
 
 

 

  
Abstract—Polymer-solid adhesion belongs to a class of  

important industrial processes. We study the statistics of equally 
spaced pairs of receptors on a family of ordered flat 
microsubstrates whose adhesive centers form regular 
tessellations. We establish relationships between the symmetry 
of substrates and the probability density of the end-to-end 
polymer separation in terms of the so-called Manhattan 
distance. We also show how these functions change when the 
substrate is deformed.  
 

Index Terms— distance distribution, polymer adhesion, 
micropatterned substrates. 

I. INTRODUCTION 
Adhesion of polymers to metal and ceramics surfaces is the 

subject of extensive theoretical and experimental studies. It is 
mainly due to such industrial applications as composite 
manufacturing, electronic packaging or production of 
demanding anti corrosive coatings. In this context the 
adherence using micropatterned nanosubstrates is an 
important engineering problem, with very diverse 
applications ranging from chemical processing to biological 
applications. Biopolymers  play an important role in the 
exploration of complex-polymer-adhesion processes. 
Detailed knowledge of the attachment of biopolymers to 
different substrates is desirable to numerous biotechnologies, 
such as the fabrication of  nanostructures for biomedical 
applications [1]. 

The polymer adhesion depends not only on chemical and 
physical factors.  The structure of polymer-solid interfaces is 
modulated by the relative positions of substrate uptake centers 
and polymer sticker groups. Therefore, the geometric 
characteristics like surface topography and topology also 
come into the picture [2]. From the mathematical point of 
view a substrate receptor group can be represented by the 
nodes of an appropriate flat lattice. The geometrical 
properties of lattices still attract much attention, mainly  due 
to progress in the fields of applied information theory, 
computer science, statistical physics, biology, and 
nanotechnology. It is interesting to note that the 
micropatterned substrates are built with the use of methods 
borrowed from the semiconductor industry [3,4]. Such 
methods generally employ the fabrication of highly ordered 
microscale structures [5,6]. A very recent and challenging 
advancement in this filed deals with protein-based 
programming of quantum nanostructures, as e.g. the  
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self-assembly of quantum dot complexes using nanocrystals 
capped with specific sequences of DNA [7]. 

The objective of this work is the theoretical analysis of the 
polymer adhesion in terms of polymer sticker groups and 
substrate receptor groups [8]. The problem we consider is the 
polymer chain trapped by the receptors placed within the 
nodes of an ordered lattice. In order to enhance the adhesion 
to the substrate our polymer is functionalized by addition of  
specified stickers to its ends [9]. In the proximity of the 
substrate’s surface the functionalized polymer feels an 
attractive, non-homogenous electrochemical potential 
generated by the receptors. In such circumstances the end 
points of the polymer do not move freely. They are forced to 
slide mainly between the nodes, and thus their trajectories 
resemble zigzag lines. We focus our analysis on the 
distribution of distances between the end points of the 
polymer trapped on the ordered surface depending on the 
surface’s symmetry. Because of the already mentioned 
zigzag-like-shaped trajectories we think that the Euclidean 
norm is not appropriate to measure the distance traveled by 
the sticker. Instead of the Euclidean norm the end-point-path 
lengths are measured in terms of the Manhattan distances.  

II. THEORY AND METHODOLOGY 
In this section, we present an approach we use to calculate, 

for a given finite substrate, the number of pairs of receptors 
that are separated by a prescribed distance. 

 

A. Technological aspects 
In the field of biotechnology micropatterned substrates 

serve as tools for the creation of novel biologically-inspired 
materials and for studying mechanisms of cell function 
[6,10-12]. The mechanical properties of the substrate to 
which polymers adhere mediate many aspects of polymer 
physicochemical function, as e.g. the DNA ability to take up 
different signaling molecules. Current efforts to understand 
the efficiency of adhesion are focused on the surface 
engineering aspects, whereas the influence of the 
substrate-receptor-group symmetry is less pronounced and 
sometimes ignored. 
 

