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Optimal Control Mesh

Peter Taraba

Abstract—We present a novel algorithm for optimal control
of nonlinear systems, which creates control function over a mesh
on a region of interest, The algorithm presented in this paper
is an alternative to a set-oriented approach and subdivision
algorithm for optimal control. The main contribution of this
paper is error estimation for a found solution. We show on
two dimensional and three dimensional problems, that this new
algorithm is faster than a subdivision algorithm. In comparison
with a set-oriented approach, the new algorithm keeps the
same advantages as the subdivision algorithm which include
a smaller memory foot-print of the final solution, no need for
discretization and knowledge when to stop increasing the mesh
size.

Keywords. Optimal control, mesh, ordinary differential equa-
tions

I. INTRODUCTION

Finding an optimal control for a broad range of problems is
not a simple task. There are currently many methods which
try to tackle this problem using a range of solutions. The
closest ones to the algorithm suggested in this paper are
a set-oriented approach described in [1] and in [2], and a
subdivision algorithm for optimal control [3]. In addition to
these, there is [4] where authors of the paper partition a set
of state space into simplicital cones and provide a piecewise
affine control law which ensures feasibility and stability, but
is also optimal with respect to LQR problems. For more
references on this topic, see [3].

The main advantage of the subdivision algorithm for
optimal control over a set-oriented approach is the ability to
estimate when to stop increasing the mesh size and smaller
foot-print of the final solution, because with the subdivision
algorithm, solutions were found even for coarse divisions of
state space. Moreover, a set-oriented approach has a need
for sufficient partitioning (adaptive structure), which does
not necessarily improve the quality of the final solution.
The last advantage of the subdivision algorithm over a set-
oriented approach is no need to convert from continuous
to discrete model. With optimal control mesh, we keep the
advantages subdivision algorithm had, and the computations
needed for finding a solution are significantly faster than with
subdivision algorithm. Even for three dimensional problems,
the computations are faster than computations of two dimen-
sional problems with the subdivision algorithm. In addition,
this new algorithm introduces error estimation which can be
used as an indicator when to stop increasing the mesh size.

Section 1T of this paper describes the control problem
we seck to address. Section IIT introduces the algorithm for
finding optimal control mesh. Section I'V describes a problem
that the algorithm can encounter on the border and a solution
how to solve this problem. Section V shows extensions of the
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algorithm for robust applications and problems where only
the subset of state space vector = is controlled. Sections VI
and VII show results for two dimensional problems (inverted
pendulum and DC to DC converter [5]) and section VIII
shows results for a three dimensional problem (CRS system
[6]). Finally, conclusions are made in section 1X.

II. PROBLEM FORMULATION

Consider the problem of optimal stabilization of the
continuous-time control system:

T = f(‘r?u)’

where f : X x U — R¥ is continuous, one time dif-
ferentiable, and it is assumed to be locally asymptotically
controllable to the desired value 7 € X, z € X ¢ BY is the
state of the system, X is a region of interest, u € {/ < R
is the control input, IV is the compact region of admissible
controls.

The goal is to construct an approximate optimal feedback
@ x — U7, such that time to converge to desired value £ will
be minimal for any given point « € X, This is similar to the
energy function in [1]. The algorithm described in this paper
creates a mesh evenly distributed on the region of interest
X and tries to assign to every point on the mesh its energy,
which is the time needed to converge to the desired value,
its optimal control value and error estimation for the energy.
The algorithm starts with assigning +oo as energy for every
point on the mesh, then assigns small energy values to the
points closest to the desired value based on approximately
how much time is needed to get to the desired value, and
finally, the algorithm tries to spread the points which have
finite energy further.

III. ALGORITHM DESCRIPTION

The algorithm suggested in this paper is based on creating
a mesh over region of interest X . As the mesh is getting
smaller, function f can be better approximated by linear
dependency locally on the mesh because of Taylor’s theorem.
Hence we are considering only functions f which are one
time differentiable and continuous on the whole region of
interest. We also assume the one time differentiability and
continuity about the energy function on the region of interest,
so that we can make an estimation of energies in the step 7
of the algorithm.

