
 

 
Abstract— In this paper a non-linear predictive controller 
with an empirical internal model based on Artificial Neural 
Networks (ANNs) is proposed. The ANN has high non-linear 
approximation capability and makes possible the use of plant 
information to generate future control actions. The results 
show the high potential of the proposed procedure when 
applied to the continuous extractive fermentation process of 
bioethanol production, an integrated reaction-separation 
process with highly complex non-linear dynamics. 
 
Index Terms— Artificial neural networks, continuous 
extractive fermentation process, non-linear predictive control. 
 

I. INTRODUCTION 

HE increasing demand for energy caused by the 
global economic growth generates a series of 
environmental problems and, in this context, there is 

a great interest in developing technologies for sustainable 
bioenergy production. 

 Among several options, the ethanol obtained by 
fermentation of sugarcane is an attractive biofuel to be used 
as a substitute for gasoline and can help to reduce gas 
emissions that produce the greenhouse effect [1].  This 
characteristic has increased the demand for bioethanol, 
which makes the development of more efficient production 
technologies desirable. One alternative is to apply process 
intensification techniques in continuous production 
processes. Integrated processes of reaction-separation 
provide alternative solutions [2], such as the production of 
ethanol by fermentation with a continuous withdrawal of the 
ethanol produced using a flash separation unit. This action 
regulates the concentration of ethanol in the fermentor to 
ranges where the inhibitory effect of the product on the 
yeast activity decreases, improving the process productivity 
[2] [3] [4]. However, these bioprocesses are highly 
nonlinear, its mathematical modeling is complex and there 
are additional difficulties to calculate the vapor-liquid 
equilibrium due to the composition of the fermented liquid 
[5]. These characteristics also make the use of classical 
control techniques to control the process difficult [6]. In this 
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paper neural network model predictive controllers, 
NNMPC, are designed to control the continuous production 
process of bioethanol by fermentation and separation via 
flash evaporation. The controller is based on the dynamic 
matrix control (DMC) algorithm, which is representative of 
the MPC technology [7] [8]. 

II. PROCESS DESCRIPCION 

A. Experimental Stage 

The research experimental stage was conducted at the 
Bioprocess Engineering Laboratory of the State University 
of Campinas, Brazil. 

The extractive fermentation process is integrated by: one 
reaction unit (fermentor), one cell recycle system (cross-
flow microfiltration), one vacuum separation system (flash 
tank for ethanol-fermented broth separation and vacuum 
pump), two helical pumps, three peristaltic pumps, and one 
condensing unit. The total working volume is approximately 
5 L. Fig. 1 shows a diagram of the extractive fermentation 
process with vacuum flashing [4]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Diagram of the extractive fermentation process with 
vacuum flashing 
 

   A 3 liters "Bioflo III System" (New Brunswick 
Scientific Co., Inc., NJ,   USA) bioreactor with PID 
(Proportional, Integral and Differential) control of 
temperature and agitation was used as the reaction unit. A 
cross-flow microfiltration unit (Ceraflow model, Millipore 
Co.) with a filter element made of high purity alumina, 0.22 
mm pore and 0.0372 m2 filtration area was used in the cell 
recycle system. The flash tank was a 2.5 liters (working 
volume) adapted Chemap reactor. The device to measure the 
input flow was an electromagnetic flowmeter (IFS 400 KC 
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model, signal converter IFC  090 model; Conaut, Brazil) 
with an operating range from 0 to 1200 L/h. Temperature in 
the fermentor and flash tank was measured using K type 
thermocouples (N. Brunswick Scientific Co.). A Cold trap, -
25 ºC working temperature (MA-055 model, Marconi 
laboratory equipment, Brazil), was used in the condensing 
system. 

The yeast used was Saccharomyces cerevisiae obtained 
from an industrial fermentation plant. The medium used in 
the fermentation was sugarcane molasses containing about 
77% of purity in sugar, diluted in water with to a 
concentration of 180 g / L of reducing sugars.  

