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Abstract�This paper presents two related three-bit quantiza-
tions for sum-product algorithm LDPC decoding that are suitable
for programmable logic. The key aspect of our decoder design is
the combining of the parity-check and variable node update steps
into a single computation. The performance and the hardware
requirements for an FPGA implementation are considered and
compared to the work of Planjery et al.

I. INTRODUCTION
Low Density Parity Check (LDPC) codes are well suited

for error-correction applications. However, the challenge is to
�nd strategies that will enable ef�cient implementations while
ensuring good performance. Iterative decoder designs using
a small number of quantization bits appear in the works of
T. Zhang and Parhi[1], and Planjery et al[2], and Z. Zhang et
al[3]. Each team has devised a design suitable for digital logic
implementation.
In this paper we present quantizations for a sum-product

algorithm LDPC decoder using the receiver sampling reso-
lution available on a Gaussian channel. We examine decoder
performance of various three-bit quantizations, �nding that the
best choice of quantization changes as the channel conditions
change. Our design combines the parity check and variable-
node update steps into a single computation. This paper
presents synthesis results showing the latency and footprint
of the key computational component of our decoder design.
Our experiments are with a rate- 12 length 1162 binary LDPC

code; it is from a family of codes that our research group has
generated using permutation matrices[4][5]. This methodology
permits the construction of codes of large girth. The cyclic
permutation structure is known to have ef�cient hardware
implementations[6][7].

II. SCOPE
The Sum Product Algorithm (SPA) was simulated on a

computer cluster, using look-up tables based upon three-
bit quantization, for 10 iterations. Our quantization, with 10
iterations, surpasses the performance of Planjery et al with
100 iterations. We determine the per-iteration computational
latency and evaluate trade-offs between iterations and compu-
tation per-iteration, which contribute to total latency and gain.
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We select these as the comparison criteria in our conclusion
and we discuss other potential criteria; in an engineering
application, decoder design could be optimized for throughput
or power consumption.

A. FPGA Implementation
The Field Programmable Gate Array (FPGA) offers a very

rapid pathway to concept development; it is also well-suited
to computation with non-standard precision and variable data
types that are not available in microprocessors. The Applica-
tion Speci�c Integrated Circuit (ASIC) also offers customized
precision, but there is a high development cost. In contrast
to ASIC development, FPGA development is low-cost, easily
debugged, and correctable. When implementing the sum-
product algorithm in an FPGA, the designer has a choice
of precision and quantization; precision can be increased at
the cost of computational speed. Size, power, and latency are
important engineering factors in communication systems.
Reducing precision reduces the coding gain but accelerates

the computation. An FPGA solution [1] in the literature
achieved LDPC decoding using operands with just 5-bits. Our
own prior research [8] explored tradeoffs between the number
of bits of precision and the number of decoding iterations.
Synthesis results, such as those presented in our present paper,
help to explore the capability and performance of an FPGA-
based decoder.
The LDPC decoder for a regular code has a very repetitive

structure, performing identical operations on each bit of the
received code word. Our analysis, implementation, and syn-
thesis presents the computation for a single code symbol. The
length 1162 LDPC code that we tested our decoder with is
a rate- 12 (6,3)-regular code. Each variable node outputs three
updated messages; we implemented the logic of just one of
these output messages in order to determine the latency, and
then implemented all three outputs to observe the consequent
speed and size. Logic synthesis can seek to maximize speed,
or minimize chip area, or optimize some combined weighted
function of speed and chip area.
The Altera DE2 development board was selected for this

work and requested from and provided by the Altera Corpo-
ration as a university research grant. The FPGA on the DE2
board is the Cyclone II EP2C35F672C6N, it has a substantial
number of programmable logic elements (33,216).

