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Abstract— In this work a new approach for estimating the 

robust domain of attraction of  dynamical systems with 

bounded uncertainty is proposed. We analysis the stability of 

dynamical systems by Markov modeling which  focuses on 

asymptotic behaviors of systems. The proposed method 

expresses the problem of estimating robust domain of 

attraction as an infinite dimensional linear problem. Using 

approximated Markov transition function, the resulting linear 

problem is converted to a finite dimensional optimization 

problem. The efficiency of proposed methods is shown via 

simulations. 
 

 

Index Terms— Discrete dynamical systems, domain of 

attraction, invariant measure, Perron-Frobenius theorem, 

Markov chain, robust domain of attraction. 
 

I. INTRODUCTION 

n this paper we propose a new method for estimating 

Robust Domain of Attraction (RDA) using Markov 

modeling. Some advantages of using Markov models for 

extracting dynamical behaviors is that the statistical 

properties of this model often are easily computed 

numerically and using Markov chains, one can just compute 

the asymptotic behaviors of system which takes less time 

than direct analysis of system orbits. Any analysis of 

dynamical systems involving average quantities requires a 

reference measure to average contributions from different 

regions of the phase space. The most popular measure used 

in these cases is the probability invariant measure, which is 

described by the distribution of the typical long trajectories 

of the system [1]. 

    As most of physical systems have uncertain parameters, 

finding RDA that guarantees the stability for different values 

of uncertainty is very important and of most interest. 

Although calculating actual RDA remains unsolved problem, 

some solutions for estimating this region are suggested in 

recent literatures such as finding a common Lyapunov 

function (LF) to prove robust local stability [2], estimating 

RDA via parameter dependant LF [2, 3] and RDA estimation 

through generalized Zubove's method.  

   Above methods have some limitations in estimating RDA. 

Although RDA of systems with probably time varying 

uncertainty can be estimated through common LF, finding 

such a common LF in general is impossible. Parameter 

dependant LF is applicable only for time invariant 
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uncertainties.  In addition, there is not a general LF structure 

and most literatures use quadratic LF which leads to a 

conservative estimation of DA. In the third method, the 

viscosity solution of straightforward generalization of 

classical Zubove's equation is used to characterize RDA of a 

nonlinear system with time varying perturbations [4]. 

Zubove's method is concerned with exact determination of 

DA [5] and has some limitations. For example, to solve the 

Zubove's equation, method of characteristic is used but this 

method requires solution of nonlinear system and in fact the 

knowledge of DA which is mostly impossible. Our work 

overcomes these limitations using invariant measure as an 

approximating tool. Although the performed finite state 

model in this work has less information than the original 

system, this simplification allows computing some 

dynamical properties such as finding invariant sets and 

estimating RDA for a large class of nonlinear systems 

effectively. 

   This work contains 4 sections. In the second section some 

definitions are summarized. Introducing the stability 

theorems according to Markov model and RDA estimation 

by means of Markov chains and invariant measure are 

subjects of third section. And finally, in the section four the 

results are simulated. 

  

II. DEFINITIONS 

   Let   be an n-dimensional open rectangular set in 
nR , 

equipped with Lebesgue measure   on  -algebra of 

Borel sets
 )(B  and T  be a measurable nonsingular 

transition operator [1]  on the measurable space ),( B,  

such that  
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For the above system the following definitions are 

considered: 

 

Definition 1: State space partitioning  

A is a state space partitioning for   if it divides  into 

cells NiAi ,...,1  such that they satisfy the  following two 

conditions: 
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Where iA


 is the interior of 
iA set and   is the empty set. 

