.
The second category is called co-located MIMO radar[3][5],
which is considered in this paper. All the transmit and receive
array element are collocated and independent waveforms are
transmitted obtain many advantages by exploiting waveform
diversity. As a result of enhanced flexibility in the design of
transmitting beampattern and waveform synthesis, the perfor-
mance of multiple target detection and identification can be
improved[6]. Furthermore, the maximum number of targets
to be detected and located by the array is increased[5][7]. By
extended array aperture with virtual sensors and narrower
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beams, high-resolution spatial spectrum estimation is also
obtained[2].

Some typical DOA estimate method for MIMO radar
have been proposed, including iterative GLRT (iGLRT) and
maximum likelihood (ML). In [8], the minimum variance
method is applied to MIMO array to estimate DOAs of
targets. In [9], several design methods for transmitting signal
of MIMO radar are proposed to improve the performance of
adaptive MIMO radar algorithm. In [10], signal detection
based on iterative testing of generalized likelihood ratio
and maximum likelihood (ML) DOA estimation based on
sufficient statistics are discussed, where MIMO ML DOA
estimation method demonstrates good performance. How-
ever, MIMO ML requires a multidimensional search, and the
computational complexity increases exponentially with the
dimension. The method is not feasible in practice. Therefore
a method which performs same as as MIMO ML but more
efficient in computation is desired.

In recent years, Markov Chain Monte Carlo (MCMC)
method has been shown to be a very powerful numerical
method in reducing computational complexity of parameter
estimation[11][12]. Metropolis-Hastings(MH) sampling is a
classical method of MCMC, it has attracted lots of research
work in the area of signal processing because of its applica-
tion in statistical signal and array signal processing.

This paper is organized as follows. The co-located MIMO
array signal model is present in Section II. In Section III, we
incorporate one sampling method of MCMC—Metropolis-
Hastings sampling into MIMO ML method to form a novel
fast DOA estimator called Maximum Likelihood DOA Esti-
mator based on Metropolis-Hastings (MIMO MHML) which
not only maintains the excellent performance which MIMO
ML achieves, but also significantly reduces the computation
complexity. The simulations and analysis of the results for
the proposed method are given in Section VI. Finally, Section
V concludes the paper.

II. SIGNAL MODEL

Consider a MIMO narrowband array system with M
transmitting sensors and M receiving sensors. The system
simultaneously transmits M orthogonal waveforms, denoted
by sm(t) ∈ CN×1, where m = 1, 2, · · · ,M . Assume that
there are D point targets located in far field of this array
with directions θd(d = 1, 2, · · · , D). Then, the received data
can be expressed as

X =
D∑

d=1

ar (θd)βda
T
t (θd)S +W (1)

where ar(θ) ∈ CM×1 and at(θ) ∈ CM×1 are the re-
ceive and the transmit array response vectors respectively.
S = [s1, s2, · · · , sM ]

T , is the orthogonal transmitting data

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011



matrix. X ∈ CM×N is the received data snapshots, where
N is the number of snapshot. βd stands for the complex
amplitude of the received signal. W ∈ CM×N denotes
the additive Gaussian white noise and (·)T is the matrix
transpose operator.

Alternatively, (1) can be rewritten as

X =

D∑
d=1

βdA (θd)S +W (2)

where
A (θd) = ar (θd) a

T
t (θd) (3)

III. MIMO ML ESTIMATOR BASED ON
METROPOLIS-HASTINGS SAMPLING

A. MIMO ML Estimator

As given in [10], the model in (2) can be rewritten in
matrix form

η̂ = G (Θ)Ξ +W (4)

where G (Θ) = [d (θ1) , d (θ2) , · · · , d (θD)], Θ =
[θ1, θ2, · · · , θD], Ξ = [β1, β2, · · · , βD]

T . d(θd) is the equiv-
alent array response of size M2 at the direction θd. Further,
orthogonal signals, d(θd) is the product of the steering
vectors in the receive mode and the steering vector in the
transmit mode, d(θd)

∆
=

√
Nvec (A(θd)IM ). Hence the

MIMO ML estimator for target localization of the model
in (4) is given by(

Θ̂, Ξ̂
)
ML

= argmin
Θ,Ξ

∥η̃ −G (Θ)Ξ∥2 (5)

After optimization with respect to Ξ, the ML estimator for
Θ is given by

Θ̂ML = argmax
Θ

L (Θ) (6)

L (Θ)
∆
= η̂HPG (Θ) η̂ (7)

where PG (Θ)
∆
= G (Θ)

(
GH (Θ)G (Θ)

)−1
GH (Θ) is the

projection matrix onto the subspace spanned by the columns
of G (Θ). (·)H denotes the conjugate transpose operator.
From (6) and (7), it can be noticed that the ML DOA estima-
tion for MIMO array is D-dimensional search process. The
computation burden of MIMO ML will become prohibitive
when the number of sources increases.

