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Abstract—Control chart is the most important Sta-

tistical Process Control tool used to monitor relia-

bility and performance of industrial processes. For

monitoring changes in process dispersion, the R and

S charts are widely used. These control charts per-

form better under the ideal assumption of normality

but are well known to be very inefficient in presence

of outliers or departures from normality. In this study

we propose a new control chart for monitoring pro-

cess dispersion, namely the D chart, and compared its

performance with the R and S charts using probabil-

ity to signal as a performance measure. It has been

observed that the newly proposed chart is superior to

the R chart and is a close competitor to the S chart

under normality of quality characteristic. When the

assumption of normality is violated, the D chart is

more powerful than both the R and S charts in terms

of detecting shifts in process dispersion. This study

will help quality practitioners to choose an efficient

alternative to the classical R and S charts for moni-

toring dispersion of industrial processes.
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1 Introduction

Control chart introduced by Walter A. Shewhart in
1920’s, is the most important Statistical Process Control
(SPC) tool used to monitor reliability and performance of
industrial processes. The basic purpose of implementing
control chart procedures is to detect abnormal variations
in the process (location & scale) parameters. Although
first proposed for manufacturing industry, control charts
have recently been applied in a wide variety of disciplines,
such as in nuclear engineering ([8]), health care ([18]), ed-
ucation ([17]) , analytical laboratories ([1]) etc.

Monitoring process dispersion is an important component
of SPC. Dispersion control charts are a well known tool
used for improving process capability and productivity by
reducing variability in the process. The R and S charts
are the two most widely used control charts for monitor-
ing changes in process dispersion ([11]). The design of
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these charts is based on estimating the process standard
deviation σ using sample range and sample standard de-
viation respectively. These charts perform better under
the ideal assumptions but are well known to be very in-
efficient when the assumption of normality is violated.
In this study we propose a new dispersion control chart,
namely the D chart, based on Downton’s based estimate
of process standard deviation. The design of the D chart
is established and is shown to be more efficient as com-
pared to the classical R and S charts, particularly for
non-normal processes.

Assume X be a normally distributed quality character-
istic with in-control mean µ and standard deviation σ
(i.e. X ∼ N(µ, σ2)) . Let X1, X2, · · · , Xn represents a
random sample of size n and X(1), X(2), · · · , X(n) be the
corresponding order statistics. The Downton’s estimator
is defined as (see [5] and [2]):

D =
2
√
π

n(n− 1)

n∑

i=1

[
i− 1

2
(n+ 1)

]
X(i) (1)

For normally distributed quality characteristic, D is an
unbiased estimator of σ (see [3]) and it has been shown
in the past that D is not much affected by non-normality.
The purpose of this study is to develop a variability chart
based on D that performs better than existing variability
charts under the existence and violation of normality as-
sumption. The rest of this study is organized as follows:
In the next section the widely used 3-sigma and probabil-
ity limit structure of the D chart is established following
[16] and [7]. The following section compares the perfor-
mance of the D, R and S charts assuming normality of
quality characteristics. The comparison is made using
probability to signal as a performance measure. Fourth
section presents comparison of these charts when the as-
sumption of normality is violated and quality character-
istic is assumed to follow non-normal (heavy tailed sym-
metric and skewed) distributions following [16] and [13].
Finally conclusions have been made in the last section.

2 Design of D Control Chart

Suppose the relationship between D and σ be defined by
a random variable Z as Z = D/σ (similar to W = R/σ
for the R chart – see [11]). For setting up control limits of
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the proposedD chart, estimates of σ and σD are required.
By taking expectations on both sides of Z, we obtain:

E(Z) = E(D/σ) = E(D)/σ (2)

