
  

  

 
Abstract—Production-transportation problem (PTP) is a 

typical Linear Programming (LP) problem in the modern 
economic society. This problem is usually formulated as 
piecewise linear concave cost functions for both production and 
transportation cost. This paper studies the application of three 
different Mixed Integer Programming (MIP) models for the 
piecewise linear cost function formulation in PTP and compares 
their solution efficiencies. A strong relaxation is admitted to 
improve the efficiency of solution searching. Moreover, in order 
to guarantee considerable computational savings, cutting-plane 
algorithm is adapted during the solution searching. The MIP 
models tend to the same optimal cost more specifically for 
higher number of commodities, but they seemingly differ with 
respect to computational complexity.  

 
Index Terms—Cutting-plane algorithm, MIP models, 

piecewise linear cost function, production-transportation 
problem 

I. INTRODUCTION 

S one of the challenging problems in economics and 
marketing world, PTP focuses on scheduling the 
commodity production and the following transportation 

in order to minimize the total cost. The PTP investigation 
emanated from the work on basis of minimum concave cost 
network flow problems. Guisewite and Pardalos [1] probed 
some algorithmic developments for the problems and 
relevant applications in the fields of production, inventory 
planning and communication network design. Another 
soundly keen analysis on modeling the ordering cost 
functions and degenerate inventory, where stock degradation 
rates depend upon both the stock’s exchange history and its 
period of production, was conducted in [2]. As the inventory 
costs are nonlinear and correspond to the age of the stock 
and the period in which it is seized, they set forth a simple 
heuristic for this NP-hard lot-sizing problem. However, the 
inventory cost has not been coped with in plenty of literature 
by virtue of the fact that the broadly adopted make-to-order 
manufacturing strategy has dramatically mitigated the system 
inventory cost. Shu, Li, and Zhong went over the PTP in 
such a make-to-order supply chain network. Having 
considered the outsourcing facility at each stage of the 
supply chain, they introduced the less-than-truckload (LTL) 
transportation cost structure into the model [3]. Technically 
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speaking, they formulated the PTP as a piecewise linear cost 
network flow (PLCNF) problem with concave cost 
primitives and applied the strong inequalities by means of a 
set of polymatroid cuts to tighten its LP relaxation. 
Transformation to the LP formulation from MIP modeling 
by virtue of relaxation techniques has drawn significant 
attention in recent years [4]-[9]. It could be remarked that 
the problem of a make-to-order manufacturing with delivery 
due date and the transportation cost has been supposed to be 
a decreasing convex function versus the transportation time 
in most of the literature on the concave and fixed-charge 
cases.  

In this paper, we take account of a multicommodity PTP 
with piecewise linear (modified all unit discount) transp- 
ortation cost and nonlinear production cost. To fulfill 
customer demands in a make-to-order fashion, three cost-
effective MIP models as transportation cost functions 
offered in [4] are accommodated. As the branch-and-bound 
LP relaxation method seems rather inefficient for the 
problem at hand due to its excessive number of yielded 
constraints and variables, a set of polymatroid cuts are 
admitted to tighten the relaxation [5]. It is well worth 
mentioning that the MIP modeling has been narrowed down 
to the Multiple Choice Model in [3], whereas this work 
intends to probe all three MIP models, derive their LP 
formulation with strong relaxation, find the feasible 
solutions using cutting-plane algorithm, and ends up 
comparing their respective optimal cost convergence and 
computational efficiency.                 .                             
.  The rest of this paper is arranged as follows. In Section II, 
we explain the PTP problem, structure and modeling. Next, 
we introduce different MIP models. In Section IV, we sketch 
our strong LP relaxation formulation for encountered MIP 
models. Subsequently, cutting-plane approach to strengthen 
relaxation will be presented. In Section VI, we provide 
simulation results. Finally, we conclude the paper and raise 
some upcoming study avenues. 

