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Abstract—In this contribution we focus on a method which is
able to reduce an unwanted oscillation in a mechatronic drive
system. A mechatronic drive consists of a motor, a gear-box,
electronics and control joint to one module. When now applying
the method of harmonic modulation, i.e. the modulation of the
set-point signal used within the mechatronic drive, oscillations
of the system (at e.g. the end-effector) can be reduced. A single
sine-signal was commonly used for modulation. In the following
we want to discuss and investigate other signal-types as well as
presenting their results.

Index Terms—oscillation, control, harmonic-modulator, feed-
forward, mechatronic

I. INTRODUCTION

An undesirable oscillation often occurs in mechatronic
systems (MS) due to a relatively low damped system behav-
ior. Especially in lightweight applications or robotics where
position accuracy is a manner, the performance basically can
only be held by the cost of speed, power or mechanical
construction efforts. Hence, improvement in control might
be an additional and smart way. Two different types of
oscillations, namely the ”transient” as well as the ”semi-
steady-state” oscillations are known [1, 2]. Good results in
feedback and state-space control methods have been made by
[3, 4, 5, et al.] by the cost of additional sensors or relatively
huge calculation efforts. For eliminating transient oscillations
good results have been made by [6, 7, 8, 9, et al.] due to feed-
forward based methods. A further feedforward method is the
already mentioned harmonic modulation, where especially
semi-steady-state oscillations can be reduced [10]. Before we
are able to start with the investigation to other signal-types,
lets introduce the mechatronic system used here.

A. Mechatronic system

Based on an experimental setup, the main modeling results
can be concentrated in Table. I and Equ. 1 [1, 2]. Here, the
MS is interpreted as a low damped P-T2 system; a torsional
damped spring mass in detail.

Where i indicates the gear-ratio, c the torsional spring
constant, d the damping constant and Jall the overall moment
of inertia. The resonance frequency fr = f0 ·

√
1− 2 ·D2,

the eigen frequency f0 and the damped oscillating frequency
fd are also shown in Table. I [1, 2].
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TABLE I
SYSTEM PARAMETERS. [1, 2]

PARAMETER: VALUE: UNIT:

i 1/121 -

c 2409 Nm/rad

d 0.54 Ns/m

Jall 0.2132134 kg m2

D 0.012 -

fr 16.917 Hz

f0 16.919 Hz

fd 16.918 Hz

G(s) =
i

1 + 2 ·D · sω0
+ s2

ω2
0

D =
d

2 · c ·
√

Jall

c

< 1
(1)

B. The harmonic modulation

Let’s further consider a trapezoidal (velocity) set-point
generation where it’s often used for mechatronic drives (MD)
like shown (dashed) in Fig. 1). The harmonic modulated

Fig. 1. Standard trapez (dashed) vs. harmonic modulated trapez (solid).

version will then last in the (solid) line.

C. Bode simulation technique

The inverse Laplace transform of the system transfer
function Equ. 1 is g(t). Then, bode can be obtained using
Equ. 2 [10]:

[L{g(t)}+Kh · L {y(t) · g(t)}](s→jω) =
Gall(jω)

(2)

The gain of modulation is Kh and the modulation fre-
quency is fmod like stated out in Equ. 3 [10]:

Kh = Kperc. · (ϕ̇M · i)
Kh = Kperc. · (ωM · i)
ω̃ = 2πfmod

(3)

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011



In case of using a single sine-signal (see add. Equ. 8, Fig. 2
and Fig. 3) it lasts to Equ. 4 [10]:

Gall(jω) =

G(jω) +Kh ·
1

j2
· [G(jω − jω̃)−G(jω + jω̃)]

where y(t) = sin(ω̃t)

(4)

In case of a cosine signal to Equ. 5 respectively.

Gall(jω) =

G(jω) +Kh ·
1

2
· [G(jω − jω̃) +G(jω + jω̃)]

where y(t) = cos(ω̃t)

(5)

II. PROBLEM STATEMENT

The technique of harmonic modulation with a single
sine-wave-signal is maybe improvable when using different
signal-types or e.g. a multiple of sine-signals. Simulation
results as well as real measured results with the single sine-
signal have been made here [10]. Basically the modulation
which can be seen as frequency shifting (MD velocity
shifting) avoids staying constantly in the resonance zone,
although in mean the specific set-point is held. (Note: The
mean of periodic signal without a DC-offset is zero.) So the
reduction of an unwanted oscillation is made by the cost of a
”slightly swinging” set-point signal (solid, in Fig. 1) around
the previous set-point (dashed, in Fig. 1)

III. SIGNAL-TYPES

First of all, let’s consider a time periodic signal whose
fundamental angular frequency can be stated out to:

ω = 2πf =
2π

T
i.e. ω = 2π · 0.4Hz

(6)

Then, due to Fourier, we can break such a signal to a series
of sine- and cosine-signals in the form of:

y(t) =
a0
2
+
∞∑
n=1

[an · cos(n · ω · t) + bn · sin(n · ω · t)] (7)

Where a0 = 0 when no DC-offset is present in the signal.
Having the so named fourier-coefficients (an and bn) any
periodic signal can be build up. In the following several
(common) signal types will be introduced. On the left hand
side of each figure, the signal by time is plotted. On the right
hand side the respectively (normed) histogram of residence is
plotted. Further each interpretation in sense of fourier-series
is shown as well. Note: We only seek for AC-signals without
any offset.

