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Geritt Kampmann, Nataša Kieft, Oliver Nelles

Abstract—To find a suitable model of a system it is usually
necessary to conduct time consuming and expensive measure-
ments. Design of Experiments (DoE) methods are then often
used with the goal to find the best possible model using a mini-
mum number of measurements by placing them optimally inside
the design space. The design space is the set of values of the
system’s actuating variables that do not violate any constraints
imposed on the system. Unfortunately, the boundaries of the
design space are often not (completely) known in advance, but
are only discovered while performing the measurements. This
paper proposes a method to find and describe these boundaries
using a design space exploration method based on support
vector machines (SVM). By means of this method not only
convex, but also non-convex boundaries can be represented. The
method described here is mainly motivated by the measurement
tasks necessary for combustion engine development, but it is of
course suitable for similar problems in other fields as well.

Index Terms—design space exploration, support vector ma-
chines, design of experiments (DoE), description of non-convex
boundaries.

I. INTRODUCTION

A. Background

THE minimization of the fuel consumption of a com-
bustion engine is an optimization problem where con-

straints, e.g. imposed by exhaust emissions and destructively
high vibrations and temperatures, have to be considered
[1], [2]. The optimization algorithms used to find actuating
variables that minimize the fuel consumption while adhering
to all constraints usually need an engine model. The set of all
values of the actuating variables that adhere to the numerous
constraints constitute the design space in this context.

The model is, at least partially, generated from time-
consuming and expensive measurements during test bench
experiments. So the main goal is to obtain a model, which
is as good as possible given a maximum feasible number of
measurements.

A variety of design of experiment (DoE) strategies is
available to reach this goal [3]. The most common ap-
proaches focus on statistical aspects and try to place the
measurements in a way that the variance error is minimized
(e.g. D-optimal design, [4]). This strategy assumes a zero
bias error, i.e., a model capable of exactly describing the
process. The only remaining issue would be minimizing the
influence of the measurement noise on the estimation of
the model parameters. But in the field of engine design
measurement noise, and therefore the variance error, can
usually be neglected because measurements are averaged
over a considerable time span. On the other hand the models

G. Kampmann and O. Nelles are with the Department of Mechanical
Engineering, University of Siegen, Germany, e-mail: geritt.kampmann@uni-
siegen.de, oliver.nelles@uni-siegen.de

N. Kieft is with Mercedes-AMG GmbH, Germany, e-mail:
natasa.kieft@daimler.com

used are usually quite simple (e.g. polynomials) and therefore
will never fit the actual process exactly. Therefore the error,
which has to be considered here primarily, is not the variance,
but the bias error.

To overcome this problem model-based DoE algorithms,
employing an active learning strategy [5] have been pro-
posed. For example the HilomotDoE algorithm [6] introduces
an interaction between the modeling and the measurement
procedure by iteratively refining the model and placing new
measurements in areas where the model has currently a low
quality.

B. Importance of Design Space Exploration

For all DoE strategies, especially the ones based on active
learning, it is important to know the design space. Only if
the design space is known the measurement points can be
placed inside it in an optimal way. Moreover, the design
space boundary itself is of particular importance. Since
often optima will be found exactly on this boundary it is
necessary to place measurements there. This is illustrated
for a somewhat exaggerated example in Fig. 1. In the left
diagram the design space is unknown, only the allowed
minimum and maximum values of the individual inputs (e.g.
actuating variables) are defined. With this information only
a rectangular design space can be assumed and 25 mea-
surement points are distributed equally inside the rectangular
boundary. Not until the measurements are actually performed
it turns out that 11 of the measurements are not feasible
(circles) and only 14 measurements remain (dots) that can
actually be used for modeling. Moreover, only 3 points lie
close to the upper nonlinear boundary. If the design space
was known (right diagram), all 25 points could be placed
inside it and also exactly on the upper nonlinear boundary.

One common method to describe the design space bound-
ary is placing a convex hull of hyperplanes around it [7].
This usually leads to a quite rough description of the design
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Fig. 1. Example for the placement of 25 measurement points. Left: Design
space unknown, assuming min. / max. design space. Right: Well known
design space, improved point placement
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space and can become numerically demanding for high input
dimensions. The alternative proposed in this paper is the use
of support vector machines (SVM), which can robustly clas-
sify even very complex sets of data. SVMs can produce very
flexible boundaries and can handle large input dimensions
well. Therefore a design space exploration algorithm based
on an SVM is presented in this paper. Here the SVM not
only describes the boundary, but is also iteratively used to
find new measurement points and therefore constitutes an
DoE algorithm for the determination of the design space.