II.  PTP FORMULATION  

A. Description  

As briefly enumerated, PTP includes both commodity 
production stages and transportation modes. This work takes 
up a network topology with four stages, one source node and 
one sink node as pictured in Fig. 1. Each stage has three sites 
options where commodities are produced and sent out to the 
next site. The network simulator should be well capable of 
handling the variable costs incurred by outsourcing decisions 
at each stage. 
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Fig. 1.  PTP network compendium 

The cost from one site to another site (the weight of each 
line) is different. There is no cost when products get into the 
source node or leave out the sink node. For each site, there 
are K types of jobs need to be produced and transported. 
Each jobk  also has its workload, i.e., kW . Since production 

cost and transportation cost are coupled in the network, 
virtual sites are added to the network to clearly illustrate 
these two procedures shown in Fig. 2 at which the two grey 
nodes are source and sink nodes. The black nodes on 
stagei indicate the production sites (j) and the white nodes 
are virtual sites (l) added for transportation. The dotted lines 
show the procedures of production, while the solid lines 
show the procedures of transportation with incurred costs of 
CPijl  and CTij, respectively. With this cost decoupling set up, 
it is far much easier to formulate the PTP problem as an LP 
problem. 

B. Production Cost 

The production unit cost at each production site j involves 
a fixed cost kF and a variable cost kjV . kF  gets constant for 

each type of task, whilst kjV  depends on the total workload 

of taskk allocated to the site ).( k
jw The stepwise charac-

teristic of k
jV  with respect to k

jw  is shown in Fig. 3. Thus, 

the cost per unit is 
 

.VFU k
jkk +=         (1) 

The function )(xVk
j  can be better linearized by imparting 

additional production arcs in the network shown in Fig. 4. 
The number of arcs needs to be sought for depends on the 

existing workload k
ijw of jobk at site j of stagei , the new 

added workload of jobk  at sitej of stagei is k
ijW . 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.  PTP Network with virtual nodes 

 
 

 

Fig.3.  Variable cost per unit workload for production sites 

 
 
 
 
 
 
 
 
 

 
 

Fig. 4. PTP network with a series of arcs representing variable 
production cost 

 
    LetR denote the total dotted arcs after expansion; namely,  

,












 +
=

L

VW
ceilR

k
ij

k
ij

       (2) 

where L is the load of job before a jump in the variable 
production cost occurs; namely, in Fig. 4, L = 5 and R = 3 
with production capacity exemplified in third stage. 

C. Transportation Cost 

The production cost is a piecewise linear concave 
function. Let TC be the transportation cost andh denote the 

total amount of workload to be shipped so that 
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with immediate definition of   
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where 1 2 3 nβ β β β> > > >L  and .11 cH =β  

 

D. Optimization Problem 

The PTP attempts to minimize the total cost including 
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production and transportation cost. The LP problem can  
be formed as 
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where 
 

:  the set of jobs.

: number of arcs per stage per production site.

: per unit production cost of job .

: total workload of job planning to be allocated.

: fraction of the total workload of job 
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: piecewise linear transportation cost function at stage .i
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III.  MIP MODELS FOR THE PIECEWISE LINEAR COST 

FUNCTION 

After the PTP formulation, the PLCNF problem needs to 
be reformed with MIP models. Three MIP models [4] are 
taken into analysis in this paper. To illustrate these three 
models, the notation of each segment of concave cost 
function is shown in Fig. 5. 

A. Incremental Model 

The cost function for MIP formulation with Incremental 
Model is 

∑ +=
s

ssss yfzcxg ,ˆ)(      (6)  

conditioned to 
 

},1,0{

)()( 111

∈

−≤≤−

=

−+−

∑

s

sssssss

s

s

y

ybbzybb

zx

 

 

 
Fig.5.  Notation of each segment (slope, fixed cost, and 

breakpoints)  

 
 

where, in all expressions, sz and sy are load variable on 

segment s and binary value, respectively. sz is binarized as 
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and sf̂ is cost gap between segment s-1 and segment s, i.e., 
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B. Multiple Choice Model 

The cost function for MIP formation with Multiple Choice 
Model is 
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C. Convex Combination Model 

The cost of load that lies in segment s is a convex 
combination of the cost of two endpoints,1 and s sb b− , of 
segment s, i.e.,  
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where sµ and sλ are weights on the two endpoints, 1−sb and 
sb , respectively. 

IV.  FORMULATION OF TRANSPORTATION COST FUNCTION 

WITH MIP MODELS AND STRONG LP RELAXATION  

After laying our foundation with linearization of 
transportation cost function and resorting to LP formulation, 
still the relaxation is not quite computationally efficient 
(solvable in polynomial time). This gives rise to introducing 
a set of polymatroid cuts as an active constraint to tighten 
the LP relaxation [5]. The procedure follows the MIP 
formulation for either model. 

