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II. MATERIALS AND METHOD

A. Peak detection of the heartbeat
Interval analysis requires detection of the precise timing of 

the heartbeat. A consecutive and perfect detection without 
missing any beat is necessary. According to our preliminary 
tests, about 2,000 consecutive heartbeats were required for 
obtaining a reliable computation of scaling exponent. We 
hypothesized that longer recording of the heartbeats would 
results in a better diagnosis. However, we found that long 
recording was not justifiably useful and a recording of about 
2,000 consecutive heartbeats is preferable.

To detect the timing of the heartbeats, one may assume
that common EKG recording is sufficiently useful. However, 
the problem with conventional EKG was the drifting of the 
baseline of the recording. Due to the drift and the 
contamination of unexpected electric power-line noise, 
recording failures may happen. 

Another obstacle arose from the premature ventricular 
contraction (PVC). Among the “normal” subjects (age over 
40 years old), about 60 % of subjects have PVC arrhythmic 
heartbeats. Normally, this PVC is believed to be benign 
arrhythmia, and in fact during our recording, we found many 
healthy-looking individuals exhibited this arrhythmia. 
However, PVC is an obstacle to a perfect detection of the 
timing of the heartbeat, because the height of its signal could 
sometimes vary much.  If the baseline of EKG recording 
could be extremely stable, the heartbeats would automatically 
be detectable even when irregular beats appeared 
sporadically. Unfortunately, in commercial EKG recording 
devices, baseline of the record is not stable.

B. EKG recording with stable baseline
To capture heart beat peaks without missing any detection, 

we made an EKG amplifier that stabilizes baseline of the 
recording. Important issue was: we discovered that 
time-constant for input-stage of recording must be adjusted 
to an appropriate level.

Having stable baseline recording was an advantage to our 
DFA research. However, in some cases, inevitable noises 
would contaminate the recording. In such case, we removed 
the noises by identifying them visually on PC screen thus 
making a perfect (without miscounting) heartbeat interval 
time series. We have already identified how this 
inconvenience came about. About one-half of these cases 
were due to the sweat on the skin under the electrodes. We 
were able to overcome this problem by cleaning the skin with 
an appropriate solution.

C. DFA: Background
DFA is based on the concepts of “scaling” and 

“self-similarity” [5]. It can identify “critical” phenomena 
because systems near critical points exhibit self-similar 
fluctuations [2] [5] [6], which means that recorded signals 
and their magnified/contracted copies are statistically similar. 
Self-similarity is defined as follows: In general, statistical 
quantities, such as “average” and “variance,” of fluctuating 
signals can be calculated by taking the average of the signal 

through a certain section; however, the average is not 
necessarily a simple average. In this study, we took a squared 
average of the data. The statistical quantity calculation 
depended on the section size. The signal was self-similar 
when the statistical quantity was λα times for a section size 
magnified by λ. Here, α is the “scaling exponent” and 
characterizes self-similarity.

Stanley and colleagues considered that scaling property 
can be detected in biological systems because most of these 
systems are strongly nonlinear and resemble the systems in 
nature that exhibit critical phenomena. They applied DFA to 
DNA arrangement and EKG data in the late 1980s and early 
1990s and discovered the usefulness of the scaling property 
[2][ 6], and emphasized the potential utility of DFA in the life 
sciences [6]. Although DFA technology has not progressed to 
a great extent, nonlinear technology is now widely accepted, 
and rapid advances are being made in this technology.

D. DFA: Technique
We made our own computation program based on the 

previous publication [2], which is described in one of the 
references [7].

E. EKG recording
For EKG recordings, we used a Power Lab System (AD 

Instruments, Australia). For EKG electrodes, a set of 
ready-made three AgAgCl electrodes (+, -, and ground;
Nihonkoden Co. Ltd. disposable Model Vitrode V) were used. 
Wires from EKG electrodes were connected to our newly 
made amplifier. These EKG signals were then connected to a 
Power Lab System.

F. Volunteers and ethics
EKG recordings were performed at Indonesian National 

Olympic training center in Bandung.  Subjects were selected 
at random at the Indonesian Olympic Training Center. All 
subjects were treated as per the ethical control regulations of 
our universities, Tokyo Metropolitan University, Tokyo 
Women’s Medical University and Universitas Advent 
Indonesia.

III. RESULTS AND DISCUSSION

A. Case study 1
  Subject one is a 49-year old healthy looking Indonesian. 

His resting state heartbeats were recorded for 28 min while 
the subject was sitting on ergometer, relaxing and answering 
to several questions made by researchers.  Two pre-matured 
ventricular contractions (so called PVC) can be seen (Fig 1).  
These PVCs (see also PVC in Fig 3) are a benign type of 
heartbeat, as classified by guidelines used by medical doctors. 
It is described that PVCs are observable among 60 % of 
healthy persons over the age of 40.  However, we should 
acknowledge that a hypothesis associates the occurrence of 
PVC with sudden death [8].   