C. Structure of the Paper

The following Sec. II introduces the topic of design space
exploration. Sec. III presents the basics of using SVMs
for linear and nonlinear classification problems. Sec. IV
proposes a new method for iterative determination of the
design space based on SVMs. Sec. V concludes the paper
with a summary and an outlook on future work.

II. DESIGN SPACE EXPLORATION

The task of design space exploration is the determination
of the design space by systematically changing the inputs of
the system while detecting all possible constraint violations.
Applied to the field of combustion engines this means that
the actuating variables have to be changed carefully to avoid
damage to the engine, but also quickly to reduce valuable
measurement time. A basic method suitable for design space
exploration is shown in Fig. 2.

Starting from a safe point one input is changed at a time,
in every direction, until a constraint is slightly violated. As
the left diagram shows, the found points on the boundary
are then connected by a polygonal line, or (hyper-)planes
in higher input dimensions, constituting a convex hull. Since
this is only a rough approximation the procedure is repeated,
but by changing more than one input at once. As an ex-
ample the right diagram in Fig. 2 shows an improvement
of the approximation by using search directions rotated
by 45◦. Using additional directions and different starting
points further improvement can be achieved, but clearly the
number off possible search directions explodes for higher
input dimensions and the determination of the hull becomes
computationally demanding.

A method that is based on the previously described idea,
but is more sophisticated, is actually used for automotive
applications (Rapid Hull Determination Algorithm [8]). In
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Fig. 2. Approximation of the design space through polygonal line (convex
boundary). Left: Axis parallel search. Right: Additional 45◦ directions.

Sec. IV an alternative method for design space exploration
will be presented that avoids some of the previously men-
tioned disadvantages. Since the method is based on SVMs an
introduction on this topic is given in the following section.

III. SUPPORT VECTOR MACHINES

For linear problems factor analysis or principal component
analysis (PCA) are well established methods for handling
high dimensional data and performing dimensionality reduc-
tion, e.g. as preprocessing tools for solving classification
problems. For nonlinear problems support vector machines,
first conceived by [9], are a popular and powerful tool
for classification. Detailed information can e.g. be found
in [10]. While the use of SVMs has also been extended
to regression problems, here only the classification abilities
will be discussed further. The idea behind using SVMs for
classification is to find a very robust classifier. This feature
can be explained best using a linear SVM to separate linear
separable classes of data.

A. Linear Classification Problem

The functional principle and the robustness aspect behind
SVMs can be understood from the example in Fig. 3.
Both diagrams show two classes of data points (marked by
circles or crosses), which can clearly be separated by a line.
However, the position and slope of the line can be varied in
a wide range and still separate the classes.

The left diagram shows the choice of a line with a
rather large slope. While separating the classes, the margin
around the line, which is free of data points, is rather
small. Therefore new data is likely to be misclassified, the
classification is not very robust. The right diagram shows a
line choice with a larger margin, calculated using a SVM. In
fact, this is the line with the maximum margin possible, based
on the given data. The robustness against misclassification is
therefore maximized.

A closer inspection of the right diagram reveals that 2
circles and 2 crosses lie exactly on the margin (marked by a
small dot). These points are called support vectors, because
only these points are needed to calculate the classification
function, which is defined as a (hyper-) plane. The separating
line is defined as the zero-crossing of this plane:

wT · x + b = 0 (1)

where x = [x1, x2 . . . xq]T are the coordinates of the
data points (with q inputs) and the parameters wT =
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Fig. 3. Classification of linearly separable classes. Left: Classification with
a small margin. Right: Classification with SVM (maximum margin).
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[w1, w2 . . . wq] as well as b have to be determined as follows.
If training points xi (i = 1 . . . N ) are labeled either yi = +1
or yi = −1 depending on their class membership, w and b
have to be selected in a way that following equation holds:

wT · xi + b ≥ +1 if yi = +1

wT · xi + b ≤ −1 if yi = −1

⇒ yi(w
T · xi + b)− 1 ≥ 0 ∀i

(2)

which means that the classification function is either +1 or
−1 for points lying exactly on the margin borders (support
vectors) for the respective classes. For points outside the
margin the function has to be larger than +1 or smaller than
−1 depending on the class.