A. PTP with Incremental Model 

The transportation cost function of each arc can be 
couched as 
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where in this notation 
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The cost function after relaxation is 
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B. PTP with Multiple Choice Model 

In this transportation postulation, the transportation cost 
function of each arc can be formed as 
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The cost function after relaxation [3] is 
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C. PTP with Convex Combination Model 

 In this paradigm, the transportation cost function of each 
arc can be formed as 
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The cost function after relaxation after some 

simplifications is 
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V. CUTTING-PLANE ALGORITHM 

Aggregating the linear pieces of each modeling to meet Q 
of them, the number of constraints is exponentially large (2Q 
×I) in either LP relaxation. As such, cutting- plane algorithm 
primarily used to solve a large-scale logistics application is 
executed to facilitate the optimal solution searching [3]. For 
the specific Multiple Choice Model, it evolves upon three 
steps: 

 
1) Initialize S0= {1, 2} and St = S0. Enumerate all the 

constraint according to St and pass the entire 
formula into the LP solver to obtain the optimal 
solution { ui

qt , zi
qt , xi

kt   ∀ q, i, k}. 
2) If the St

* denotes the optimal solution of the 
separation sub-problem in the t th iteration, and  
                     

∑ ∑ ∑
∈ ∈

≥−
k Sq Sq

qt
i

qt
i

qt
i

k

t t

zxuw
* *

0),(min        

(polymatroid inequalities hold true), then, the 
solution in the current iteration is the optimal 
solution; otherwise continue with step 3. 

3) Identify a valid inequality for St*. Then, add this 
inequality into the original problem. Define St+1 = 
St* U  St, t = t+1, then invoke first step for the next 
iteration. 

VI. SIMULATION RESULTS AND DISCUSSION 

Three MIP models for solving PTP with conventional and 
strong relaxation using cutting-plane algorithm were Imple-  
mented. In addition, we solved the IP problem using a 
branch-and-bound method as a benchmark for our results. 
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Input parameters for experiments are randomly generated 
with ranges defined in Table I. 

The results for strong relaxation with cutting-plane 
algorithm are shown in Tables II-IV, thereinINC , MCC and 

CCC are the optimal costs obtained without LP relaxation for 

Incremental Model, Multiple Choice Model, and Convex 
Combination Model, respectively. (Refer to (9), (11), (13).)  

INC′ , MCC′ and CCC′ are respective costs with strong 

relaxation and cutting-plane algorithm. (Refer to (10), (12), 
(14).) The entitled ‘Workload’, ‘Step’ and ‘Variables’ 
columns point to the total workload planned to be allocated 

for each job ( k
ix ), the step level change in the job size 

before a jump in production cost occurs (L), and the total 
number of variable of the LP relaxations for the Incremental, 
Multiple Choice and Convex Combination formulation. 

The LP relaxations of the Incremental, Multiple Choice, 
and Convex Combination formulations are equivalent in the 
sense that any feasible solution of either LP relaxation 
reconciles a feasible solution to the others, with the least 
disparity case of nearly 4%, excluding the last CCC′ for K=10. 

 
TABLE I 

RANDOM INPUT GENERATION 

 
TABLE II 

COMPUTATIONAL RESULTS FOR STRONG LP RELAXATION OF MULTIPLE 

CHOICE MODELING WITH Q = 5 AND K = 5, 10 
 

 
Workload 

 
Step 

Variables Processing time 
(s) 

MCC′  

K=5 K=10 K=5 K=10 K=5 K=10 

10 5 1080 1680 17.76 19.13 712 1312 

20 5 1620 2160 27.57 27.90 1546 3045 

30 5 1980 2640 31.39 36.64 2212 4465 

50 10 1260 1680 27.15 30.50 2188 4391 

80 10 1800 2400 33.82 41.47 2756 2896 

100 10 2160 2880 37.81 38.01 4126 8252 

 
 

TABLE III 
COMPUTATIONAL RESULTS FOR STRONG LP RELAXATION OF INCREMENTAL 

MODELING WITH Q = 5 AND K = 5, 10 
 

 
Workload 

 
Step 

Variables Processing time 
(s) 