E(D) can be replaced with average of sample D′s (D),
computed from an appropriate number of random sam-
ples obtained from a process during normal operating
conditions (similar to R and S used in the construction of
R and S charts). Let E(Z) = z2, as D is an unbiased es-
timator of σ hence we have z2 = 1 (for every value of n).
Thus under normality, an unbiased estimator of σ based
on Downton’s estimator is given as σ̂ = D. Similarly for
an estimate of σD we have σZ = σD/σ. Let σZ = z3,
hence we have

σD = z3σ (3)

Ref. [3] showed that

var(D) =
σ2

n(n− 1)

{
n(

1

3
π + 2

√
3− 4) + (6− 4

√
3 +

1

3
π)

}

(4)
From Equations (3) and (4) we have

z3 =
1√

n(n− 1)

√
n(

1

3
π + 2

√
3− 4) + (6− 4

√
3 +

1

3
π)

(5)
Replacing an estimate of σ (i.e. σ̂ = D) in Equation (3),
we obtain σ̂D = z3D
Hence the widely used 3-sigma control limits for the pro-
posed D chart are defined as

LCL = max(0, D − 3z3D) = Z3D (6)

CL = D

UCL = D + 3z3D = Z4D

where Z3 = max(0, 1−3z3) and Z4 = 1+3z3. We can ob-
serve that the coefficients z3, Z3 and Z4 entirely depends
upon the sample size n. After setting up control limits,
sample statistic D is plotted against time or sample num-
ber. If all the D′s lie inside control limits we can say that
the process variability is in statistical control otherwise
if one or more D′s lie outside control limits, the process
variability is said to be out-of-control.

The use of 3-sigma limits is based on the symmetric as-
sumption of the plotted statistic, we will see that the
distribution of D is not symmetric atleast for small to
moderate values of n. Hence there is a need to develop
the probability limit structure for the proposed D chart.
Probability limits for the D chart can be computed by
using quantile points of the distribution of Z. Let α be
the specified probability of making Type-I error, denoting
α-quantile of the distribution of Z by Zα, the probability
limits based on D are given as:

LCL = Z(α/2)D̂ with Pr(Z ≤ Z(α/2)) = α/2

UCL = Z(1−α/2)D̂ with Pr(Z ≥ Z(1−α/2)) = 1− α/2
(7)

These quantile points have been computed through ex-
tensive Monte Carlo simulation routines. The distribu-
tion of Z is obtained by generating 10, 000 samples of
size n = 2, 3, · · · , 15, 20, 25, 35, 50, 75 and 100 from stan-
dard normal distribution. For a specified Type-I error
probability α, (α/2)th and ((1 − α)/2)th quantile points
have been computed from the distribution of Z for every
combination of α and n. The same procedure is repeated
1000 times and the mean values of the quantile points
together with their standard errors (in parenthesis) are
reported in Table 1 (for parent normal distribution). The
3-sigma and probability limit structure of R and S charts
with their respective control chart constants and quantile
points can be seen in [15].

3 Comparison of D, R and S Charts for

Normal Processes

The probability to signal shifts in the process dispersion
is used as a performance measure following [6, 12] and
[14]. In our case, the process is said to be out-of-control
whenever process standard deviation σ shifts from an in-
control value, say σ0 to another value say σ1, where σ1

is defined as σ1 = σ0 + δσ0. For a fixed false alarm rate,
control chart structure which gives highest probability
to signal for out-of-control situations will indicate best
performance as compared to other charts.

After setting up the probability limits for α = 0.002,
probability to signal have been computed for both in-
control and out-of-control situations for the D, R and S
charts using their respective control chart coefficients and
quantile points. To save space and to aid in visual clarity,
power curves have been constructed instead of presenting
results in tabular form. The power curves of the three
charts for normally distributed quality characteristics for
n = 5, 10 and 15 are shown in Figure 1.