A stage of batch fermentation was initiated shortly after 
the addition of the inoculum. The objectives in this stage 
were to promote the total consumption of substrate and to 
reach a high biomass concentration before the second stage 
begins. The end of the batch fermentation stage was 
observed by the stabilization of turbidity and condensate 
volume readings. The continuous extractive fermentation 
was initiated by turning on the permeate pump of the 
filtration system. The removal of fluid with the permeate 
and purge pumps decreased the fermentation broth level into 
the fermentor activating the feeding pump (connected to an 
on-off level controller) that supplied fresh medium, by this 
action the level was kept constant throughout the 
fermentation.  

The temperature in the fermentor was maintained 
constant at 33.25 ± 0.25 ºC, the feed of substrate 
concentration was constant at 180 g/L throughout the 
fermentation process, while the dilution rate of the 
fermentor was maintained constant in the levels of 0.03 h-

1(33.33 h residence time), 0.10 h-1(10 h residence time), 
0.15 h-1(6.67 h residence time), 0.20 h-1(5 h residence time) 
and 0.35 h-1(2.85 h residence time). Working with this last 
dilution rate it was possible to obtain a productivity of 25 
g/L h, which is three times higher than the value obtained in 
the traditional fermentation process. The flash tank was 
operated with a feed flow rate of 200 L/h, vacuum pressure 
at 150 ± 40 mmHg, temperature at 33.8±0.4 ºC. The liquid 
remaining in the flash tank containing the fermentation 
broth with lower concentration of ethanol returned to the 
fermentor using a helical pump. 

B. Variables selection 

In this work two control alternatives using the model-
based approach to control system design [9] were compared. 
The control objective is to regulate the ethanol 
concentration in the fermentor (Ef). In order to design the 
controller an empirical dynamic model of the process based 
on ANN was previously developed This approach was used 
instead of developing a phenomenological model of the 
process, as the modeling of the flash tank has been shown to 
be complex [5]  and lead to inaccurate results.  

After a preliminary study of the process, the following 
variables were considered as input variables to develop the 
model : 1) Permeate flow rate (FP) ; 2) Fermentor purge 
flow rate (FPU); 3) Feed flow rate to the fermentor (F0); 4) 
Fermentor biomass concentration (X) ; 5) Fermentor 
substrate concentration (S); 6) Residence time (tr) or 
Fermentor dilution (D=1/tr); 7) Fermentor Glycerol 

concentration (G); 8) Cell viability (Cv); 9) Fermentor 
outlet flow rate (F); 10) Fermentor temperature (Tferm); 11) 
Flash tank inlet flow rate (Fin); 12) Flash tank temperature 
(Tflash); and 13) Flash tank pressure (Pflash).  

III. MODELING AND CONTROL 

A. Artificial Neural Network Modeling 

A two layer feedforward network was employed to model 
the process with a tan–sigmoid transfer function on the 
hidden layer and a linear transfer function on the output 
layer, because according to Cybenko’s theorem, with this 
structure, the ANN models are able to approximate 
continuous functions at any desired level [10] [11]. The 
Levenberg-Marquardt method for backpropagation training 
was used to train the ANN.    

In the ANN structure selected the inputs, ix , the weights 

that connect inputs to neurons in the hidden layer, Wji, the 
weights that connect neurons in the hidden layer to neurons 
in the output layers, Wkj, the bias, b, the activation 

functions, f , and the value of the output variable O
kE  are 

related by the following equation: 
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Where: j = 1,…, N (hidden layer neurons) ; i = 1,…, M 
(inputs); k = 1,…, K (output layer neurons). The weight Wji, 
connects the ith input (xi), and the jth neurons on the hidden 
layer (layer 1). The weight Wkj, connects the jth neuron of 
the hidden layer, and the kth neurons of the output layer 
(layer 2). Superscript 1 indicates layer 1. Superscript 2 
indicates layer 2, Superscript o indicates output layer. The 
ethanol concentration estimated in the kth neuron of the 

output layer is represented by O
kE .  

