
 

 
Abstract—The ABS operation implies a lot of effects on the 

vehicle's dynamics, the oscillatory behavior represents an 
important study area, since in can lead to significant advances 
in ABS performance. In this paper we show that the ABS 
operation while the longitudinal contact force applied in a 
pneumatic system is near to the maximum value, produces an 
oscillatory effect on the angular velocity of the vehicle´s wheel, 
and that for the time intervals that the system operates the 
oscillation can be considered periodic. 
 

Index Terms—Antilock brake system, contact force, 
deviation equations, periodic oscillations, stability region. 
 

I. INTRODUCTION 

HERE is a lot of research work on anti-lock braking 
systems (ABS) in transport vehicles that discuss the 

problem of high frequency vibrations appearance in the 
angular velocity of the wheel’s rotation [1]-[5]. Modeling 
and research of forced oscillations in a deformable wheel as 
a result of ABS activity has been discussed in papers [1], 
[2]. In works [3], [4] the processes of vibration’s appearance 
during the pressure’s relief phase in the brake cylinder of the 
ABS are analyzed, as well as the algorithms to suppress 
such vibrations. In [5] the possibility of longitudinal 
vibrations in the chassis of an airplane during the active 
phase of ABS is discussed. 

The modern ABS systems very often use sliding modes 
control [6]-[11] with switching of ABS valves. 
Simultaneously the nonlinear character of ABS dynamics 
can lead to specific periodic regimes of angular velocity 
change for this kind of control algorithms that make 
programmed switch of the valve with a given time period 
and duty cycle. The condition of existence of periodic 
changes in the angular velocity of the wheel’s rotation due 
to the presence of specific ABS regimes is discussed in this 
paper. 

The model of a pneumatic brake system is under 
consideration. The specific configuration of this system 
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includes the next: brake disks, which hold the wheels, as a 
result of the increment of the air pressure in the brake 
cylinder (fig. 1). The entrance of the air trough the pipes 
from the central reservoir and the expulsion from the brake 
cylinder to the atmosphere is regulated by a common valve. 
This valve allows only one pipe to be open, when 1 is open 
2 is closed and vice versa. The time response of the valve is 
considered small, compared with the time constant of the 
pneumatic systems. 

 

 
 
We study the case of wheel’s rotation control, such that 

the longitudinal force, due to the contact of the wheel with 
the road, is near from the maximum value in the period of 
time valid for the model. This effect is reached as a result of 
the ABS valve’s throttling. 

II. MATHEMATICAL MODEL 

A. Wheel Motion Equations 

To describe the wheel’s motion we use a partial 
mathematical model of the dynamic system (fig. 2) [3], 
[12]. Let’s write the equation of the angular momentum 
change relative to the rotation axis: 

L,FR
dT

y
dΩ

y
I                                                    (1)  

where Iy - wheel’s inertia moment,  y - wheel’s angular 
velocity, R - wheel’s radius, F - contact force, L - brake 
torque. 
 The expression for longitudinal component of the 
contact force in the motion’s plane according to 
experimental results [13] is equal   

 sNF  .                                                          (2) 

is thefriction coefficient between the wheel and the 
road, N - normal reaction. 
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Fig. 1 Pneumatic brake model considered 
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s - slip rate, Vx - longitudinal velocity of the wheel mass 

center, 

longitudinal deformation of the tire’s contact 

area element. The function (s) is defined experimentally, 
and it looks like fig. 3.  

  
 

 
 

  
The motion equation of the contact element with mass 

Mc is described by the tire longitudinal deformation. The 
interaction between this element and the rigid part of the 
wheel can be described with a viscoelastic forces model.  
The movement equation for the contact element is the next 


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 (4) 

Here Cx and Kx are longitudinal constants of viscous and 
elastic behavior of tire’s model. The model to be used is 
the similar to description of first waveform in model [2]. 
 The equations (1)-(4) characterize wheel motion. This 
system is closed if we assume longitudinal velocity Vx and 
normal reaction N as constants. This approximation is 
correct for time lag about seconds if longitudinal velocity 
and normal reaction changes slowly and their variations 
are small [14].  
 Model proposed was previously used to describe the 
wheel’s vibration for small values of slip ratio s<0.1 when 
dependence (s) is approximately linear (s)=K0s [3]. 
Under these conditions, it is possible to consider that 
natural period of contact element vibrations in (4) is much 
smaller than the characteristic time of change of angular 

velocity and break torque. The fractional analysis method 
[14] can be used to reduce equation (5) to terminal form 
and write approximated relation F=Kxξ.  The wheel 
motion equations in this case is equivalent to pendulum 
equation [2,3] with viscous friction. Natural frequency of 
this pendulum is 

2
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
   

Such as been shown [3], this result is consistent with 
experimental effects detected in the process of ABS 
control algorithm tests.   