For the case that the equality holds, meaning that only
the support vectors are considered, it can be shown that
the margin width is equal to ||w||−1. Therefore, to obtain
the maximum margin ||w|| has to be minimized under the
constraint yi(wT · xi + b) ≥ 0. A quadratic optimization
problem is obtained by solving min 1

2 ||w||
2 instead.

To solve the constrained problem Lagrange multipliers α
(with αi ≥ 0) have to be introduced:

LP =
1

2
||w||2 −α [yi(xi ·w + b)− 1]

=
1

2
||w||2 −

N∑
i=1

αiyi(xi ·w + b) +

N∑
i=1

αi

(3)

Calculating ∂LP
∂w = 0 and ∂LP

∂b = 0 leads to the optimal
values for the parameters w and b:

w =

N∑
i=1

αiyixi,

N∑
i=1

αiyi = 0 (4)

It is easier to solve the so called dual form of this optimiza-
tion problem, which depends on the Lagrange parameters
α and has therefore to be maximized instead of minimized.
This form is gained by substituting (4) into (3):

LD =
N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjx
T
i xj

s.t. αi ≥ 0,
N∑
i=1

αiyi = 0

(5)

With Hij = yiyjx
T
i xj the dual form of the optimization

problem can be finally written as:

max
α

[
N∑
i=1

αi −
1

2
αTHα

]
, αi > 0,

N∑
i=1

αiyi = 0 (6)

Since this is a convex quadratic optimization problem (with
linear constraints) it can be efficiently solved using Quadratic
Programming (QP). While w can be directly determined by
using the optimal α and (4), the parameter b has to be
calculated from the condition that for a support vector xs

(point xi with αi > 0), with corresponding classification ys,
the classification function equals 1:

ys(w
T · xs + b) = 1⇔ b =

1

ys
−wT · xs (7)

To gain a more robust value, usually b is calculated for all
support vectors and the mean value is used.

Input 2

Fig. 4. Classification of a nonlinearly separable class using Radial Basis
Kernels. Top: Classification boundary (thick line, value of classification
function equals zero) and contour lines of the classification function.
Bottom: 3d plot of the classification function.

The optimization problem is not solvable if the data points
are not linearly separable. In this case it is possible to calcu-
late an approximate solution, which allows misclassification,
using slack variables in the optimization problem. Also the
SVM method can be extended to classification problems with
more than two classes and can even be used for regression.
These aspects are discussed e.g. in [11].

B. Nonlinear Classification Problem

Fig. 4 shows an example where the data points cannot
be linearly separated, but a classification is still possible by
using a suitable transformation x → ϕ(x). The resulting
classification function for the example is shown in the lower
diagram. Again the line separating the classes is defined by
the zero-crossing of the classification function.

Both solving the optimization problem (eq. 5) and cal-
culating the classification function (inserting w from eq. 4
in eq. 1) demands only for the dot product of the input
vectors xT

i xj → ϕ(xi) ·ϕ(xj) to be known, not ϕ(x) itself.
The dot product is now replaced by a scalar kernel function
k(xi,xj) = ϕ(xi) · ϕ(xj). This procedure, often called the
Kernel Trick, re-maps the data into a (potentially infinite
dimensional) feature space where the separation is possible.
Several kernel functions are suitable for this task. One of
the most commonly used, besides the previously discussed
Linear Kernel xT

i xj , is the Radial Basis Kernel:

k(xi,xj) = e
−
(

(xi−xj)
T (xi−xj)

2σ2

)
(8)

The standard deviation σ serves here as a tuning parameter
and allows to determine how smooth the class boundary will
be. It has to be suitably chosen depending on classification
problem.
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Fig. 5. Example for design space exploration. 1): Step 1 (successful). 2): Step 2 (unsuccessful, no allowed point found, return to safe point). 3): Step 3
from safe point (successful). 4): Step 4 (unsucessful, last allowed point will be used). 5): Step 5 (local search activated). 6): Step 9 (local search activated).