The number of neurons in the hidden layers was 
determined by selecting the lowest mean square error (mse) 
when using the cross-validation technique, which is used to 
avoid model overfitting and to evaluate the performance of 
neural network by its ability to predict the elements of a 
validation dataset which was not used when training the 
neural network. In the present work a representative data 
base containing 800 input/output patterns corresponding to 
400 h of continuous flash fermentation at different dilution 
rates (0.1, 0.15, 0.20 and 0.35 h-1

) was used; 600 
input/output patterns (75%) were used for ANN training and 
the remaining 200 input/output patterns (25%) was used to 
validate the trained ANN. 

B. Neural Network Model Predictive Control (NNMPC) 
algorithm 

The rationale underlying MPC is to transform the control 
problem into an optimization one, so that at any sampling 
time instant a sequence of future control values is computed 
by solving a finite horizon optimal control problem. Then, 
only the first element of the computed sequence is 
effectively used and the overall procedure is repeated at the 
next sampling time [12] [13].  
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In the NNMPC algorithm proposed in this work the 
convolution model used in the linear DMC algorithm is 
substituted by a non-linear internal model based on ANN, 
which is trained using data (input/output patterns) generated 
by the ANN model of the process. The predictive controller 
estimates a control action sequence (future inputs) that leads 
the controlled variables (outputs) to follow an optimal path 
to achieve a reference trajectory. This optimal path is 
determined by optimizing the following quadratic objective 
function [14] [15]. 
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c
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Where: 
ysp= set point,   = weighting factor (suppression 

factor), which prevent large swings in the manipulated 
inputs, u = value of the future change in the manipulated 

variable that minimize the performance index J  on the 
control horizon NC.  

cy  = prediction made by the neural network model on a 

prediction horizon NP, corrected according to  (7).  
Certain restrictions on the changes of the manipulated 

variable are also considered, so the optimal control action 
sequence is obtained by solving a constrained quadratic 
programming (QP) problem at each sampling time.  

The optimization problem is written as a quadratic 
program: 

UfUHUU TT  )()(
2

1
)(min  (3) 

Subject to: 

 )( UT  (4) 

maxmin UUU   (5) 

Where the matrices H and , are related to tuning 
parameters [16].  
 

 TikuU 1  (6) 

 
(k = sampling instant; i = 1,…, NC)           
 

The vectors η and  U  are linear functions of the output 
prediction vector, y, as well as of the tuning parameters. 

Although the future control actions are calculated over a 

control horizon NC )NPNC(  , only the first control 

action is utilized.  The optimization algorithm was 
implemented in Matlab using the quadprog routine of the 
optimization toolbox.  

The algorithm uses a corrected value for the prediction 
cy  in (2), incorporating a feedback strategy. At instant k, 

the predicted value of the output is compared to the 
measured value; the difference is used to correct the 
predicted value ŷ in the NP moments ahead. For example, 
for the moment k + i: 

)ˆ(ˆ kkik
c

ik yyyy    (7) 

IV. RESULTS AND DISCUSSION 

A. Process Modeling 

Neural networks of configurations 13: N: 2, where N is 
the number of neurons in the hidden layer (N Є [6,10]), 
were tested in order to select the best ANN based model of 
the process. The lowest mse and R2 values obtained when 
pairing the experimental validation set with the ANN 
predicted values were used as indicators of the best model. 
A neural network with topology 13:8:1, with 8 neurons in 
the hidden layer led to the lowest mse and R2 values, so it 
was selected as a model of the process. Fig. 2 shows the 
selected ANN model topology. Fig. 3 shows the high 
prediction performance of the model to values of the 
validation data set. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 ANN model topology 
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Fig. 3.  Output of ANN process model and experimental values of 
the validation data set.  

B. Dynamic Behavior Study 

A procedure to determine the effect of input variables, on 
the output variables is by  making changes or disturbances 
in the values of the inputs one by one and observing the 
changes in the outputs. In this work random disturbances 
were made on the selected inputs one by one by simulating 
the dynamic behavior of the process. 