Further we consider the behavior of the system around 
the maximum value of the brake torque, it means in the 
region of (s) maximum. The Tikhonov’s theorem [14] 
condition used for reduction in previous paragraph is 
correct too, but reduced equations present singularities in 
’(s)=0. The analytic and numerical solution of the 
equations is difficult to obtain. Therefore it is necessary to 
study full system (1)-(5) properties in order to analyze 
periodic oscillation of the angular velocity. 

We use the next approximation for (s) 

 
54

2
32
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1

asas

asasa
s




                                   (5) 

The parameters a1...a5 were calculated with the least 
squares method [15]. We use for calculation the next 
values: 
a1=0.8886, a2=-0.1776, a3=0.0155, a4=-0.2226, a5=0201 

These values approximates top neighborhood of tire 
characteristics, used in [10]. . 

B. Pneumatic Brake System Equations 

We suppose that the brake torque L is proportional to the 
pressure Pm  in the brake cylinder. 

mPLKL                                           (6) 

For the brake system we use an approximated model of 
pressure changes in the brake cylinder due to the opening 
of the valve with a first order relation. [1],[16] 

*PmP
dT

mdP
eT                            (7) 

Let’s suppose opening and closing of valve is 
momentary and the parameters of the equation (7) are 
given by the next rules: 

closed2andopened1,*) inTeTcPPa   

closed1andopened2,0*) outTeTaPPb   

Here Pc – pressure inside the central reservoir 
(constant), Pa – atmospheric pressure, that we’ll consider 

0. inT  and outT  - time constants of internal and external 

pipelines. 

C. Dimensionless Equations 

We desire to rewrite equations (1)-(3), (5) in a more 
useful form, by ignoring changes in Vx. Taking  

dT

yd
  

from (1), and writing in (5) we have: 

Fig. 2  Model for the contact element of the tire. 

Fig. 3  Characteristic function (s) 
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Equation (7) can be modified to following form: 
 

0*  LPLK
dT

dL
eT                            (9) 

To reduce the number of parameters we take the variables 
to a dimensionless form 
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characteristic time of the angular velocity changes, 
according to (1). 
 
The system (1),(8),(9) has the next dimensionless form 
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III. PERIODIC SOLUTIONS FINDING 

The main goal of this work is the study of periodic 
regimes produced by programmed switching of the valve 
with a given period and duty cycle. 

To search for periodic regimes we analyze an auxiliary 
task: control with a relay feedback built such that the system 
switches the valve when the slip ratio s reaches the arbitrary 
limit values s1 and s2. We analyze the values s1, s2 for which 
the function (s) changes around the maximum value (fig. 
3). In this region the numerical value of the contact force is 
less or equal than 10% down the maximum value, for a 
constant normal reaction between the wheel and the road. 

To find periodic solutions [lp, p, p] we integrate 
numerically the equation system (10) for initial conditions 

that can be present in real systems [3]. As a result of this 
integration we have solutions for which the values a) work 
in the interval 1=1-0, and the values b) in the interval 
f=f - (fig. 4). 

We consider that a periodic regime was found if the 
integration if the next criteria is true 
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Here (lp, p, p) and (lf, f, f) are the variables in two 
successive periods at the moment of valve’s opening. (l0, 0, 
0) - are the initial conditions of computed periodic 
solution.  

 
 
All the possible values 1, f and the corresponding initial 

conditions of the periodic solutions at the opening moment 
were obtained by solving the system for different pairs (s1, 
s2) within the time interval (s1min, s2max). The region of 
founded values, 1, f for different friction coefficient value 
  can be seen in fig. 5. The parameters for calculations are: 

Tin=0.0043,  
Tout=0.0085,  
p=1000,  
q=100,  
k=10,  
ls=0.4755,  
T1=0.0848. 
 

 
 
 

Fig. 4  Periodic Solution

Fig. 5  Periodic Oscillation Regions for Different Friction Coefficients

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011



 

IV. CONCLUSION 

Since the ABS operation is based on a switching process, 
oscillatory affects are produced, and the results can have 
consequences on performance, security and comfort of the 
vehicle,   it is important to analyze the properties of such 
oscillations. The case of maximum longitudinal force before 
the wheel locks was considered. The simulation showed that 
the oscillations on the angular velocity of the wheel have a 
periodic behavior, that information can be helpful to design 
control algorithms. 
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