A. Basic types
1) Sine-signal: Let’s start with the trivial case, where the

fundamental frequency itself is the signal i.e. the sine-signal:

y(t) = sin(n · ω · t) ; where n = 1 (8)

The maximum and minimum values of Fig. 2 are also the
values with the longest residence like shown in Fig. 3. Good
fitting results using this signal for harmonic modulation have
been made in [10]. As already mentioned the histogram in
Fig. 3 shows that in sense of avoiding the resonance zone of
we stay mainly above and below equally. A further advantage
is that no higher harmonics (n > 1 in Equ. 8) is contained in
the signal and therefore no additional concern in coinciding
with the system resonance frequency fr is existing.
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Fig. 2. Sine-signal
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Fig. 3. Hist. of sine-signal

2) Triangle-signal: A signal where the arrangement in the
histogram of residence is constant (see add. App. B) is also
known the triangle-signal (see Fig. 4 and 5).:
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Fig. 4. Triangle-signal
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Fig. 5. Hist. of triangle-signal

y(t) =
8

π2

∞∑
n=1,3,5,...

(−1)(n−1
2 )

n
· sin(n · ω · t) (9)

We can see that higher harmonics (n > 1 in Equ. 9) are
existing. These higher frequency content is less compared
to the ”pure” square-wave. Higher harmonics are able to
cause other resonance effects, but when also having transient
phases it could be better having a uniformly distributed
histogram [11] (see also Fig. 9).

3) Square-wave-signal: The signal with the best avoid-
ance of the resonance zone might be the square-wave-signal
(see Fig. 6 and 7).:
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Fig. 6. Square-wave-signal
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Fig. 7. Hist. of sq.-wave-signal

y(t) =
4

π

∞∑
n=1,3,5,...

1

n
· sin(n · ω · t) (10)

Higher harmonics (n > 1 in Equ. 10) are existing which
are able to cause transient-effects when coinciding with fr.
But the implementation of the square-wave-signal (see add.
Equ. 10) offers four opportunities: If no or little system
information is known (≈ f0, ≈ fd, ≈ fr):
• The ideal square-wave with (n = 1, 3, 5, ...∞).
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• The approximated order square-wave with (n = 1, 3)
2nd order or (n = 1, 3, 5) 3rd order.

If detailed system information is known (f0, fd, fr):

• The filtered square-wave with e.g. notch- or band-
elimination-filters (n = 1, 3, 5, ...∞ 3 n · ω ∼= ωr).

• The shaped square-wave with e.g. ZV-, ZVD-, ZVDx-
shaper [6] or posicast [7] (at i.e. fd)

4) Pulse-signal: Further, when i.e. ωr is known. We are
able to improve the avoidance of the resonance zone when
not using a cyclic duration where positive- and negative-
values are equally disposed. (This can be seen as a duty
cycle different to a ratio of ”1:1”. See add. Fig. 7 and 9).
Such a periodic signal without any offset is e.g. the pulse-
signal shown in Fig. 8.:
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Fig. 8. Pulse-signal
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Fig. 9. Hist. of pulse-signal

Note: Here u was one third of T . In case when u is exactly
the half of T , it lasts to a square-wave-signal.

y(t) =
4

π

∞∑
n=1

1

n
· sin

(u · n · ω
2

)
· cos(n · ω · t)

where : 0 < u < T

(11)

Here, beside adjusting u also approx. and/or filtering can
be applied like introduced at the square-wave-signal before.
The further advantage compared to the square-wave-signal
is, when a working point were an unwanted oscillation is
not on the top of the resonance zone (ω = ωd) but already
in the resonance zone. This is for instance the case, when
either the top or the bottom of the most history of residence
(Fig. 7) is matching ωd, then a histogram of residence like
shown in Fig. 9 may last in a better behavior. Then, compared
to the square-wave-signal (where it’s equal above and below
dispersed see Fig. 7) it might be better to have an avoidance
where it’s better staying more above than below (when
ω > ωd and 0 < u < T/2) or inversely staying more below
than above (when ω < ωd and T/2 < u < T ) that point (see
Fig. 9).

B. Approximated types

Instead of using a huge order (n = 1...∞) in sense of
Fourier series, we reduced the order to: (n = 1, 3) 2nd order
or (n = 1, 3, 5) 3rd order like shown in Fig. 10 to 13.