B. Formulations of the Iterative Algorithm
We looked at the SPA as a cycle in our ISIT 2006

paper[9]. Figure 1 shows the iterative algorithm formulations
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Fig. 1. Iterative SPA Formulations in the Literature
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Fig. 2. Our published Formulation of the Sum-Product Algorithm

cycling through probability representations, where the variable
� and parity check � messages can be expressed in terms
of probabilities, differences �p = P (0) � P (1), ratios �p =
P (0)
P (1) , or log-likelihood ratios �p = log�p. We compared
various formulations of the SPA[10][11][12][13] which were
mathematically equivalent but computationally different. One
of the conclusions of that paper - formulations which represent
probabilities as differences (�p) or as log-likelihood ratios
(LLR) offered signi�cant computational advantages. These
resulted in fewer CPU instructions. Transforming multiplica-
tion operations into addition operations in the log domain
increases performance on computer processors with arith-
metic logic units that can perform addition more rapidly than
multiplication[14][15][16][17][18]. The advantage is de�nitely
signi�cant when working with 32-bit and 64-bit variables; but
what if there are only a few bits of precision in use? For
limited precision, the difference between O(n�bits) addition
versus O(n2�bits) multiplication might not be signi�cant.
As Han and Sunwoo showed[19], the LLR calculations

involve one particularly obstructive computation, an inverse
hyperbolic tangent function; their limited precision computa-
tion involves a table for this calculation. Zhang et al have
also looked at �xed-point LLR quantizations using 5, 6 and 7
bits[3]; in these implementations, the hyperbolic tangent func-
tion is a substantial part of the design effort and computational
work.
The cycle for the formulation we introduced is shown in

Figure 2. In this paper, instead of looking at the parity check
and variable-node update as two separate actions, we will
present the cycle as a single computation with one quantization
applied per iteration.

C. Comparing BSC and AWGN
The Additive White Gaussian Noise (AWGN) channel and

the Binary Symmetric Channel (BSC) both appear in simula-
tion efforts as representatives of real-world channel conditions.
This paper compares decoding results on a Gaussian channel
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Fig. 3. FER and BER for AWGN and BSC Channels

with competing published results that use the BSC. The
equivalence computation is � = 1

2 erfc(
p
2EbN0

), where �
is the BSC bit crossover probability, and Eb

N0
is the signal

to noise ratio (SNR) that characterizes a Gaussian channel.
For decoders with �oating-point belief propagation, there is
an almost 2 dB difference in performance. Truncation to a
hard decision at the receiver results in the 2 dB loss that
differentiates the BSC and AWGN channels, as shown in �gure
3. The difference is about the same whether the decoder is
evaluated based upon bit error rate (BER) or frame error rate
(FER).
Considering this loss, it seems a natural move to collect

soft decisions at the receiver if the decoder is going to work
with soft-information internally. Our decoder design assumes
a soft-decision receiver with three bits of precision and our
speci�ed quantizations.

III. PLANJERY'S BEYOND BELIEF PROPAGATION

We replicated the quantized three-bit algorithm speci�ed in
Planjery's paper[2]. We reproduced the 100 iteration results
from their paper using several published codes (e.g. bench-
marks) and ran simulations for our own code with both 10
and 100 iterations for a range of SNR values. These are shown
in �gure 4 (BER) and �gure 5 (FER). Each graph shows the
applicable reference curves from �gure 3.

Planjery also produced, using a specialized three-bit pro-
prietary quantization and algorithm, improved results through
an approach designed to overcome the in�uence of trapping
sets. With Shiva Planjery's gracious cooperation we were able
to obtain the resulting performance curve of their proprietary
decoder applied to the LDPC code that came from our own
permutation constructions. Transformed from crossover prob-
ability to an SNR axis, this curve is shown in �gures 4 (BER)
and 5 (FER). The quantized algorithm of Planjery et al com-
pares favorably to a �oating-point belief-propagation decoder
operating upon hard decision samples from the receiver. These
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Fig. 4. BER for Published and Proprietary decoders of Planjery et al
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Fig. 5. FER for Published and Proprietary decoders of Planjery et al

proprietary performance curves are repeated in the charts for
our quantizations, �gures 8 and 9, for comparison.
The Planjery et al three-bit algorithm begins with a single

bit quantization (a hard decision) at the receiver. It performs
another quantization at each parity check, and then quantizes
again at each variable node update. Three-bit messages are
used for the parity check operation inputs and outputs. Other
algorithms in the literature quantize in a similar fashion, two
quantizations per iteration, as illustrated in Figure 6.