The main principle used in this algorithm is spreading
through its neighbors, which are already able to converge to
the desired value. Initially, there is a set S containing points
around the desired value, then set ' C S, which consists of
points which for a certain control value « are directed closer
to the desired value #. All the neighbor points of C will be
included in set I, which is an active set of points which might
have the ability to improve their energy function as one of
their neighbors has improved its energy value. Besides that
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we also have set I7 which keeps track of the best energy
value F and the best control value « for each point.

Steps of the algorithm:

1) This step of the algorithm creates a mesh such that
distances between points are equal. If the region of
interest is X = [z, 270%] x [2097, 279%] x ... ¥
[T z74%], then point on the mesh is defined as

J:l(il)
IQ(Z“Q)
p(iljigj...,in): .
.GL‘N(iN)
£ (e )
B Ignn T 1\242;_11 (Igma; o Ig’un)
- ?
. - _1 ! .
I%'Ln T 1\1/_;?\,_1 (E%am _ I%'Ln)

where My, Ms, . .., My are numbers of points on the
mesh for different coordinates and 4; < {1,..., M;}.

2) In this step, a finite set I of possible control values is
created. The set 7 will be used in several steps of the
algorithm.

3) All the points created in step 1 will be added to the set
£ which, in addition to the position of the point, also
holds other information - optimal control value (which
is not set initially) and the best energy value of the
point, which is initially set as positive infinity as the
worst case scenario (point is not able to convert to the
desired value).

F={(pli1,...,in),u(i1,...,in),
E(’il,.. .,Z‘.N),S(?:lj... ,’LN)) :
e {1, My Yie{l,... N}},

where initially FE(i1,...,in) = 400 and
u(iy,...,ix) 18 not set. £(i1,...,in) is the error
estimation of the energy value £{é,...,in), set
initially also to 4+o0. The way the error is estimated
is described in section 5.

4) This step of the algorithm finds set .5, which consists
of the points closest to the desired value ;. First, the
algorithm finds L indexes ¢; which are closest to the
desired value for each coordinate

Zy = {i;(1),. ., 45(L) < o (55(1)) — 25 < ...
<z (i5(L) — 25| < [z5(k) — 4]
Yhe {1, ..., My} /{a(1),. (L))

Then algorithm creates set S consisting of points
closest to desired value through all the combinations
Z;.

S:{p(kljkgj...,kN) ! kj EZJ'

vie{l,...,N}L

See fig. 1 for details (L is chosen 2 in the figure). For
two dimensional problems, S will contain L? points,
for N dimensional problems, the set S will contain
LY points.

5) This step of the algorithm tests if Ju € U7 for point
p € 5 such that the point can get closer to the desired
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Fig. 1.  Mesh over the region of interest with initial points § =
{81, 82,83, 54}, and indexes closest to the desired value for each coordinate
Z1 = {’51(1), ’51(2)} and Z2 = {iz(l), ?:2(2)}.

value than it originally was. In case it is feasible, we
will add this point to controllable set C' of points which
converge to the desired value & and update point’s
energy and control value in set I

If p is the tested point and f(p, ) is its direction for
a control value » € U/ then the point can get closer
to the desired value in case Jt > O for cost function
J(p’ U, t) = (p+t f(p: u)_i)T(?_._t f(pa u)_i") such
that J(¢) < J(0). Optimal time ¢ can be computed as

_ fT(p,u)(p B ‘i")
T ip,u)fp,u)
The energy value for this point can be estimated as
E(p,w) ~ i(p,u)

Point p will be associated with optimal control
value @(p) = argmin, i F(p,u) and energy value
E{p,©(p)) in case ¢(p, &(p)) > 0.

t(p, u)

C = {(p,i(p), E(p,2(p))) : p € S A i(p,ai(p)) > 0}

See fig. 2, which displays this process for a two
dimensional problem.

/

L2

Fig. 2. Testing if point 53 can point closer to the desired value with new
estimation of energy with value E(p,u) = t{p,u).
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6)

7

For all the points in C we update their energy values
and optimal control values also in set F'.