B. Substrate space geometry 
Artificial substrate surface architectures employ the lattices 
which have edges and vertices formed by a regular tiling of a 
plane, so that all corners are equivalent. For instance in 
biomedicine, in the context of micropatterned substrates the 
so-called Archimedean lattices [13] are of special interest. 
This is because the patterns of extracellular matrix proteins of 
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varying geometries modulate the organization of cells grown 
on the patterns. Three of the Archimedean lattices: triangular, 
square and hexagonal are drawn in a plane such a way that all 
faces are the same whereas the remaining 8 lattices need more 
than one type of a face. The former lattices belong to the  
regular tessellations of the plane and the latter ones are called 
semiregular lattices. Another important group of lattices 
contains dual lattices of the Archimedean ones. The given 
lattice G can be mapped onto its dual lattice DG in such a way 
that the center of every face of G is a vertex in DG, and two 
vertices in DG are adjacent only if the corresponding faces in 
G share an edge. The square lattice is self-dual, and the 
triangular and hexagonal lattices are mutual duals. The 
lattices are labeled according to the way they are drawn [13]. 
Starting from a given vertex, the consecutive faces are listed 
by the number of edges in the face, e.g. a square lattice is 
labeled as (4,4,4,4) or equivalently as (44). Consequently, the 
triangular and hexagonal lattices are (36) and (63), 
respectively. Other, frequently encountered lattice is (3,6,3,6) 
- called Kagomé lattice. In some ways these 4 lattices are 
representative to study polymer adhesion problems in two 
dimension. The regular lattices form pairs of mutually dual 
lattices and also share some local properties as e.g. the 
coordination number z being the number of edges with 
common vertex. One of the most interesting lattices in two 
dimension is the Kagomé lattice. Each its vertex touches a 
triangle, hexagon, triangle, and a hexagon. Moreover the 
vertices of this lattice correspond to the edges of the 
hexagonal lattice, which in turn is the dual of a triangular 
lattice. The Kagomé lattice is also related to the square lattice, 
they have the same value, z=4, of the coordination number. 
The regular lattices and the Kagomé lattice are presented in 
Fig. 1. 
 

   
 
Fig. 1. Two dimensional lattices used in this work. They are represented by 
tessellations with: (a) square, (b) triangular, (c) hexagonal, and (d) Kagomé 
symmetries. For all tessellations receptors are identified by the nodes. The 
edges form the shortest allowed paths between the pairs of receptors. 
 
 

C. The Manhattan distance 
Many questions lead to a problem of analysis of properties 

of random walk path and end-to-end distances distributions 
on regular networks [14,15]. Examples include, but are not 
limited to, material science or biology. For instance, in the 
field of computer science an important problem concerns the 
allocation of processors to parallel tasks in a grid of a large 
number of processors. This problem relays on the nontrivial 
correlation between the sum of the pair-wise distances 
between the processors allocated to a given task and the time 
required to complete the task [16].  

The common question of the above mentioned problems is 
how many pairs of points separated by a given number q of 
steps can be found in a bounded region of a two-dimensional 
lattice. Such number q is referred to as the so-called 
Manhattan distance. 
 More specifically, because the distance should be 
measured in terms of process and its activities, therefore 
functional distance should take into account the symmetry of 
the underlying lattice. A distance measure that accounts for 
this symmetry can be constructed around the p − norm 
 

( )1/

1,..,

pp
ip i n

x
=

= ∑x .              (1) 

 
For 2p =  we have the familiar Euclidean norm and for 

1p =  we get the Manhattan norm also called the taxicab 
norm. Thus, for a square lattice, the Manhattan distance is 
defined as the sum of the horizontal and the vertical distances. 
Similarly, for a given lattice, we can define the Manhattan 
distance as the sum of the distances along directions parallel 
to the edges of the lattice. 

This definition is equivalent to the definition of the distance 
between nodes in the graph that represents the lattice, i.e. the 
distance between two nodes u  and v  in a graph is the length 
of the shortest path from u  to v . 
 