A. Synthesis of the Planjery Vasic 3-bit Decoder
We implemented the three-bit logic of their parity checks

and variable node update in Verilog HDL. The synthesis
results, targeting our Cyclone II FPGA, were reported by the
Altera Quartus II software.
The single bit computation used 138 logic elements and

had a longest path delay of 20.489 nanoseconds. If we were
to compute 1162 bits (the length of this LDPC code) simulta-
neously, the footprint would expand to 160356 logic elements.
If we were to compute, sequentially, the 100 iterations used in
Planjery and Vasic's simulations, the decoding latency would
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Fig. 7. Quantization of the Variable Nodes. One Quantization per Iteration

be multiplied to 2.0489 microseconds.
This synthesis result gives a baseline for the implementation

cost of their published algorithm. Their second stage pro-
prietary rule, giving them signi�cant additional coding gain,
increases the implementation cost by an amount unknown to
us. The quantizations that we propose in the following sections
require more logic elements, but our performance results show
the bene�ts of those additional implementation costs.

IV. OUR WORK: ONE COMPUTATION PER ITERATION
The SPA is typically described as two computational steps.

If we consider the iteration to be a combined-step instead of
the two separate steps, the formulation still has mathematical
equivalence but the computation changes. Instead of applying
quantization twice in an iteration, one quantization is applied.
The intermediate quantization is not speci�ed, but quantization
is implied; that implied quantization is described later in the
synthesis results subsection. Figure 7 illustrates the whole-
iteration computation that we worked with.

A. Quantization Scales
Our quantization values are expressed in �� representation,

which transforms [0,1] probability values to the range of
[-1,+1]. Five-bit quantizations proved to be very effective
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in LDPC decoding in our previous effort. A quantization
scheme using the sigmoid function, S(x) = 1

1+e�x , was
among those that we used to determine the discrete scale
values[8]. In this paper we present two related three-bit quan-
tizations, based upon sigmod function evaluations at certain
intervals: x = �1:5� f1; 2; 3; 4g = �f1:5; 3:0; 4:5; 6:0g and
x = �2:0 � f1; 2; 3; 4g = �f2:0; 4:0; 6:0; 8:0g. These show
particular promise for decoder quantization over a tested range
of Gaussian channel SNR values.
The step thresholds, T , that we chose are the means between

the step heights. The step-function mapping of �p assigns the
quantized value si, choosing i such that ti�1 � �p � ti. The
two tested quantization scales are:

Table 1. Sigmoid "635" Scale Quantization
Step "S" (��) Values

�s4 �s3 �s2 �s1 s1 s2 s3 s4
-0.995 -0.98 -0.90 -0.64 0.64 0.90 0.98 0.995

Step Threshold "T" Values
�t3 �t2 �t1 0 t1 t2 t3
-0.99 -0.95 -0.77 0.0 0.77 0.95 0.99

and

Table 2. Sigmoid "762" Scale Quantization
Step "S" (��) Values

�s4 �s3 �s2 �s1 s1 s2 s3 s4
-0.999 -0.995 -0.96 -0.76 0.76 0.96 0.995 0.999

Step Threshold "T" Values
�t3 �t2 �t1 0 t1 t2 t3
-0.99 -0.98 -0.86 0.0 0.86 0.98 0.99

Notice how, for both scales, the precision is concentrated
in the regions of greatest certainty; the step functions have
�nely spaced steps at the two extremes. These families of
quantizations suggest an implementation strategy for varying
the decoder precision; such a strategy could compete with
other adaptive error correction technologies that have been
developed (rate compatible codes, etc.). The two quantizations
tested differ only in how the x values of the sigmoid S(x) are
selected.