As inputs were utilized: a) purge flow rate, b) permeate 
flow rate, c) feed flow rate to the fermentor, and d) the 
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fermentor dilution; and as output it was used the fermentor 
ethanol concentration, Ef.  

The highest associations between variables were obtained 
in two cases: 1) between the purge flow rate, Fpu, and the 
ethanol concentration in the fermentor, Ef, with a 
correlation coefficient, R = 0.99 and a range of variation of 
the output as a result of the variations in the input, r = 13.48 
g/L (r=max(output)-min(output))  and 2) between the feed 
flow rate to the fermentor, Fo, and the ethanol concentration 
in the fermentor, Ef, with a correlation coefficient, R = -0.91 
and a range of variation of the output as a result of the 
variations in the input,   r = 28.22 g/L. Therefore Fpu and 
Fo could be appropriate variables to be considered as 
manipulated variables in order to control Ef. 

Fig. 4 show graphically the behavior of the inputs: purge 
flow rate, Fpu, and feed flow rate to the fermentor, Fo; and 
the output ethanol concentration in the fermentor, Ef, with 
normalized values in the range [0.1, 0.9]. 
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Fig. 4. Normalized values of inputs and outputs:  
a) Purge flow rate, Fpu, and ethanol concentration, Ef.  
b) Feed flow rate to the fermentor, Fo, and Fermentor ethanol 
concentration, Ef.  
 

From the results two NNMPC controller structures were 
proposed: control structure 1 with the purge flow rate, Fpu, 
as manipulated variable, and control structure 2 with the 
feed flow rate to the fermentor, Fo, as manipulated variable. 
The controlled variable is the ethanol concentration in the 
fermentor, Ef. 

C. Internal Model Training 

The DMC algorithm uses an internal model (convolution 
model) to generate predictions of future control actions. In 
this work the internal model is a neural network with two 

inputs: the controlled and manipulated variables at the 
present sampling instant, t, and one output: the controlled 
variable one step ahead, (t +1). The training data 
(input/output patterns) were obtained by making 24 
successive random disturbances on the inputs of the process 
model and determine the respective output. The interval 
between disturbances was chosen to ensure that the system 
reaches new steady states, as suggested by Santos and 
Biegler [17]. The internal model based on ANN has a 2:4:1 
topology with 4 neurons in the hidden layer. The model 
performance in describing the training data was determined 
using the following equation, which was suggested by 
Milton and Arnold [18]:  
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ye(k)  is an experimental output, y(k) is the corresponding 

output of the neural model, ye  is the average of 

experimental outputs and N is the number of experimental 
data. The two internal models describe the training data with 
correlations (corr) of: 99.05%, and 99.12%; respectively.  

Another test suggested by various authors [15] [17] [19] 
and that was done with satisfactory results was to determine 
each model's ability to predict steady states of the process. 

The practical experience from the present work has 
shown that additionally two more characteristics are 
important when testing the performance of the ANN internal 
model: 1) an accurate open loop response, and 2) a wide 
operation range. 

D. Controller Performance 

The predictive controllers with nonlinear internal model 
based on neural networks were subjected to various tests, 
considering a sampling time of 10 minutes. The parameter 
values were determined by trial and error; and comparing 
the controller performance in different cases: 

1) Control structure 1 (manipulated variable: purge flow 
rate): prediction horizon, NP =10, control horizon, NC=3,  λ 
= 0.22.  

2) Control structure 2 (manipulated variable: feed flow 
rate to the fermentor): prediction horizon, NP =10, control 
horizon, NC=1, λ = 0.05. 
Regulator Performance 

In this test, changes were made in different inputs 
variables: Fo, Fpu, Fp, and D; to simulate load disturbances 
and to observe the regulatory behavior of the controllers 
[20] in each case disturbance variables were different from 
the manipulated variables. Two cases are mentioned to 
describe different characteristics on the response. Fig. 5 
shows the responses of the control structure 1 for 
disturbances of  5 % in the value of the feed flow rate, Fo. 
Fig. 6 shows the responses of the control structure 2 for 
disturbances of  20 % in the value of the purge flow rate, 
Fpu.  
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Fig. 5. Control structure 1: Response of the controlled variable, Ef, 
with time to perturbations of 5 % in the feed flow rate to the 
fermentor, Fo. Manipulated variable: purge flow rate, Fpu. 
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Fig. 6. Control structure 2: Response of the controlled variable, Ef, 
with time to perturbations of 20 % in the purge flow rate, Fpu. 
Manipulated variable: feed flow rate to the fermentor, Fo. 