 

Definition 2: Center of a partition 

 Let A  be a state space partitioning for
nR . For 

simplicity we suppose rectangular partitions as
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NihlhlA niniiii ,..,1],[...],[ 11  . The center of 

each partition iA  is a point like
T

niii ccC ],...,[ 1 , where
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Definition 3: Robust domain of attraction    

Consider an uncertain nonlinear system of the following 

form: 
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where  B  is an uncertainty vector and B  is a 

measurable compact set in 
pR  and UT  is a nonsingular 

uncertain transition operator. The robust domain of attraction 

of system (3) is defined as 

};)),((lim)({ BXkXTkXRDA e

h

U
h
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   

Obviously BXXT eeU   ),(  implies that in this 

paper a class of nonlinear systems is considered which has at 

least one isolated equilibrium point that is not sensitive to 

parameters variations.                                     

    
     

Definition 4: 
The Markov chain for discrete system (1) is as follows [7]: 

 10)),0(()(  nkXTkX k

kk     (4) 

 

Definition 5: 

 Let X
 

and A . The n-step transition function, 

denoted by ),( AXp n
,
 
shows the probability that a Markov 

chain   starting from an arbitrary point like X0  
remaining in the set A  after n steps [6]. 

                                                                        
 

III. ESTIMATING RDA 

A. Stability theorems and definitions 

As we are concerned with estimating domain of attraction of 

uncertain (or certain) systems, we should analyze the long 

term orbits of the system, but it is not practically possible in 

many systems because it takes a long time and may lead to 

computer round off error. Therefore, in this paper we use the 

method of Markov modeling of dynamical systems to 

remove the transient effects and calculate the asymptotic 

behaviors. 

     

Proposition 1: 

For Markov chain (4) the Markov transition function is 

proposed as ),(lim),( AXpAXP n

n 
 . 

Proof: see [6, chapter 1, page 3]. 

 

Theorem 1: 

 The existence of a fixed point like 
eX
 

which is 

asymptotically stable in the set A is exactly equal to the 

existence of a nonzero unique solution for the following 

invariant equation: 




 )(),()( AdmAXPAm  

Proof: see [6, chapter 1, page 20, asymptotic stability 

definition]. 

   In the above theorem Mm and M  is the set of all 

probability Lebesgue measures on the topological space . 

     

Lemma1: 

 Closure of the Domain of attraction of nonlinear system (1),

DA , is the union of the members of support of 

probably measure m  and obtained from following equation: 

}{mSUPPDA    

where }0)(),()({}{  


AdmAXPAmAmSUPP  . 

Proof: According to theorem1 every member of }{mSUPP is 

asymptotically stable so it is contained in DA so it yields 

}{mSUPPDA  . As A is a close set SUPP{m} is also close. 

 

   It is not practically possible to estimate domain of 

attraction of system (1) using Lemma 1,   because it leads to 

an infinite dimensional problem in space .M In other words 

since DA ,  we should calculate 

),(lim),( AXpAXP n

n 
  for every X  which leads to 

an infinite dimensional problem. So we use the rough idea of 

[8] and partition the state space   (according to definition 

1). Assuming that ),( AXP  has a uniform distribution, we 

can calculate probability of partitions transitions instead of 

calculating every point X  transition. So in the sequel we 

convert the infinite dimensional problem of estimating DA, 

proposed in Lemma1, to a finite dimensional one. To 

investigate the stability of state partitions we use the 

discrete-time Markov chain which is a Markov process
n  

having a countable number of states nA
 
[7].  

 

Definition 6: Markov transition matrix 

 Consider nonlinear system (1). For A partitioning of  , 

the NN   Markov transition matrix P is defined as: 

1
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Definition 7: n-step Markov transition matrix  

n-step Markov transition matrix for a homogenous Markov 

process is defined as: 

))()((][ )()(
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(6) 

Proposition 2:   For uniformly distributed ),( AXP , 
)1(

ijp  

can also be presented as: 
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 Proof:  see [8]. 