In this step, we find the initial set I consisting of points
which might have the ability to improve their energy
value as points around them decreased their energy
values. This will include all the points surrounding
points in C. Let’s define surrounding set of a point
as

Sur(p(iy,dz,...,in)) = {p(f1, o, ..., IN) ¢
|j,zc — Zk‘ <1 for ¥k e {1,...,Mk}}

/{p(élaiQ:“‘ﬁiN)}‘

In set T in addition to remembering which points
have potential to improve their energy value, we also
remember the energy value of the neighbor, which was
changed. The reasoning behind this is to start spreading
through points with lower energy values first. This has
a huge impact on the performance of the algorithm in
comparison with random order of points we adapt.

I'={(EG,...,in),p(1,-- ., 9a))
plig, ..., iyt € C A
D1, -5 9n) € Sur(p(iy,...,in)) "}

Duplicates of a point p in set [ are not allowed and
the algorithm remembers only the lowest energy value
due to which point p can be improved.

Point p is selected from the set T with the lowest energy
associated with it and this point is also removed from
this set. For all the values u € U, compute the time
needed to get to the point between surrounding points
of point p.

i

rf) /(M — 1)
fi (10; U)

See fig. 3 for details. The new estimate of energy value

o) = in

B 0k 1—k B

flo.)

Fig. 3. Testing w for point p. Ditection f {p,«) points to a point in between
of other two points on the mesh (p +¢(p, u) f(p, 1)), whose energy values
can be used to approximate new energy value of p.

for point p and control value w then can be written as
E(p,w) = Hp, ) + b By + (1 — k1) B,

where Fy and F5 are energies associated with points
in set ' and &k and 1 — k1 are relative distances
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8)

towards these points from (p + ¢(p, u) f(p,w)). Value
k1 in different coordinates is computed following way:
_ pit ) filpy w) —

maz min
T k3

ki = [di] — ds

d;

(M;—1)

€I — &

The new optimal control value for point p will be
t(p) = arg min Ep,u)

In case the new energy E(p,#(p)) is smaller than the
energy associated with point p in set ¥, we do the
following:

+ Update the energy and also control value for the
point p in set F' with 4(p) and E(p, 4(p))

» Add surrounding points Swur(p) of point p to set
I, as these points might also improve their energy
values and optimal control values as their neighbor
information changed. In set I, associate these
surrounding points with energy E(p, (p)) through
which they might get improved. If these points
already exist in [, update the energy associated
with them only in case the value F(p,4(p)) is
lower than the one already associated with them.

If set I (set of points which might potentially improve
their energy) is empty, the algorithm is done and the
final solution is the set F'. Otherwise go back to step
7.

Remark 1.1, This is just an implementation detail we use
for set I. The algorithm uses a list of points sorted by the
energy values of their neighbor which recently updated its
energy value and also a hash-table of poinis to the same en-
ergy value. This is done in case a point we need to add to T is
already there and we just need to update the value of energy
it is associated with in I. The combination of sorted list and
hash-table significantly improves the algorithim performance.

Remark 111.2. Estimation of energy values for three dimen-
sional problems is shown in fig. 4.
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Fig. 4. Testing u for point p. Ditection f{p, u) points to a point in between
of other four points on the mesh (2 +%(p, w) f(p,u)), whose energy values
can be used to approximate a new energy value of p. This is now displayed
for a three dimensional problem.
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E(p,w) =tp,u) + kl(kQEQ +(1- kQ)El)
ro1- kl)(kgEg . kQ)E4).

Similarly, this can be done even for more than three di-
mensional problems. One can use recursion fo simplify the
implementation of this part of the algorithm.

IV. PoOINTS POINTING ONLY OUT OF BOUNDS

In some cases (for example an inverted pendulum), one
point on the border points only outside of region of interest
and hence it’s energy value cannot ever be updated. This
would further cause other points around it not to reach any
other energy value than oco. In fig. 5 we display what happens
for an inverted pendulum.

ffffffffffffffff

,,,,,,,,,,,,,,,

Fig. 5. Because p; points only outside of the region of interest, its energy
value can’t be ever updated and hence even point ps cannot ever update
its valve and finally because of ps, point ps can’t update its value either.
This is happening due to the structure of the mesh rather than because of
the example we run the algorithm on, as point pg can easily convert to the
desired value through the region of interest for an inverted pendulum.