For the pulse-signal we used the order (n = 1, 2) 2nd order
and (n = 1, 2, 3) 3rd order like shown in Fig. 14 to 17.

The dashed-dotted, line in Fig. 18 should additionally
indicate the pure triangle-signal.
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Fig. 10. 3rd order sq.-w.-signal
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Fig. 11. Hist. of 3rd o. sq.-w.
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Fig. 12. 2nd order sq.-w.-signal
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Fig. 13. Hist. of 2nd o. sq.-w.

IV. RESULTS

To make the results visible, several bode plots were
discussed in the following. Note: The bode plots are plotted
linear instead of logarithmic. The DC-gain of the system
transfer function (Equ. 1) is set to one instead to the gear-
ratio. The (dashed) line shows the bode of the normal system
transfer function (Equ. 1); the (dashed dotted) line shows the
bode of just the harmonic modulator transfer function and the
(solid) line shows the bode of the complete system transfer
function (Equ. 2). As long as the solid blue line is ”below”
the dashed magenta line in the resonance zone, there is an
improvement in sense of reducing an unwanted oscillation.
In Fig. 21 the single sine-signal (like introduced in Fig. 2 and
it’s Hist. in Fig. 3, which itself has an analytical interpretation
formulated in Equ. 8,) was applied in [10]:

The approx. square-wave-signals (see add. Equ. 10) are
shown in Fig. 22 (3rd order see add. Fig. 10 and 11) as well
as Fig. 23 (2nd order see add. Fig. 12 and 13):

The approx. pulse-signals (see add. Equ. 11) are shown in
Fig. 24 (3rd order see add. Fig. 16 and 17) as well as Fig. 25
(2nd order see add. Fig. 14 and 15):

To compare the results, Fig. 22 to 25 should always be
related to Fig. 21. Further tests with other signal-types e.g.
sawtooth etc. didn’t show great promise.

V. CONCLUSION

The use of higher order modulation signals (to obtain a
more square-wave-signal) allows a less modulation gain (i.e.
from 8 to 5per.) by same or slightly better performances in
sense of reducing an unwanted oscillation. This might also be
depending on the system damping (d). The use of an approxi-
mated pulse-signal can additionally improve the performance
at the ”lower gain” of the resonance zone (between 8-15Hz
and ca. 18-20Hz). A varying u (e.g. T/2−x < u < T/2+x)
around fd can led to an even better performance by the cost
of finding a good fitting relation of u (Let u be a function
of fd and T). It is very important that the use of any higher
order signal will force the user to take care of not coinciding
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Fig. 14. 2nd order pulse-signal
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Fig. 15. Hist. of 2nd o. pulse

the modulation frequency content with the system resonance
frequency/ies.

APPENDIX A
ANALYTICAL HIST.-FUNCTION OF SINE-SIGNAL

The solution of the histogram from a single sine signal
can be found in [12, 13].

histy (γ) =
1

π
· 1√

1− y2

where :

y(t) = sin(ω · t) ; −T
4
< t ≤ T

4

(12)

where T is one period of the signal.

APPENDIX B
ANALYTICAL HIST.-FUNCTION OF TRIANGLE-SIGNAL

In [11]:
histy (γ) =

1

cmax
=

1

1 + a

for ; −T
4
< t <

T

4

(13)

where, cmax is the maximum amplitude value of the triangle-
signal.

APPENDIX C
ANALYTICAL HIST.-FUNCTION OF APPROX.

TRIANGLE-SIGNAL

The solution of the histogram from an approximated
triangle signal (2nd order) was already introduced in [11].

histc (γ) =
x

α ·
√
1− x2 · 12 · π · a

for : 0 < a ≤ 1

3
; 0 ≤ t ≤ T

4
where :

α =

√( γ

8 · a

)2
·
(
1− 3 · a
12 · a

)3

x = 3

√
α+

( γ

8 · a

)
+ 3

√
α−

( γ

8 · a

)
x = 3

√
α+

( γ

8 · a

)
− 3

√
α−

( γ

8 · a

)

(14)

where a = 1
cmax

− 1.
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Fig. 16. 3rd order pulse-signal
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Fig. 20. Bode: Single sine (8% vel
& 0.4Hz) [10]
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Fig. 21. Bode: Triangle 2nd (8% vel
& 0.4Hz) [11]
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Fig. 22. Bode: Square-wave 3rd
(5% vel & 0.4Hz)
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Fig. 23. Bode: Square-wave 2nd
(5% vel & 0.4Hz)
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Fig. 24. Bode: Pulse 3rd (5% vel &
0.4Hz)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

|g
ai

n|

frequency (Hz)

Bode of harmonic modulated system ; Mod. Amplitude = 5% of vel ; Mod. Frq = 0.4Hz

Fig. 25. Bode: Pulse 2nd (5% vel
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of containers with liquids and flexible conveyor belt,”
JEEEC, vol. 61, no. 2, 2010.
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