INC′  

K=5 K=10 K=5 K=10 K=5 K=10 

10 5 1260 1680 18.75 18.61 645 1831 

20 5 1620 2160 26.16 27.28 1456 2883 

30 5 1980 2640 35.82 32.76 1852 2860 

50 10 1260 1680 25.05 29.61 1878 3734 

80 10 1800 2400 32.32 32.46 2315 4623 

100 10 2160 2880 38.42 277.15 3383 7675 

 
 

TABLE IV 
COMPUTATIONAL RESULTS FOR STRONG LP RELAXATION OF CONVEX 

COMBINATION MODELING WITH Q = 5 AND K = 5, 10 
 

 
Workload 

 
Step 

Variables Processing time 
(s) 

CCC′  

K=5 K=10 K=5 K=10 K=5 K=10 

10 5 1260 1680 21.04 18.88 746 1799 

20 5 1620 2160 30.36 39.45 1680 1968 

30 5 1980 2640 55.42 35.45 2234 1685 

50 10 1260 1680 27.77 30.34 2433 2042 

80 10 1800 2400 66.13 83.16 3054 3601 

100 10 2160 2880 109.12 133.23 4538 20330 

 
The only significant variance between their solution 

approaches is their computational burden of performance. 
Fig. 6 represents the processing time of strong LP 
relaxations for three MIP models with K = 10 and Q = 5. 
These values are in the matter of seconds, whereas the 
optimal IP solution took about half an hour to get proved out 
in all likelihood. It is worth pointing out that the Incremental 
Model exhibits the worst solve time for the workload of 100, 
whereas the Multiple Choice Model [3] beats the Convex 
Combination Model, not touched on in there. We have 
conducted the experiments on a PC with i3 CPU of 2.13 
GHz and 4 GB RAM running the Windows 7 64-bit 
operating system. 

We employed the YALMIP as a complementary toolbox 
for MIP solving; getting integrated to the Matlab® built-in 
toolboxes. One of the basic ideas in YALMIP is to rely on 
external solvers for the low-level numerical solution of 
optimization problem. It concentrates on efficient modeling 
of high-level algorithms.  

The optimal cost convergence comparison between 
nonrelaxed problems passed through the toolbox and 
strongly relaxed ones is exhibited in Table V, thereby 
revealing that these three MIP models have almost the same 
performance on optimal solution searching. However, on 
contrary to improper processing time of the Incremental 
Model, the gap between its solutions turns out to be the 
smallest one in average (1.131) for K = 5, viz., its strong 
formulation tends to a much tighter bound than other MIP 
models. 

 
Fig. 6.  Average processing time of strong LP relaxation of three 

MIP models with K = 10 and Q = 5. 

Parameter k
ijw  1f  1H  2H  3H  

Range [1,10] [10,20] [5,10] (10,20] (20,40] 

Parameter 
1β  2β  3β    

Range [2,3] [1, 1β ] [0.5, 2β ]   

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011



  

TABLE V 
OPTIMALITY TIGHTNESS FOR DIFFERENT STRONGLY RELAXED MIP 

MODELS WITH K = 5 AND K = 10 

 
On the other hand, it is somehow remarkable that the 

Convex Combination Model is much likely the worst 
convergence case that is most important to bear in mind in 
view of its widespread applicability. These statements thus 
constitute worthy modeling inferences favoring one type of 
MIP models over the others. 

VII.  CONCLUDING REMARKS 

In this paper, we considered a multistage PTP with 
piecewise linear transportation cost and nonlinear production 
cost. Three MIP models for solving PTP with strong 
relaxation adapting cutting-plane algorithm were sketched 
and run through. We distinguished that the disparity between 
the LP relaxation and the MIP is unlikely to be evident (less 
than 19%), and that the Multiple Choice Model outperforms 
other MIP models with respect to the computational 
complexity as the problem size and the number of 
commodities increase. We recommend constructing a 
globally dispersed multistage supply chain network with in-
house production plants and outsourcing facilities that 
designates the PLCNF together with some extended forcing 
constraints through a so-called Lagrangean heuristic to bring 
out any improvement over the current work.   
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