Due to this disadvantage of the algorithm, we approximate
energy values outside of the box. See fig. 6 for details and
following approximation of energy outside the box:

'
]
h
A
h
'
'
'
1
'
'
]

ffffffffffffffff

,,,,,,,,,,

B OE B,

Fig. 6. Estimation of energy F outside of the box based on values Fy < co
and B < oo inside of the box.

E = El =+ (E]_ — Eg)(—dl),

but only in case if 0> dy > —1.
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V. ERROR ESTIMATION

When computing energy value estimations, there are two
sources of error. One comes from estimation E(p, u) (£¢), the
second one from estimations of &1 (sg) as both approxima-
tions count on constant behavior of vector f{m,u). Due to
this, we can estimate the error as the following:

B(p,u) = ({(p,u) £ &) + (k1 £ 21) (51 £ 1)
=+ (1 — k]_ F Zl)(EQ + 82),
where £1 is the estimated error associated with the same

point as energy F, the same holds for 5. The first error
can be estimated as

o xmam _ zmt'n 1 1
¢ My —1 fm(p:u) fm(p“"g(puu)f(puu):u) ’
where
m—arg min (x} -z /(M = 1) )
4eil,..,N} filp,v)

The second part of the error comes from the estimation of
energy between the points and can be estimated as follows:

g = |z1(E1 — Ea)| + kg1 + (1 — ka)ea,

where
o | M )il ) — Filp B o))

5 >
maxr TILTTL
Ty

for i-th coordinate.

VI. EXTENSIONS OF THE ALGORITHM

For certain problems, such as the DC to DC converter
example, the desired value can be set not around origin 0,
but around a value we try to converge to. Also, only one of
the state space variables might be optimized and hence the
initial set ' in the algorithm might include more points. This
is displayed in fig. 7.
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Fig. 7. This is how we extend set 5 = {s4,..., 815} for the algorithm
if we optimize only over variable x; with the desired value &;.

This means, that if the algorithm is not supposed to op-
timize over variable xo, then Zs = {1,..., M2}, containing
all the indexes in its coordinate.

For a robust problem, where function f is dependent on a
set of parameters g, function f{p,u,¢) is dependent on g and
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TABLE I TABLE 1T
RESULTS (MAXIMUM ESTIMATION ERROR FOR A POINT ON THE MESH RESULTS (MAXIMUM ESTIMATION ERROR FOR A POINT ON THE MESH
AND COMPUTATION TIME IN SECONDS) FOR THE INVERTED PENDULUM AND COMPUTATION TIME IN SECONDS) FOR THE DC TO DC CONVERTER
FOR DIFFERENT MESH SIZES, FOR DIFFERENT MESH SIZES.
Mesh Size 50x50 | 75x75 | 100x100 Mesh Size 100x100 | 150x150 | 200x200
Evas 0.1341 | 00887 | 0.0711 Ea 0.4748 03130 0.2457
Computation time | 6s 13s 22s Computation time | 6s 14s 20s

we have several sets of parameters (), we estimate energy

Lo = —%1 — Tz +u
the following way:
. . and the region of interest is X = [-1,1] x [-1,1] with
Ep,u) = Z(t(p, u, ) + k1 (g)Er + (1 — ki(g)) Ez). control U = [—1,1] {11 evenly distributed control values on
qel this interval is used). A robust solution is found using three
VII. EXAMPLE 1 different possible loads Iz < {—0.2,0.1,0.3}. Result sum-
mary is in table II. Trajectories of 6x6 points are displayed

We use a single inverted pendulum to demonstrate the
algorithm on a two-dimensional control problem. For sim-
ulating such a system, we use the following simplified
equations:

in fig 11.

5&1:;1:2

Fo =sin(zy) +u

We use control boundaries /' = [-3,3] (100 evenly dis-
tributed control values are used) and the region of interest . <
X = [-1,1] x [-1,1]. Results summary is in table I.

Trajectories of 6x6 points one can see in fig. 9.