B. Decoder Performance
We found that one of our quantization scales was better for

lower SNR conditions and the other was better for high SNR
conditions. A decoder intended to work well for a wide range
of conditions might be designed to adapt its quantization as
the channel conditions change. As channel conditions change,
the current noise level could be estimated from the sample
variance; we haven't yet built the logic needed to do this, but
we understand it to be a common practice in signal processing.
The SPA simulation results are shown in �gures 8 (BER)

and 9 (FER). The graphs show comparable results from a

0 1 2 3 4 5 6 7
10 ­10

10 ­8

10 ­6

10 ­4

10 ­2

100

SNR

BE
R

 Sigmoid "635" 10 iters
 Sigmoid "762" 10 iters
 Planjery Proprietary 100 iters

Fig. 8. BER for Sigmoid "635" and "762", compared with Planjery et al

0 1 2 3 4 5 6 7
10 ­10

10 ­8

10 ­6

10 ­4

10 ­2

100

SNR

FE
R

 Sigmoid "635" 10 iters
 Sigmoid "762" 10 iters
 Planjery Proprietary 100 iters

Fig. 9. FER for Sigmoid "635" and "762", compared with Planjery et al

simulation by Planjery, using their proprietary three-bit de-
coder upon our own length 1162-bit LDPC code. The small
vertical bars on the graph data points show the upper end of
a 95% con�dence interval for each of our simulation result
values. These con�dence intervals can be reduced with longer
simulations (more samples). The con�dence intervals that we
present are small enough to �rmly assert the following claims:
The "635" quantization outperforms the "762" quantization

over the [1.0,3.5] SNR range.
The "762" quantization outperforms the "635" quantization

over the [4.0,5.0] SNR range.

At the 10�4 BER level, using our chosen rate- 12 LDPC code,
both of our decoder quantizations outperform the Planjery
and Vasic proprietary algorithm. The best BER gain is about
0.9 dB better than their approach. FER gains, somewhat
less substantial, are also seen over most of the tested SNR
region. A decoder adapting between our two quantizations
outperforms their approach over the entire tested range.
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C. Synthesis Results

In our quantization approach, as described above, limited
precision is applied to the receiver sampling and to the variable
node updates. Using this, we implemented a combined parity
check and variable node update calculation using a mixture
of calculations, logic, and a table lookup. The three-bit (6,3)
parity check results in one of 112 possible output values,
far less than the 2(3�5) input combinations. Another way
to express this is as an implied quantization - the parity
check output can be digitally represented using seven bits,
since 112 < 27. The table lookup determines an update by
specifying 112�112�8 = 100352 three-bit values. There are
additional symmetries which make it unnecessary to store this
many computed table values. Our technique for �nding the
simpli�cations was to allow the Altera Quartus II synthesis
tool to do the simplifying for us. For our tested quantizations,
the tool consistently digested the table lookup (speci�ed in
Verilog HDL) and produced a result with a complexity reduced
by a factor of about 1000. The cost for each was an overnight,
(8 12 ) hour, synthesis, place, and routing run.
The synthesis returns the number of logic elements (LE),

which are required for the design and it computes, after placing
and routing in an optimal manner, the longest path delay (LPD)
between any pair among the inputs and outputs. The inverse
of the LPD is the highest appropriate clock frequency for a
clock-synchronous design.
The logic for calculating one variable update using two

associated parity checks, synthesized to less than 5,000 logic
elements. When the expressed design was expanded to include
all three associated parity checks and compute all three of the
resulting variable node updates, the design footprint more than
doubled, but it did not triple. The delay increased by less than
20%. The three-message logic synthesized to a blend of shared
computation and parallelism.

Table 3. Synthesis Results for each Quantization
msgs LEs LPD max clk

(ns) (MHz)
Planjery's algorithm 3 138 20.489 48.8
Sigmoid "635" Scale 1 4,743 36.255 27.5

3 11,111 43.099 23.2
Sigmoid "762" Scale 1 4,471 37.518 26.6

3 10,070 42.485 23.5

The chosen Cyclone II FPGA is too small to handle the 1162
replications of this design needed to process all of the bits of
a code word simultaneously. A table lookup implementation is
a good candidate for pipelining so a fast full-codeword design
is entirely feasible.
Our synthesized design has twice the per-iteration latency

of Planjery's published design (per our synthesis results).
This computed factor of only two may be an overoptimistic
comparison because some of both delays may be due to
the overhead of directing input to and receiving output from
the FPGA chip itself. To obtain a fairer comparison using
these single iteration synthesis �gures, we would omit some