At the beginning of EKG recording, his heart rate was about 
90 beat per min (BPM) (Fig 1, interval 0.6 s, see also Fig 4).  
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In three min, the heart rate was approaching over 100 BPM 
after the start of the recording (Fig 4).  He seemed to be 
nervous because the measurement equipment as well as the 
foreigner researcher doing the recording were new to him. 
During the period for 28 min of resting stage measurement, 
he got relaxed by conversations with us, and his heart rate 
gradually decreased (Fig 1, interval about 0.7 s, see also Fig 
4). 
At the start of the exercise stage his heart rate immediately 

increased to over 100 BPM, and kept slow increment until 
reaching a plateau before the end of the exercise (Figs 3 and 
4). 
After 20 min of the exercise he mentioned to us that he was 

not tired yet. He also mentioned at the end of exercise session 
that he felt he could continue with this low load (50 watt) 
aerobic exercise for another 30 min.  One PVC appeared at 
near the end of exercise (Figs 3 and 4) as was seen at rest 
condition (Fig 1).

Fig 1. Heartbeat recording from subject one at rest. Y axis, Heartbeat intervals 
(s).  X axis, beat number.  Figure shows 2719 beats in total during 28 min, 
which were 100 % accurately detected, as shown in next Fig 2.

Fig 2. Example recording of heartbeats and accurate peak detections. The 
heartbeat number 434 is PVC. A time period 260~264 sec from start of 
recording is shown. The figure shows that our amplifier produced a steady 
baseline EKG even though subject was freely moving. (Here, subject was 
answering to question).

Fig 3. The same subject shown in Fig. 1 and 2. Y axis, Heartbeat interval (s). X 
axis, beat number. Continuous recording from Fig. 1. He started ergometer 
exercise, at the heartbeat number 1 (one) with a 50watt load strength and a 96 
rpm speed, lasting for 32 min. 1 to 3746 beats shown.

Fig 4. Entire time series of subject one. Connected data of Fig 1 and Fig 3. Y 
axis, heart rate (BPM). X axis, beat number.  

                    Rest                                        Exercise

Fig 5.  DFA computation.  Left graph, at rest.  Right graph, at exercise.  For the 
same subject shown in Figures 1, 2, 3 and 4. Y axis, variance. X axis, box size, 
from 10 to 1000. Log scale in both axis (see original article [2] for the basics of 
DFA). The slope of the graph gives the scaling exponent, which is calculated at 
various “windows,” i.e., “box size,” as shown in Table 1.

Table 1. Comparison between at rest and during exercise.

Rest Exercise

Box Size DFA (α ) Box Size DFA (α )

51 ~ 100 1.01 51 ~ 100 1 .32

30 ~ 140 0.99 30 ~ 140 1 .25

Table 2. Our preliminary guideline (see [7])

After obtaining heartbeat-interval time series, we 
proceeded to next step, calculating the scaling exponents (α)
by our computing method the DFA (Table 1). One can see 
that exercise increased α, which can be seen in overall slops 
(see Fig 5). It means that the scaling exponents were pushed 
up by exercise. 

At rest, this 49 years old man exhibited healthy scaling 
exponents nearly 1.0 (see the windows, both 51-100 and 
30-140 in Table 1 and corresponding graphs of Fig 5). From 
our previous studies we determined a guideline in 
interpreting the scaling exponents to define whether an 
individual is healthy or unhealthy (Table 2). We were 
surprised to discover that an apparently healthy person 
(athlete’s heart) did get risky high value of the scaling 
exponent “during exercise” (Table 1).  Interestingly, we also 
discovered that the same exercise induced an increase in the 
scaling exponents of the other subject, a swimmer girl (see 
below).

From the results from subject one, we started to consider 
that “athlete’s heart,” which is a remodeling heart, may not 
be so healthy than we first believed. In the class room, 
general physiology teaches that athlete’s hearts undergoes 
physiological cardiac hypertrophy instead of pathological 
hypertrophy, e.g., caused by hypertension.  However, a 
literature pointed out difficulties associated with 
distinguishing the athlete’s heart from hypertrophic 
cardiomyopathy (HCM). HCM is the leading cause of sudden 
cardiac death in young athletes [1].

The EKGs of the other three subjects shown in this study 
were recorded at rest and while engaging in exercise in the 
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same room at the same environment, temperature of 25 ºC, 
together with the subject one aforementioned (Figs 1 to 5).

B. Case study 2
Subject two, age 28, an Indonesian female swimmer.  Her 

average-heart-rate at resting state is rather high with 
unknown reason (Figs 6 and 7). According to the doctor’s 
guideline: the heart rate above 100 bpm is referred to as 
tachycardia.  However, we did not investigate the reason for 
this seemingly abnormal condition.