Since every point of the classification problem constitutes
a constraint in the quadratic optimization problem (6) the
calculation of the solution can be tedious when the number of
points is very large. In this situation it is expedient to calcu-
late only an approximate solution using least squares support
vector machines (LS-SVM). In this case, only a system of
linear equations has to be solved. With Ωij = yiyjk(xi,xj),
y = [y1, y2, . . . , yN ]T and 1 = [1, 1, . . . , 1]T (N elements)
it follows: [

0 yT

y Ω + γI

] [
b
α

]
=

[
0
1

]
(9)

where I is the unity matrix (dimension N × N ) and γ a
ridge regression parameter, which balances the amount of
misclassification against the condition of the matrix and has
to be chosen suitably. For more details see [12], [13].

Finally, the advantages of using SVMs for classification
can finally be summarized as follows:

1) Generation of almost arbitrary, non-convex boundaries.
2) The optimization problem is independent on number

of input dimensions (dot product).
3) Computational effort increases moderately with num-

ber of points (measurements).
4) An approximate solution through a linear problem (LS-

SVM) e.g. for time-critical applications is possible.

These advantages are the motivation to use SVMs for de-
sign space exploration using the algorithm described in the
following section.

IV. ALGORITHM BASED ON SVM

A. Functional Principle

To use SVMs for design space exploration some already
classified points are needed right from the start. These points
have not necessarily to be measured, it only has to be certain
that their classification as either inside (allowed) or outside
(forbidden) the design space is known. An example of the
start configuration is shown in diagram 1 of Fig. 5. Forbidden
points are placed here on a box around the actual design
space. If the investigated system is e.g. a combustion engine,
this box constitutes the individual (mechanical) limits of the
actuating variables of the engine, which can’t be exceeded
(e.g. throttle 0-100%). Also some allowed points have to be
defined. In the case of a combustion engine, safe points for
the actuating variables are known for every operating point.
The allowed points could be placed close to such a safe point.

With these points a classification boundary can be cal-
culated as a first approximation of the design space. As
diagram 1 in Fig. 5 shows this approximation covers only
a small portion of the actual design space and therefore has
to be improved by adapting iteratively to new measurements.
The overall procedure, illustrated in Fig. 5, is as follows:

1) Begin in (or return to) safe starting point.
2) Calculate boundary from available measurements.
3) Calculate next measurement point.
4) Stepwise approach of the new point through a suitable

measurement strategy depending on the situation.
5) Store last allowed and first forbidden point (if any).
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6) If allowed point existed, proceed from this point with
step 2), otherwise return to step 1).

The important question is how the new measurement point is
selected. To gain a fast expansion of the approximated design
space a large number of candidate points (marked by small
dots in Fig. 5) are randomly placed inside a band around
the currently approximated boundary, from which the new
point will be selected. The speed of the expansion can be
influenced by defining how far the band reaches outside the
current boundary. Extending the band also to the inside of the
boundary generates a more uniform and dense distribution of
measurement points if needed. This effect is illustrated by an
example in section IV-B.

To spread the new points in few iterations throughout the
design space the new measurement point is always selected
from the candidate points as the point with the largest nearest
neighbor distance. Fig. 6 shows that for all candidate points
the closest already existing measurement point is determined
(middle diagram, dashed lines). The candidate point with the
largest distance to its closest neighbor is selected as new
measurements point.

Another important issue is how the new point is ap-
proached. To avoid engine damage the engine’s actuating
variables are changed slowly and usually in small discrete
steps. After each step the procedure is halted for a certain
time to reach a steady state. This is especially important if
the design space is restricted by temperature limits. If the
new point is reached without violating any constraints, the
procedure is repeated with the new point as starting point
(Fig. 5, diagrams 2, 4). If during the approach a constraint
is violated the last point which caused no violation and
the point causing a violation are classified accordingly and
stored. The procedure is then repeated from the not violating
point (Fig. 5, diagram 5).

If the starting point for the next approach is already close
to the actual design space border (Fig. 5, diagram 2) it is
possible that no allowed measurement can be found at the
next discrete step of the actuating variables. In this situation
the algorithm returns to the defined safe point and starts from
there again (Fig. 5, diagram 3).

The exact procedure of how the new measurement points
should be approached depends strongly on the dynamic
behavior of the examined system and has to be developed
individually for this system. Usually two conflicting issues
have to be balanced in this situation. On the one hand the
new measurement points should be approached slowly to
make sure that the measurement is not heavily influenced by
dynamic effects and is at least close to the actual steady state.
This is not only necessary to gain correctly classified data,
but also to reduce the danger of large unnoticed constraint
violations and therefore possible damage to the system. On
the other hand, measurement time on a test bench is usually
expensive and therefore should be minimized.