D. Graph theory approach 
Graphs are useful for representing networks. In this 

subsection, we briefly present some definitions and 
background on graph theory and method that we use to count 
the pairs of substrate’s nodes separated by a given value of the 
Manhattan distance. This question belongs to an ample class 
of  the combinatorial properties of Archimedean lattices. It is 
efficient to study such properties by using tools provided by 
the graph theory. To do this we map an ordered 
micropatterned substrate onto finite, connected graph 

( ),G V E  whose vertices (nodes) 1, ,i nv V= ∈  represent 
receptors, n  is the number of vertices in G . Two vertices are 
adjacent if they are connected by an edge in E . A walk is a 
sequence of vertices each of which is adjacent to the previous 
one. If all vertices are distinct the walk is called a path. The 
length of a path is the sum of the lengths of all component 
edges. Since our graph represents the Archimedean lattice 
then all its edges have the same length and, consequently, the 
path length is given by the number of visited edges. 

An useful concept in the graph theory is the 
correspondence between graphs and so-called adjacency 

     (a)   (b) 
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matrices, sometimes called connectivity matrices. An 
adjacency matrix GA  of G  is the n n×  matrix whose entries 

( ) 1G ij =A  if iv  and jv  are adjacent and zero otherwise. 

Adjacency matrix is very convenient to work with. For 
instance, let k

G G G= ⋅ ⋅A A A  be the k -times matrix 

product of GA , then ( )k
G ij

A  is the number of walks of the 

length k  from iv  to jv  in G . 

Our approach consists of two steps: (i) with the help of the 
family of matrices k

GA , each pair of nodes is assigned the 

smallest value of k  so that the corresponding entry of k
GA  is 

nonzero. (ii) for each value of k  we count the number of pair 
of nodes related to this value. Since the graph is finite, this 
approach yields a partition of Manhattan distances. 

 

III. RESULTS 
We present the detailed calculations of distance distributions 
for three regular tessellations and for the Kagomé lattice. 
 

A. Square lattice 
First we analyze the square lattice of receptors with the 

lattice constant 1a ≡ . Without loss of generality, let us 
assume that the substrate has the shape of a square whose side 
contains L  nodes. Thus, the maximum value of the 
end-to-end distance max 2( 1)q L= − corresponds to two pairs 
of receptors located in the opposite corners of the substrate. 
On the other hand min 1q =  is related to the number of pairs of 
nodes connected by edges of the substrate. Each of the L  
rows and columns contain 1L −  edges and this means that 
there are ( )2 1L L −  such distances. Following the approach 
described in section II.D we obtain an expression that 
describes the number ( ),N L q  of distances q  within the 
square-shaped substrate 

 

( )
( ) ( )

( ) ( )

2

2

12 1 , ,
3,

1 2 1 2 , 2( 1).
3

Lq L q q q q L
N L q

L q L q L q L

 − + − ≤= 
  − − − < ≤ − 

 (1) 

 
In Fig. (2) we show ( ),N L q  for different values of L . 
Equation (1) can be written in the form of the probability 
distribution function of distance with the help of the 
normalization condition, namely 
 

( ) ( ) ( )2 2

2, ,
1

P L q N L q
L L

=
−

.           (2) 

 
Probability distribution function (2) is useful for small 
substrates. When L grows significantly an appropriate 
description is based on the concept of probability density 
function. Probability density function can be introduced as 
follows. 

 
 
Fig. 2. Distribution (1) of the receptor-receptor distance for the square lattice 
related to two values of  substrate’s length L . The line are drawn using (1) 
and they are only visual guides. 
 
Let 1 1/a a L≡ → = , thus all distances are scaled by the 
factor 1/ L . Due to this scaling (2) is replaced by the 
probability distribution function for the discrete set of 
distances /qx q L=  in the unit square with the step 1/ L , i.e. 
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
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Keeping only terms of the order 1/ L  in (3) we approximate 

( )1/L qP x  by ( )q qg x dx , with 1/qdx L= . In the limit of 

L → ∞ , g  becomes the probability density function of 
Manhattan distance inside the unit square 
 

( )
( )

( )

3

3

24 1 , 1,
3

2 2 , 1 2.
3

x x x x
g x

x x

 − + ≤= 
 − < ≤
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        (4) 

 
Function (4) is presented in Fig. (4).  
 