After starting ergometer exercise, heart rate quickly 
increased (see *A in Fig 7). Heart rate soon attained a steady 
state, about 160 BPM. Apparently a high rate was 
maintained over the period of exercise. This ability indicates 
that she has athlete’s heart, i.e., her heart seems to have 
adapted to the physiological demand of a long distance 
swimming. 

Her heart rate quickly decreased at the end of exercise (see 
*B in Fig 7).  A significant characteristic, “maintained” rate 
during exercise, were seen in both subject one (Fig 1) and 
two (Fig 6).Therefore, we can conclude that both subjects one
and two, Case studies 1 and 2, show characteristics of 
“athlete’s heart.”

From Fig 7, one can clearly see an exponential rise (*A) 
and decay (*B). This exponential behavior is due to the 
changes of the cardio-inhibitory nerve activity, i.e., 
parasympathetic nerve activity, was switched-off and 
switched-on (respectively, at *A and *B in Fig 7). We have 
already described a mathematical model for this exponential 
function of neurotransmitter release regarding to 
cardio-inhibitory nerve control [9].

Figures 6 and 7 indicate that fluctuation of the heartbeat 
interval, i.e., variability in rate, is greater at rest than during 
exercise. This must be due to a change of vagal tone 
governing the heart: We can interpret that during exercise 
the heart received a decreased discharge frequency in the 
inhibitory autonomic nerve fibers innervating the heart. In 
other words, acceleration-dominant-state was induced by 
exercise. From neurophysiological consideration, this 
acceleration-dominant-state can be explained by reduction of 
inhibitory influence that caused the acceleration (*A in Fig 
7), and thereafter getting dis-inhibition (*B in Fig 7). This 
consideration was experimentally proven: We have already 
demonstrated real EKG data and mathematical model in 
crustacean heart [9]. 

The scaling exponents of the subject two are very low at 
rest (see Table 3) as can be seen in the left graph where slope 
is less steep (Fig 8) and the scaling exponents ranges around 
0.6 – 0.8  at rest (Table 3). We already know that if one has 
perfect health condition, the slope must exhibit 45 degree, 
i.e., the scaling exponent is one (1) at relaxed condition. This 
means that her general health condition and especially heart 
condition is not perfect, although DFA cannot tell the 
physiological reason(s) that contributes to this (see our 
guideline Table 2).

When she was engaged in exercise, the DFA-slope became 
steeper in almost entire ranges of window size (Fig 8) and 
thus computed scaling exponents were significantly 
increased. The values are astonishingly high, ranging from 
1.3 to 1.5 (see Table 3). This significant increase of the 
scaling exponents during exercise was also found in other 

athlete’s heart, subject one (see Case study 1). According to 
our guideline (Table 2), we may interpret that this high 
values during exercise may indicate that their hearts are at a 
risky state. If this consideration would be proven in the future 
investigations, we must conclude that athlete’s heart that is 
remodeled heart is not normal. It is intriguing that we have 
already found that a high scaling exponent is associated with 
a subject who has ischemic heart, such as those received stent 
placement and/or bypass implantation [10]. 

There are a lot of elements in the body such as molecules, 
cells, tissues and organs. Nonlinear interactions between the 
elements of athlete’s body must be contributing to this 
scaling behavior of the heartbeat.

←Rest for 28 min→ /← Exercise for 32 min→→→→→→→→→→

Fig 6. Time series, 2471 beats for 28 min resting state, and 5341 beats for 32 
min exercise state. Y axis, heart rate. X axis, beat number. Ergometer exercise 
session started at the heartbeat number 2472 with a 50 watt load strength and a 
96 rpm speed, lasting for 32 min, identical strength in the case study 1.

Fig 7. Exponential rise and decay in heart rate. The same record as in Figure 5 
but X axis is shown in time (min) instead of beat number ( see Fig 6). *A, 
exercise started. *B, exercise stopped. Y axis, heart rate.

                       Rest                                   Exercise

Fig 8. DFA computation. Left graph shows results at rest and right graph at 
exercise.  The same subject shown in Figs 6 and 7.  Y axis, variance. X axis, the 
Box Size from 10 to 1000. Log scale in both axis.
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Table 3.  Comparison between at rest and during exercise.(a female swimmer)

Rest Exerc ise

Box Size DFA (α ) Box Size DFA (α )

51 ~ 100 0.62 51 ~ 100 1.36

30 ~ 140 0.8 30 ~ 140 1.42

C. Case study 3
Subject three, age 29, an Indonesian male basketball 

player (Fig 9 and Table 4). It should be noted that here the 
load was 75 watt instead of 50 watt in the case of other three 
subjects, which are Case studies 1, 2, and 4. 