    

 Theorem 2: 

    The (closure of) domain of attraction of nonlinear system 

(1) with N state partitioning A can be estimated from the 

support of invariant measure vector . Where  is 
calculated from following equations:  

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012



 

  

1

),....,(;

1

1








N

i

i

NP




                                       (8) 

Proof: see [1]                                                                       □ 

 

B. Proposed numerical method to find Markov transition 

matrix 

Considering theorem 2, to estimate DA, we should calculate 

Markov matrix. There are different numerical algorithms to 

calculate P  matrix from equation (7) [see chapter 6 of 

reference 8]. In the sequel, we provide a new analytic 

formula to determine P which is more accurate; moreover 

we use this analytic form to estimate RDA. 

 

Proposition 3: 

    Some useful properties of the (probability) Lebesgue 

measure m  and characteristic function   are: 

a- dXXdXXBAm
B
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Proof: 

From [9] we have
)()()( . BABA   , which yields; 
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proof: Science T is nonsingular we have 
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Lemma 2: 

For nonlinear system (1), with state space partitioning A , 

the Markov matrix can be represented by the following 

analytic form:
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And the state space portioning A  is chosen as 

NihlhlA niniiii ,..,1],[...],[ 11  . 

 

 

Proof: 

From proposition 3-a, the P matrix as defined in proposition 

2 can be expressed as : 
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Therefore from proposition 5-b, we have 
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According to characteristic function definition [7], an 

acceptable )(X
iA  for iA set is: 
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Substituting (12) in (11), completes the proof.                      □ 

 

    C. RDA estimation 

    In this section, we generalize the stability theorem2, 

defined in the previous section, for RDA estimation. 

Although finding the exact RDA is a difficult problem, 

different ways are proposed in literatures to estimate it.  

Some of these methods choose arbitrary values for 

uncertainty and estimate DA for these fixed values and 

finally estimate RDA from intersection of DA sets. These 

methods are not reliable because they just study DA 

variations for special values in uncertainty bound. On the 

other hand, as these methods are based on intersecting DAs  

they usually use simple Lyapunov functions for estimating 

DA[2]. The Lyapunov based algorithms which use quadratic 

structures only obtain a conservative estimate of RDA and 

the other algorithms such as using generalized Zubove's 

method [4] are only applicable for a special class of 

nonlinear systems.  

    According to theorem 3, we propose a new method for 

RDA approximation which is convenient for a large class of 

nonlinear systems (with time-homogeneous  aperiodic 

chains). 

 

Theorem 3: 

Consider nonlinear system (2) with uncertain parameter  , 

then the support of 
 gives estimated closure of RDA, 

where 
  is obtained through the following optimization 

formulation: 
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Where )(P  is calculated from Lemma 2 substituting T by

UT .
 

 

Proof: 

Definition 3 easily implies that 

 
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Where )(DA is the closure of domain of attraction of 

system (2), if we suppose a fixed value for  .  According to 

theorem 2 for a fixed  we have a solution as: 
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where )(  is a vector of invariant measures. In addition 

from 13 and 14 it is clear that 
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In other words:
SUPPRDA                                                                                                                           

                                                                                               □ 

 

     According to theorem 3, we propose an analytic formula 

to find robust domain of attraction. According to (16), iA  is 

contained with RDA iff )(i  has a nonzero global 

minimum on B . This global minimum is numerically found 

using the proposed method of [10]. The advantage of our 

proposed method is that we express the problem of 

estimating RDA in the form of a simple optimization 

problem which is useful for a large class of nonlinear 

systems. 

 

IV. NUMERICAL EXAMPLES 

Consider the following system: 
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with uncertain parameter ]1,0[ .   

    This system is an example of [2] which estimates the RDA 

of polynomial systems with parameter dependant Lyapunov 

functions. In figure 1, the green space is the actual RDA in 

which stability is guaranteed for different values of    and 

the dashed line is the estimated RDA by [2]. Figure 2  is the 

estimated RDA obtained from theorem 3. We set 

]2,2[]2,2[  , 4021  NN , 1.21  , 
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   Markov matrix in RDA estimation problem is a function 

of parameter   and  it is computed from equation (17). To 

decrease complexity of cost function    of equation (9) 

we choose 1021  MM and easily construct )(P  
matrix: 
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 after calculating transient matrix,    is obtained from 

solving optimization problem (9). To solve this problem we 

use ―fmincon‖ instruction.  