B. Metropolis-Hastings Sampling

In order to resolve the problem of computational com-
plexity, we resort to Metropolis-Hastings (MH) sampling,
which is one of the sampling algorithms in Markov Monte
Carlo methods. MH sampling is a typical MCMC method,
whose application in statistical and array signal processing
has attracted much attention in recent years. MH sampling
is implemented by changing each component randomly. The
changes are accepted or rejected based on the evaluation
of their probability of state. This process can be regarded
as establishing a Markov chain from a group of transition
probabilities kl, where l = 1, 2, · · · , n.

C. MIMO MHML Estimator

Firstly, let p(Θx) = L(Θx)∫
L(Θx)dΘ

, where Θx is regarded

as a random variable. Then it is obvious that p(Θx) meets
the requirement of probability density function (PDF). Thus
p(Θx) can been seen as a pseudo-PDF. Assuming that Θi

is the current state of the state space, the new state Φ
will be produced via conditional distribution q

(
Φ|Θi

)
. With

probability (8), we can produce the next state of Markov
Chain Θi+1 = Φ, otherwise Θi+1 = Θ.

α(Θi,Φ) = min

{
1,

p (Φ) q
(
Θi,Φ

)
p(Θi)q (Φ,Θi)

}
(8)

where α is the decision function.
In this paper, we assume that the DOAs are independent,

and the states of D-dimensional state space are independent
too, then we can get{

q
(
Θi,Φ

)
= q

(
Θi

)
q (Φ)

q
(
Φ,Θi

)
= q (Φ) q

(
Θi

) (9)

Substituting (9) into (8), the decision function can be rewrit-
ten as

α
(
Θi,Φ

)
= min

{
1,

p (Φ) q
(
Θi

)
q (Φ)

p (Θi) q (Φ) q (Θi)

}
(10)

= min

{
1,

p (Φ)

p (Θi)

}
= min

{
1,

L (Φ)

L (Θi)

}
According to the inverse theory of Markov Monte Carlo
method, we have

p (Φ) k (Φ,Θ) = p (Θ) k (Θ,Φ) (11)

where k(Φ,Θ) is the transfer probability from state Φ to state
Θ. Here, assume that Θ is the state vector near the spectrum
peak and Φ is far away from the spectrum peak, then p(Θ) >
p(Φ). From (11), we can get k(Θ,Φ) < k(Φ,Θ). Therefore,
if the Markov chain moves to Θ, it will stay for a while near
Θ. The time of stay is proportional to the sharpness of the
spectrum peak.

Note that the likelihood function is directly used as a
posteriori probability density function and the global maxi-
mum is not prominent local maximum . All of these result
in the increase of the MH sampling convergence time and
calculation time. In order to increase the time of Markov
chain linger in the small neighborhood of desired state for
enough time, we need to make the peaks pf likelihood
function narrower. Thus we modify (10) to

α(Θi,Φ) = min

{
1,

(
p(Φ)

p(Θi)

)γ}
(12)

= min

{
1,

(
L(Φ)

L(Θi)

)γ}
where, γ is a large positive number.

Then the steps of MIMO MHML can be summarized as
follow:

(1) Choose the initial state Θ = (θ1, θ2, · · · , θD).

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011



0 20 40 60 80 100
−10

−6

−2

2

5

Iteration times

S
ou

rc
e 

1 
az

im
ut

h(
°)

0 20 40 60 80 100
−10

−6

−2

2

6

10

Iteration times

S
ou

rc
e 

2 
az

im
ut

h(
°)

Fig. 1. The processing of sampling

(2) Do iteration operation, until ∥ h ∥∞< ε, h =
(h1, h2, · · · , hD), where

θ0d =
1

R

R−1∑
r=0

θi−r
d , d = 1, 2, · · · , D (13)

hd =
1

R

R−1∑
r=0

∣∣θi−r
d − θ0d

∣∣, d = 1, 2, · · · , D (14)

where R is a positive integer and R < i.
(3) Now we can get the estimates of DOAs from (13) and

(14).
In order to further improve the computational speed of this

algorithm, two different sampling state domain can be used
to sample alternative.

Then the steps of alternative sampling are given as follow:
(1). Sampling
a). The global state space sampling. It means that the

new candidate state of Markov chain is generated from the
uniform distribution U

[θL,θH ]
D of D-dimensional state space,

where [θL, θH ] is the angle searching scope.
b). The local state space sampling, which means that the

new candidate state of Markov chain is got from the Gaussian
distribution of D-dimensional state space, where the mean
of this Gaussian distribution is the current state Θi.