Fig. 10. DC to DC converter. On the left, energy function E(éy,4) fora
mesh 200x200. On the right, error estimation for meshes 100100, 150x150,
200x200 from bottom to top. Error estimation decreases with increasing

mesh size.
1"
04&F
Fig. 8. Inverted Pendulum. On the left, energy function E(%4,4s) fora or
mesh 100x100. On the right, error estimation for meshes 100x100, 75x75, s
50x50 from bottom to top. Error estimation decreases with increasing mesh
size. e
Sl
1
UHy s i 05 0 05 1 15

0Bt
D4t
Fig. 11. DC to DC converter. On the region of interest 6x6 points were

a2 chosen and their convergence to desired value can be seen. The trajectories

§ 0 are more blue towards time ¢ = 0, and more red towards time ¢ = 10.
azt
a4t
a8t IX. EXAMPLE 3
aar

The last example is a three dimensional example in order
B — “0s 0 05 1 15 to show that the algorithm is easv to use even on higher
dimensional problems and that computations can be done in
a very short time. It is convexed Reeds-Shepp (CRS) model.

Fig. 9. Inverted Pendulum. On the region of interest 6x6 points were
chosen and their convergence to origin can be seen. The trajectories are S (a: )
more blue towards time £ = 0, and mora rad towards time £ = 3, 1= 3
Tz = usin{zs)
VIII. EXAMPLE 2

The second example is DC to DC converter

i‘gZ’U

The table IIT shows the summary results, where the error
&1 =0.25(xs — I1) estimation decreases with higher mesh size and also shows
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TABLE III
RESULTS (MAXIMUM ESTIMATION ERROR FOR A POINT ON THE MESH REFERENCES
AND COMPUTATION TIME IN SECONDS) FOR THE CSR MODEL FOR [1] L. Grine, O. Junge, A set oriented approach to optimal feedback

DIRFERENTMESHINIZES: stabilization, Systems and Control Letters, 54(2):169-180, 2005

Mesh Size 50x50x50 | 75x75x75 | 100x100x100 | [21 L. Griine, O. Junge, Optimal stabilization of hybrid systems using a set
oriented approach, Proceedings of the 17th International Symposium
Emaz 0.1751 0.1084 0.0859 on Mathematical Theory of Networks and Systems, Japan, pp. 2089-
Computation time | 21s 69s 159s 2093, 2006
[3] P. Taraba, Subdivion Algorithm for Optimal Control, Wiley, In-
terpational Journal on Robust and Nonlinear Control, 2012, doi:
o . . . 10.1002/rnc.2801
computation times in seconds on a single core machine. In [4] Alberto Bemporad, Manfred Morari, Vivek Dua, Efstratios N. Pis-

fig. 12 is displayed energy level and error estimation for a tikopoulos, The explicit linear quadratic regulator for constrained
; " , i i systemns, Automatica, 38, 2002, 3-20

Cholsen I3. close to desired value :.'33’ which I.S mldldle of [5] B. Lincoln, A. Rantzer, Relaxing dynamic programming, IEEE Trans-

region of interest. In fig. 13 are displaved trajectories for actions On Automatic Control, Vol. 51, Issue 8, August 2006

4x4x4 poinls converging to origin. [6] H.J. Sussmann, G. Tang, Shortest paths for the Reeds-Shepp Car: A

worked out example of the use of geometric techniques in nonlinear
optimal control, Technical Report No. SYNCON 91-10, Department
of Mathematics, Rutgers University

[7] P. Taraba, Optirol, Available: http://www.optirol.com

Fig. 12. CSR model. On the left, energy function E{i1,42,50) for a mesh
100x100x100 with chosen z3 in the middle of region of interest. On the
right, error estimation for mesh 100x100x100 with chosen x5 in the middle
of region of interest.

-2

Fig. 13. CSR model. On the region of interest 4x4x4 points were chosen
and their convergence to origin can be seen. The trajectories are more blue
towards time ¢ = 0, and more red towards time ¢ = 5.

X. CONCLUSION

We have shown a new approach for finding optimal control
on a mesh, which is similar to a set-oriented approach
and subdivision algorithm for optimal control. Computation
times, shown on two and three dimensional examples, are
better than computation times for the subdivision algorithm
for optimal control. We have also shown error estimations
for different mesh sizes, which adds value to the algorithm
described in this paper in comparison with the subdivision
algorithm for optimal control. The optimal control mesh
algorithm improves upon the set-criented approach by having
mesh consisting of points evenly distributed, while the set-
oriented approach needs to adapt mesh in certain regions,
which makes the memory foot-print of a solution larger. The
software for the algorithm described in this paper can be
downloaded from [7].
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