    According to the figure 1, for such system both methods 

define an acceptable estimate of DA but as in Lyapunov 

based methods estimated DA is usually limited to quadratic 

structures of Lyapunov function, this method is not 

applicable for systems with nonquadratic DAs and the result 

is very conservative. To show it more precisely, we 

introduce another test system defined in (18). Values of 

parameters ( , N,…) have been stated in the figure 

description and estimating steps are just like system (17). 

Figure 3 and 4  show  that the Lyapunov based answer is not 

as appropriate as the previous one. In comparison with 

Lyapunov based papers, our proposed method does not 

depend on system structure and if we use a finer partitioning 

we will obtain a more accurate answer. 

    The most famous methods of estimating RDA are using 

common LFs to prove robust local stability [2], Estimating 

RDA via parameter dependant LFs [2, 3] and RDA 

estimation through generalized Zubove's method[4]. These 

methods have some limitations that we overcome theme 

trough our proposed method. For example in Lyapunov 

based algorithms RDA of systems with probably time 

varying uncertainty can be estimated through common LF 

but finding such a common LF in general is impossible. 

Parameter dependant LF is applicable only for time invariant 

uncertainties.  In addition, there is not a general LF structure 

and most literatures use quadratic LF which leads to a 

conservative estimation of DA as we mentioned in figure 1 

to 4. In the other hand to find RDA through generalized 

Zubove‘s method, the viscosity solution of straightforward 

generalization of classical Zubove's equation is used. This 

method is concerned with exact determination of DA [5] that 

causes some limitations. For example, to solve the Zubove's 

equation, method of characteristic is used but this method 

requires solution of nonlinear system and in fact the 

knowledge of DA which is mostly impossible. Another 

disadvantage of parameter dependant Lyapunove based  

methods is that the stability is not exactly guaranteed in 

estimated region. For example in figure 1, one may choose a 

special   which is not previously considered in intersection, 

but using it leads to a different estimated RDA. Our 

proposed method overcomes this limitation by considering 

all values of parameter  . 

     In compare with previous estimation algorithms, one 

disadvantage of Markov modeling is that the estimated RDA 

(as it can be seen in figure 2) includes real RDA so in 

boundary partitioning the stability is not guaranteed. To 

overcome this limitation and have a more accurate estimate 

of RDA we suggest refining any partition sets which has 

measure greater than 
N

1
, where N is the number of initial 

partitions.  
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Figure 1. actual RDA of  the system for ]2,0[ is shown with 

green space and estimated region with Lyapunov function is dashed 

curve 

 

 
Figure 2. he estimated RDA for 4040N partitions  in 

comparison with actual RDA (black curve) 

 
 

Figure 3. actual RDA of  the system for ]2,1.0[ is shown with 

green space and estimated region with Lyapunov function is dashed 

curve 

 
Figure 4. the estimated RDA for 3535N partitions  in 

comparison with actual RDA (black curve) 

 

V. CONCLUSIONS 

 

   In this work we propose a new method for estimating the 

RDA based on the average quantities of state space which is 

obtained from Markov model of system.  This model does 

not use the exact information of real system, in addition  it is 

able to effectively find estimated RDA by solving just a 

simple optimization problem. Another advantage of this 

work is its capability of estimating RDA for a large class of 

nonlinear systems (systems with time-homogeneous  

aperiodic chains).   

   One disadvantage of using Markov modeling for RDA 

estimation is  that the estimated RDA includes real RDA so 

in boundary partitioning the stability is not guaranteed. To 

overcome this limitation we suggest refining any partition 

sets which has great invariant measure. Proposing a new 

algorithm for omitting such boundary partitions will be 

considered in our future work.  
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