From power curves in Figure 1 we can observe that for
zero sigma shift in process standard deviation, the prob-
ability of signaling is very close to 0.002 for all the charts
and for every sample size, representing the case for an in-
control process. When the process is out-of-control, the
D chart is equally efficient to the S chart for detecting
shifts in process variability and have significantly higher
probability to signal as compared to the R chart, as the
power curves of the D chart coincides with that of the S
chart and remains always higher than the power curves of
the R chart for every choice of n. Hence we can say that
under the ideal assumption of normality, the D chart is
more efficient than the R chart and acts as a close com-
petitor to the S chart.
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4 Comparison of D, R and S Charts for

Non-Normal Processes

Normal distribution have wide applications in statistics
and almost all SPC charts are based on this assumption.
But in practice data from many real world processes fol-
low non-normal distributions. To mention a few of such
cases: [4] and [9] pointed out that quality characteristics
such as capacitance, insulation resistance, surface finish,
roundness, mold dimensions follow non-normal distribu-
tions. [10] indicates that impurity levels in semiconduc-
tor process chemicals follow Gamma distribution. Many
other characteristics such as straightness, flatness, cy-
cle time are not distributed normally. Hence there is a
need to study the performance of these variability charts
for different parent non-normal distributions. To repre-
sent the case of non-normal processes, the performance
of D,R and S charts is investigated by assuming that
the quality characteristic follows heavy tailed symmetric
(Student’s t) and skewed (Gamma and Weibull) distribu-
tions. The density function of these non-normal distribu-
tions are given as:

Student’s t (tk):

f(x|k) = Γ[(k+1)/2]√
kπΓ(k/2)

(
1 + x2

k

)−(k+1)/2

,

−∞ < x < ∞, k > 0

Gamma(α, β):

f(x|α, β) = βα

Γ(α)x
α−1e−βx,

x > 0, α > 0, β > 0

Weibull(α, β):

f(x|α, β) = α
β x

α−1e−xα/β ,

x ≥ 0, α > 0, β > 0

Probability to signal of the D,R and S charts have been
computed for these non-normal distributions using sim-
ilar simulation routines as were used earlier for the case
of normal distribution. In our simulation study we used
Student’s t distribution with k = 5, Gamma distribution
with α = 2 and β = 1, and finally Weibull distribution
with α = 1.5 and β = 1. The power curves of the three
charts when quality characteristic is assumed to follow
Student’s t, Gamma and Weibull distributions are pre-
sented in Figures 2-4 respectively.

From Figures 2-4 we can clearly see that the power curves
of D chart are always higher than the power curves of
both the R and S charts for all non-normal cases and
for every choice of sample size n. This indicates that the
D chart has higher probability to signal shifts in process
variability as compared to both R and S charts when the

Table 1: Quantile points of the distribution of Z
n Z0.001 Z0.01 Z0.05 Z0.95 Z0.99 Z0.999
2 0.00166 0.01565 0.0785 2.45975 3.23694 4.15268

(0.00056) (0.00015) (0.001) (0.00027) (0.00111) (0.00033)
3 0.03551 0.11492 0.25502 1.96152 2.439 3.00633

(0.00084) (0.00057) (0.00086) (0.00052) (8e-04) (0.00086)
4 0.09823 0.21368 0.37075 1.76101 2.12345 2.53082

(0.00032) (0.00111) (0.00031) (0.00109) (0.00096) (0.00069)
5 0.15217 0.28511 0.44493 1.64577 1.9552 2.30548

(0.00025) (0.00044) (0.00027) (0.00047) (0.00076) (0.00089)
6 0.20846 0.34765 0.50023 1.56683 1.8354 2.15353

(0.00025) (0.00048) (0.00032) (0.00057) (0.00093) (0.00036)
7 0.25049 0.39398 0.54303 1.51488 1.75368 2.02625

(0.00013) (2e-04) (0.00061) (0.00034) (0.00076) (0.00035)
8 0.30186 0.43455 0.57671 1.47484 1.68721 1.94266

(0.00033) (0.00087) (0.00023) (0.00025) (0.00086) (0.00028)
9 0.33462 0.46845 0.60199 1.443 1.64455 1.87114