 
Figs. 5 and 6 show that both NNMPC structures reject the 

disturbance and bring the system back to the steady state; 
therefore they have good regulatory performance. Three 
criteria were useful to describe the regulatory performance 
of the controllers: 1) the maximum deviation of the response 
from the reference trajectory, 2) the settling time, and 3) the 
IAE criterion (integral of the absolute value of the error), 
which provides controller settings that are between the most 
conservative settings, given by the ITAE criterion (integral 
of the time-weighted absolute error) and the most aggressive 
settings, given by the ISE criterion (integral of the squared 
error) [9]. Fig. 5 show that NC=3, is the best selection for 
control structure 1, and Fig. 6 show that NC=1, is the best 
selection for control structure 2. The deviation (d) from the 
reference trajectory is higher for control structure 1 (d=5.66) 
than for control structure 2 (d = 0.90). The settling time, 
defined as the time to reach 5% of the maximum deviation, 
is 50 min for control structure 1 (NC=3) and 30 min for 
control structure 2 (NC=1). Control structure 1 leads to a 
higher IAE value (IAE=104.98) than control structure 2 
(IAE=13.55).  

From the tests that were realized we can state that a 
carefully determination of the: “dynamic matrix” elements, 
suppression factor λ, control horizon NC, and prediction 

horizon NP, is important to increase the performance of the 
NNMPC controllers. Although control structure 2 appears 
to have the best regulatory performance, it is necessary to 
do more tests using different disturbances of similar 
magnitude in order to have a better conclusion. In the 
present case there are strong interactions between input 
variables, e.g. feed flow rate to the fermentor, Fo, and 
permeate flow rate, Fp; Fermentor dilution, D, and Fo; that 
give difficulty in stating a definitive conclusion.   
 
Servo Performance 

In this case successive changes were made in the value of 
the setpoint.  

Figs. 7 and 8 show the behavior of the predictive 
controllers with neural internal model to various changes in 
the reference trajectory (setpoint). It is noted that both 
control structures performed well, bringing the system back 
to the steady state after each change in the setpoint 
(represented in this case by ethanol concentration in the 
fermentor, Ef).  

 
 a)

55

57

59

61

63

65

67

69

71

0 250 500 750 1000 1250 1500

time (min)

E
f (

g
(L

)

setpoint controlled variable

 
 b)

0

50

100

150

200

250

0 250 500 750 1000 1250 1500

time (min)

p
u
rg

e
 fl
o
w
 r
a
te

 (
m

L
/h

)

manipulated variable

 
Fig. 7.  Servo performance of the control structure 1:  
a) Controlled variable and setpoint changes  
b) Manipulated variable behavior (control actions).  
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Fig. 8.  Servo behavior of control structure 2:  
a) Controlled variable and changes in the setpoint.  
b) Manipulated variable (control actions). 

V. CONCLUSION 
In this paper a non-linear neural networks model 

predictive controller (NNMPC) was designed using the 
DMC algorithm. It was shown that the non-linear models 
based on ANN can accurately identify the experimental 
behavior of the studied process and have a good 
performance as the internal model in predictive controller.  

The use of an ANN model to simulate the dynamic 
behavior of the process allowed the design of the proposed 
control system even when an accurate phenomenological 
model was not available. The predictive performances of the 
controllers were tested with load disturbances and setpoint 
disturbances with good results, which demonstrate the high 
potential of the procedures that have been used in this study 
for control system design in integrated reaction-separation 
processes. 
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