(2). Get the decision function α from (12).
(3). Produce u ∼ U[0,1], where U[0,1] is the uniform distri-

bution between 0 and 1. If u is smaller than α, Θi+1 = Φ,
otherwise Θi+1 = Θi.

It’s noticed that the difference between global state space
sampling and local state space sampling lies only in the way
how candidate state is produced.

IV. PERFORMANCE ANALYSIS

In this section, we compare the performances of MIMO
ML and MIMO MHML through simulations.

A. DOA Estimation

Consider an Uniform Linear Array (ULA) of 12 mono-
static sensors and the sensors are spaced half wavelength
apart. Two targets are at −2◦ and 2◦ with the sampling
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Fig. 3. RMSE of Source 1 versus SNR

frequency and the signal frequency being 30kHz and 7kHz
respectively.

Figure 1 shows the sampling process when the SNR is
5dB. From this figure, we can see that the chain moves to the
real azimuth after 40 iterations and the estimator will ”stay”
at the true azimuth. Then we can get the DOA estimate from
the mean of ”stay”.

Figure 2, 3 and 4 illustrate the resolution probability and
the RMSE of these algorithms. Two sources with DOA θ1
and θ1 are considered to be resolved/detected if both |θ̂1−θ1|
and |θ̂2 − θ2| are less than |θ1 − θ2| /2. Results are given
from 100 Monte Carlo experiments at each SNR. From these
diagrams, it is obvious that the resolution probability of
MIMO MHML is almost the same as MIMO ML. Although
the RMSE of MIMO MHML is slightly higher than MIMO
ML, the resolution probability of MIMO MHML is slightly
higher than MIMO ML in the low SNR. In summary,
MIMO MHML method remains the estimation performance
of MIMO ML in the sense of similar RMSE and resolution
probability.

B. Computational Complexity

Under the same simulation conditions mentioned in the
previous subsection, from 100 Monte Carlo trials, Table
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Fig. 4. RMSE of Source 2 versus SNR

TABLE I
AVERAGE ITERATION TIMES AT DIFFERENT SNRS

SNR(dB) -20 -15 -10 -5 0 5
Average iteration times V 198 157 134 112 97 41

1 shows the average iterations V for MIMO MHML to
converge to the ture DOAs at different SNRs.

Table 1 shows that the convergence of MIMO MHML
algorithm is accelerated with the increase of SNR. For
simplicity of comparison, assume that L is the computational
cost of one peak search for MIMO ML. According the
simulation condition, the computation complexity of these
two algorithms can be given as:

JMIMO ML = ((θH − θL) /step)
D × L = 6400L (15)

JMIMO MHML = V × (L×D) = 224L (16)

where the SNR is −5dB and the step of the research is
0.25◦.

Obviously, the computational complexity of MIMO
MHML is roughly 1/28 of MIMO ML, which means that
the proposed algorithm is a promising method in reducing
computational burden for MIMO ML. Assume that SNR =
−5dB, L = 100, V = 112, θL = −10◦, θH = 10◦

and step = 0.25◦. The computational comparison of these
algorithms is shown in figure 5. From figure 5, it can
be seen that the computation complexity of MIMO ML
increases exponentially with D, but that of MIMO MHML
increases linearly with D. As shown in (15), when the search
step size of MIMO ML becomes smaller, the advantage of
MIMO MHNL over MIMO ML becomes more significantly.
In a word, MIMO MHML method maintains the excellent
performance of MIMO ML and significantly reduces the
amount of calculation at the same time.

V. CONCLUSION

In order to reduce the prohibitive computation complexity
of MIMO ML due to the multidimensional search, a new
fast algorithm for MIMO ML is described. The proposed
algorithm explores the merits of Markov Monte Carlo meth-
ods and MIMO ML estimator. It is called MIMO Maximum
Likelihood DOA Estimator based on Metropolis-Hasting
Sampling (MIMO MHML). MIMO MHML regards the

2 3 4 5 6 7 8 9 10
10

0

10
5

10
10

10
15

10
20

10
25

Number of sources

C
om

pu
ta

tio
n 

co
m

pl
ex

ity

 

 

MIMO ML
MIMO MHML

Fig. 5. Comparison of computation complexity

power of the MIMO ML spectrum function as a probability
distribution function for signal, and uses Metropolis-Hasting
sampler to sample from this probability distribution function.
The whole process of theoretical deduction is given and
the way to choose the judgement function is discussed.
Simulation results show that MIMO MHML not only keeps
the excellent performance of the original MIMO ML but
also reduces the computational complexity greatly, especially
when the number of sources is large. This new method
provides a promising way to implement MIMO ML in
engineering practice.
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