(0.00016) (0.00025) (0.00079) (0.00011) (0.00035) (0.00081)
10 0.37155 0.49531 0.62393 1.41335 1.60123 1.81688

(0.00028) (0.00024) (0.00046) (0.00078) (0.00063) (0.00035)
11 0.38631 0.51896 0.63972 1.39357 1.56754 1.7785

(9e-04) (0.00036) (0.00091) (0.00024) (0.00068) (0.00073)
12 0.41242 0.53575 0.6575 1.37317 1.54059 1.7294

(0.00109) (0.00087) (0.00039) (0.00056) (0.00076) (0.00085)
13 0.43215 0.55201 0.6712 1.35789 1.52125 1.69148

(0.00067) (0.00034) (0.00079) (0.00021) (0.00025) (0.00063)
14 0.45467 0.57071 0.68466 1.34069 1.49412 1.68263

(0.00031) (0.00056) (0.00077) (0.00041) (0.00033) (0.00039)
15 0.46773 0.58356 0.6935 1.32709 1.47725 1.63709

(0.00066) (0.0011) (0.00098) (0.00022) (0.00051) (0.00081)
20 0.54297 0.63953 0.73694 1.27848 1.4035 1.54339

(0.00042) (0.00033) (0.00092) (0.00059) (0.00017) (0.00011)
25 0.57977 0.67448 0.76569 1.24488 1.35738 1.47917

(0.00074) (0.00028) (0.00107) (0.00053) (0.00088) (0.00072)
35 0.64444 0.72547 0.8022 1.20638 1.29519 1.4015

(0.00022) (0.00091) (0.00012) (0.00031) (0.00067) (0.00079)
50 0.70201 0.77009 0.83552 1.17129 1.24661 1.33503

(7e-04) (0.00084) (0.00019) (5e-04) (0.00052) (0.00094)
75 0.75708 0.8122 0.86561 1.13826 1.1971 1.26395

(0.00031) (0.00099) (0.00053) (0.00036) (0.00097) (0.00025)
100 0.78607 0.83591 0.88294 1.12025 1.17153 1.2276

(0.00094) (0.00079) (0.00055) (0.00105) (0.00077) (0.0011)

assumption of normality is violated. We can also observe
that the difference in the detection ability of these charts
increases with an increase in n. Relatively the R chart is
extremely affected while the D chart is least affected by
non-normality. Hence for non-normal processes, we can
easily say that the proposed D chart is always superior
than both the classical R and S charts.

5 Conclusions

This study proposes an efficient control chart, namely
the D chart, to monitor process dispersion. The perfor-
mance of the D chart is compared with the classical R
and S charts using probability to signal as a performance
measure. It has been shown that for normally distributed
quality characteristic, the D chart is equally efficient to
the S chart in terms of detecting shifts in process vari-
ability and has significantly better detection ability as
compared to the R chart. For non-normal processes, the
D chart clearly showed superiority over both the R and
S charts. Quality control practitioners can now easily
choose the proposed D chart as a superior alternative
to both the classical R and S charts due to its efficient
detection ability.
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Figure 1: Power curves of D,R and S charts for n = 5, 10
and 15 under Normal distribution when α = 0.002
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Figure 2: Power curves of D,R and S charts for n = 5, 10
and 15 under Student’s t distribution when α = 0.002

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

δ

P
ro

ba
bi

lit
y 

to
 S

ig
na

l

R
S
D

(a) n = 5

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

δ

P
ro

ba
bi

lit
y 

to
 S

ig
na

l

R
S
D

(b) n = 10

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

δ

P
ro

ba
bi

lit
y 

to
 S

ig
na

l

R
S
D

(c) n = 15

Figure 3: Power curves of D,R and S charts for n = 5, 10
and 15 under Gamma distribution when α = 0.002
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Figure 4: Power curves of D,R and S charts for n = 5, 10
and 15 under Weibull distribution when α = 0.002
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