input/output portion of the latency from the per iteration
measure. We determined an upper bound for this contribution
by implementing a very minimalist circuit, just an XOR of all
of the inputs that also drives all of our outputs. That circuit,
with three-bit inputs consumed 39 logic elements and had
a latency of 17.560 ns. If we subtract off this latency time
value from both longest path �gures, then the Planjery/Vasic
adds 2.929 ns to this minimal latency (to get the 20.489 ns
total) and the "0.762" Sigmoid adds 24.925 to this minimal
latency. The ratio of these two time durations is approximately
eight to one. Since our decoder exceeds, in 10 iterations,
the decoding gain of Planjery's proprietary decoder with 100
iterations, we compute the total decoding time for one bit to be
10�24:925 = 249:3 ns for our design and 100�2:929 = 292:9
ns for Planjery's published design. The timing advantage of
our Sigmoid decoder is 15%.

The logic circuity of our decoder, with its quantizations, was
larger than the logic to implement their decoder, but our de-
coding operation was faster and obtains better decoding results
for the tested regions of SNR, BER and FER. Our computation
for one code symbol �ts within the selected FPGA; we could
readily use this to decode a full codeword in a serial fashion.
Alternatively, we could increase throughput by using a larger
chip or by redesigning for an ASIC. Using a larger chip would
give us greater throughput and parallelization opportunities;
these can be explored more thoroughly under the engineering
constraints of a speci�c application.

D. Further Work
With longer simulations we may determine how far down

these performance curves go; explore more thoroughly the
possible error �oors of our approach and determine which of
the approaches pushes down the error �oor more. We have an
alternative to longer and expensive simulations via our ongoing
work in the importance sampling techniques that can be used
to approximate simulations of very low error rate conditions.
We previously studied the effect of varying the number

of decoding iterations with this particular permutation-based
LDPC code; we found that a decoding by 10 iterations was
usually conclusive [8]. Simulations of our new quantized
design in this paper with 100 iterations (instead of just 10)
resulted in only minor additional gains ( 14 dB in terms of BER
and 1

3 dB gain per the FER curves).
It bears mentioning that our simulation has the �exibility

to use different quantizations at each iteration. We have ex-
perimented with this capability but we are without conclusive
results.

V. COMPARING DECODERS
Our results, using three-bit samples from a Gaussian chan-

nel, have 0.5 to 0.9 dB better gain than the hard-decision
receiver approach used by Planjery et al[2]. A conclusion
from this is that a receiver that can sample incoming symbols
with three bits is better than one that makes a hard-decision.
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The �delity available at the receiver sampling point should
not be discarded. The quantization selected for three-bits
of precision does make a difference and considering the
channel conditions is important when trying to choose the
best possible quantization. Because we found that one of our
quantizations was better in the lower SNR range and the other
was better in the higher SNR range, we proposed a decoder
that adapts between our two quantizations according to a
frequent estimation of the channel conditions The 33,216 LE
capacity of our FPGA could accommodate the logic of both
of our quantizations, leaving enough additional room for the
logic to measure the channel SNR and select the quantization
adaptively. The adaptive decoder can beat Planjery's decoder
by approximately 0.9 dB over a substantial BER range (10�2
to 10�7).
Although the single iteration latency is greater than that

of the Planjery et al design, our success with 10 iterations
means that a decoder solution that is better for a range of SNR
conditions can be reached in less time. We believe there is a
potential for parallelization and pipelining, but even working
through the bits one at a time in a serial fashion, the 430 ns
per bit processing would support a decoding throughput over
2 Mbps. This FPGA-based capability is adequate to ful�ll
the diverse narrowband requirements and achieve the lower
threshold for wideband operation of a contemporary radio
system[20].
Our synthesis assessment is of Planjery's published design.

We make two assumptions in order to compare our decoder to
their proprietary design: (1) that the proprietary enhancements
increase latency beyond that of the published design and
(2) that the proprietary design requires additional logic. The
comparison favors our decoder on two of three evaluation
criteria. The comparison is summarized in the following table.

Table 4. Implementation Comparison
Our Planjery's designs
design pub. prop.

Decode 1 Bit (ns) 249.3 292.9 �
Gain @ 10�4 BER (dB) +8.5 +6.5 +7.6
Chip Area (LEs) 21,181 138 �
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