B. Deformed square lattice 
Here we analyze the case of the substrate with square 

symmetry of the underlying receptor’s group, whose shape 
has been changed, for example, under the influence of shear 
stress as illustrated in Fig. 3. Assume that we start from the 
unperturbed square-shape substrate and then we smoothly 
increase the stress. Under a sufficiently strong deformation 
the path between at least one pair of nodes appears. The 
distance along this path will be shorten than that in the 
original substrate. Thus, shear deformations shift the mean 
value of the distribution of distances toward the smaller value 
in comparison with nonstressed substrates, see Fig. 4. 
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Fig. 3. Deformation of the square reduces the diagonals marked by dashed 
line. 
 
Below we present formulas obtained for heavily distorted 
substrate, i.e. under shear stress generating an effective 
triangular symmetry among the node’s positions. The number 
of distances (1) takes the following form 
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The corresponding probability density function of distance 
(3) now is given by 
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      (6) 

 
The probability density functions (3) and (6) are shown in Fig. 
4. 
 

 
 
Fig. 4. Probability density of distances (4) within the square-shaped 
substrate (dashed curve) compared to that one (6) for the same set of 
receptors but within the deformed substrate (solid curve). 
 

C. Triangular lattice  
Discussed above, highly deformed square-shaped substrate 

possesses triangular lattice of receptor locations. Here and in 
the following subsections we analyze the triangle-shaped 
substrates. Such shape is rather artificial. Nevertheless, it is 
worth analyzing it because the triangular, the hexagonal and 
the Kagomé lattices are built around the same set of nodes, see 
Fig. 5, and this will enable us to directly compare the results. 
Our approach applied to the graph represented in Fig. 5(a) 
yields the distance distribution in the form 

 

 ( ) ( )( )3, 1 , 1,2 , 1.
2

N L q q L q L q q L= − − + = −    (7) 

 
Thus, the corresponding probability distribution of distances 

( ),P L q  and probability density ( )g x  are as follows  
 

( ) ( ) ( )
( )2

12, ,
1 2

P L q N L q
L L L

=
− +

,         (8) 

( ) ( )218 1g x x x= − .               (9) 
 
The lattice size 2L ≥  is shown in Fig. 5(c). 

 

 
 
Fig. 5. Finite triangular lattice (a) viewed as an undirected graph. Subgraphs 
of this graph represent the hexagonal lattice (b) and the Kagomé lattice (c). In 
part (b) it is seen how the hexagonal lattice emerges from the triangular one. 
The lattice size L  is shown in (c).  

 

D. Hexagonal lattice 
The hexagonal lattice, see Fig. 5(b), viewed as a graph, 
possess fewer nodes and edges than the graph of the 
underlying triangular lattice presented in Fig. 5(a). Thus, 
within the same support, all functions representing the 
hexagonal symmetry take smaller values than these related to 
the triangular symmetry. The functions appropriate to the 
hexagonal symmetry read  
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The lattice size 4L ≥  is shown in Fig. 5(c). 
 

E. Kagomé lattice 
Arguments, similar to these stated in the case of the hexagonal 
symmetry, make the relevant functions defined as follows 
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and 
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3 2 3 6 8

P L q N L q
L L L L

=
+ + −

     (14) 

 
The lattice size 2L ≥  is shown in Fig. 5(c). 
 

IV. SUMMARY 
As micropatterned substrates play an increasing role in the 

understanding of basic cell biology, there is an increasing 
need to understand the interplay between substrate geometry 
and surface chemistry. In this paper we have studied a 
minimalist model of an earlier stage of a polymer adhesion to 
flat ordered substrate. In different context, some of the above 
mentioned results, concerning the square and the triangular 
symmetries, have been obtained elsewhere [17]. Our results 
could serve as an initial class of probability density functions 
of the end-to-end distance. 
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