It took long time before reaching a plateau phase due to 
higher load (Fig 9). Figure 9 shows that plateau started at 
about 5500 in heartbeat number and lasted until the end of 
exercise. He (subject three) mentioned to us that, at the end 
of exercise, he was tired and he wished very much to stop the 
exercise session. 

Here, one can see again that fluctuation during exercise is 
smaller than that at rest. As is in the subject two (Table 3), 
again the scaling exponents during exercise were very high 
(Table 4). His scaling exponent at rest is low (Table 4) which 
characteristics are similar to the recording from the subject 
two (Table 3). We conclude that his (subject three) heart 
system at rest is not perfect in terms of DFA analysis. 

Fig 9.  Time series of subject three, 2438 beats for 28 min resting state, and 
5224 beats for 32 min exercise state. Y axis, heart rate. X axis, beat number. 
Ergometer exercise was started at the heartbeat number 2439 with a 75 watt 
load and a 96 rpm speed, lasting for 32 min.

Table 4.  Comparison between at rest and during exercise.

Rest Exercise

Box Size DFA (α ) Box Size DFA (α )

51 ~ 100 0.76 51 ~ 100 1 .62
30 ~ 140 0.81 30 ~ 140 1 .52

D. Case study 4
Subject four, age 27, male, an Indonesian futsal player 

(Spanish Futbol de Salon). In this subject, the scaling 
exponents were increased by exercise as those shown by the 
rest of the three cases in this study. However, his heart stayed 

in a healthy range of the scaling exponent during exercise 
(see Table 5). He mentioned that, at the end of exercise, he 
was not tired at all with 50 watt and 96 rpm. We may 
conclude that he is the most appropriate sports-aspiring 
person among four subjects in this case study, because he has 
no risky value, even in terms of DFA. During exercise, his 
autonomic nervous system was still capable to send 
inhibitory command to the heart, which is observable as 
sporadically occurring “slowing down” in heart rate (see 
enlargement of time series, Fig 10). This “slowing down” in 
heart rate is derived from inhibitory discharge in the 
autonomic nerves, i.e., the parasympathetic nerve or the 
vagus nerve.  Figure 10 shows that his vagus nerve still 
regulates the heart properly. He might be able to have much 
high load exercise though we have not yet tested. His exercise 
period was not “up to the chin” condition. That is why his 
scaling exponent shows nearly one (1), which means his 
heartbeat can behave dynamically, that is, responding 
dynamically to internal demands. The ability to meet 
demands is a good condition of the heart that can respond 
properly and dynamically to the internal and external 
environment. However, his heart condition at rest shows that 
he might have a stress in terms of DFA analysis. This fact is 
similar to that of both subjects two and three in this study.

Athlete who has a healthy scaling exponent at rest in the 
present report, is only subject one (Case Study 1). The subject 
who has a healthy scaling exponent at exercise, is only 
subject four (Case Study 4). 

IV. CONCLUDING REMARKS

The techniques and experimental results in the present 
study are new as far as we know. In the present observations 
with DFA computation we tried to find any apparent 
correlations between the scaling exponent and the state of 
heart during exercise. While data of the heartbeat time series 
were obtained from subjects who were healthy looking 
individuals, three of four subjects (Case Studies 1, 2, and 3) 
exhibited surprising results: exercise brings them to a risky 
state in terms of the scaling exponents. We would like to 
suggest that their state of heartbeats during exercise is the 
state that the heart is ready to stop any time, as demonstrated 
before in animal model experiments and human ischemic 
cardiac conditions [10].

Athlete’s heart is believed to be a benign adaptation [1]. 
Four subjects in this study have obviously different genomic 
structure from each other. However, outcome of control 
system commanding the heart performance was all identical: 
exercise increases the scaling exponents, that is, to a normal 
level in one subject and to an alarming level in the rest of 
three subjects in this study. This is probably normal function 
of healthy subjects who have complex internal nonlinear 
physiological interactive pathways. However, it is important 
to know that there has been some debate over whether the 
athlete’s heart is a truly physiological phenomenon or 
whether long-term, chronic exercise training is maladaptive 
and leads to heart disease or sudden cardiac death [11]. This 
investigation may cause a stir in the debate.
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Fig 10.  Heartbeat-interval time series of subject four.  A, 6072 beats in total. B, 
C, D, partially enlarged to show detail of the time series.  B, Beat number 
2500-3000. C, 2700-2800. D, 2770-2790

Table 5.  Comparison between at rest and during exercise.

Rest Exercise

Box Size DFA (α ) Box Size DFA (α )

51 ~ 100 0.85 51 ~ 100 1.15
30 ~ 140 0.89 30 ~ 140 1.12
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