Another aspect that has to be addressed is that the pre-
sented algorithm can freely chose a new measurement point
from the candidate points independently from the last mea-
surement, causing the algorithm to jump over large distances
across the input space. This is not necessarily desirable
during actual experiments, because such behavior leads to
large changes in the state of the system. As a consequence it
can take a long time until the steady state is reached again,

existing point
candidate point

Step 1: Step 2: Determine nearest  

neighbor distances

Select point with 

largest distance

Fig. 6. Determination of new measurement point: Point with largest nearest
neighbor distance.

which slows down the measurement process. Therefore a
mechanism is included that prefers a more local search in
certain situations by considering only candidate points in
the vicinity of the current position. This is illustrated by the
dashed box in diagrams 5 and 6 in Fig. 5.

B. Assessment of the Algorithm and Possible Improvements
In the left diagram of Fig. 7 the result of the design space

exploration after about 40 measurements is depicted. The
approximated design space is a good representation of the
actual one. It can be seen that the algorithm places the points
closely around the design space border and only sparsely
inside the design space, which constitutes an economical
use of the available measurements. The reverse, and not
desirable, behavior can be seen in the right diagram where
a different candidate point placement strategy was used: the
candidates were always placed at the inside of the current
boundary. The center diagram shows the first step of this
exploration run as an example.

It can also be seen in Fig. 7 that some points at the
border very close to each other are not classified correctly.
This is caused by the use of a LS-SVM, which is only
an approximation of the classification problem. Furthermore,
at some places, especially the corners of the actual design
space, the measurements are placed very closely. This is not
desired and an improvement of the algorithm to avoid this
behavior should be found.

It has also to be considered that some inputs may be
changed faster and over a larger interval than others, since
their influence on the process is smaller or less critical for
constraint violations. This means that it would be advan-
tageous to include a preference for certain input directions
in the algorithm. This could e.g. be done by weighting the
directions when calculating the nearest neighbor distances as
depicted in Fig. 6.

So far the algorithm stops after a given number of
measurements. This is a straightforward approach since the
overall measurement time and therefore the budgeted costs
for a test bench trial are usually known in advance. Hence
the maximum number of measurements can be calculated
and the iterative algorithm, which improves the approximated
boundary with every new measurement, delivers the best
approximation for the given costs. It would be desirable
though to find an exit condition depending on the current
quality of the approximated design space to reduce the
number of measurements as much as possible for a given
quality.

Some examples from actual test bed experiments in coop-
eration with an industrial partner are presented in Fig. 8.
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Fig. 7. Example for design space exploration (result after about 40 steps). Left: Candidate points placed always at current design space border (as shown
in Fig. 5). Center and right: Candidate Points placed always inside the current design space

false classification

1) 2) 3) 4)

Fig. 8. Examples from test bed experiments: 1) Problems with too small standard deviation for the SVM kernels and false classification, because of too
fast measurements. A good example of the procedure can be seen in 2) (beginning) and 3) (close to the end). 4) illustrates an example with 3 inputs.

Diagram 1) illustrates the problems that can occur. The
standard deviation of the kernel functions was chosen to
small. Also the waiting period between measurements was
not long enough for the (dynamic) process to settle, causing
misclassifications. Both factors caused (unrealistic) discon-
tiguous areas. The diagrams 2) and 3) show a good working
procedure near the start and end respectively. Diagram 4) is
an example for a design space exploration with 3 inputs.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents an algorithm for design space explo-
ration using support vector machines. The algorithm can ap-
proximate not only convex, but also non-convex boundaries
of the design space. The algorithm is numerically sound
and independent on the number of input dimensions. The
numerical effort increases moderately with the number of
measurements. The results so far are very promising. The
method was not only tested in simulations, but first tests
were performed using an actual combustion engine.

The engine tests so far were focused on feasibility, but
future work will of course comprise comparisons with other
methods to achieve a more quantitative assessment. Further
important aspects are the avoidance of close point placement,
development of a better exit condition and the possibility
to influence the measurement placement depending on the
properties of the inputs, e.g. allowing large changes only for
uncritical inputs.
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