
 

 

 

  

 Abstract— The unsupported deflection of drill strings which 

are subjected to increasing gravitational loading and 

distortion, with borehole depth and twisting, is considered. 

Eccentric loading configurations which include the lateral 

reaction to mud flow pressure, compression, bending forces 

and twisting moments are incorporated in the derivations. The 

bending- buckling deflections and twist angle dynamics 

following drill string drive motor voltage changes are provided. 

The principal stress level is identified when operating at 

particular borehole depths and with specified cutting velocities. 

 
Index Terms— deflections, drill, principal, stresses, strings  

I. INTRODUCTION 

URING oil and natural gas, borehole drilling 

operations, there are many engineering problems to 

contend with, as discussed in [1], including the failure 

of the drill string (ds) owing to the combined compression, 

buckling and torsional stresses encountered. Moreover, as a 

result of the cutting action of the drill bit, as rock with a 

variety of physical properties is penetrated, stochastic 

loading on the ds is excited leading to the possibility of 

fatigue failure, permanent dynamic, spiral twisting, vibration 

and buckling deformation. 

Further difficulties may arise with the onset of loading 

misalignment eccentricity, when buckling and twisting may 

cause contact between the borehole rock face and the ds 

circumference. This and the gyroscopic couple, due to the 

cutting head rotation, as discussed in [2], may also lead to 

additional lateral loading and ds rupture. 

The main feature of borehole drilling arises from the 

extreme slenderness ratio (effective length/ radius of 

gyration) of the ds column with the torque on bit (tob) 

applied at the top of the column. As a result of this, the ds 

mass and hence the gravitational force on the rock to be 

penetrated, known as the weight on the drill bit (wob), 

steadily increases. This is due to the number of tubular steel 

ds sections employed which often exceed 1000 m in length, 

when assembled. 

These extreme conditions and the objective of exercising 

closed loop computer regulation, for oil and gas exploration, 

provide the motivation for this study. However, before 

automatic control can be embarked upon, accurate models, 

replicating drilling operations and procedures enabling the 

determination of the stresses encountered, require 

formulating. 

In this study, as a prelude to further combined compression, 

bending and twisting  investigations, emphasis will be 
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focused on the bending/ buckling and twisting problems 

owing to the vertical, eccentric, steadily increasing 

gravitational loading on the drill bit and the torsional 

moment applied at the apex of the ds. 

The techniques advocated, include the bending and twisting 

effects originating from the external pressurized ds mud 

flow which is employed to clear rock debris from the cutting 

head. Consequently, in this initial viability study, emphasis 

will remain on the bending / twisting problem and on the 

solutions to the unsupported, lumped- distributed torsional 

and buckling deflection equations enabling the identification 

of the principal stress levels, before the employment of 

stabilizers.  

II. BUCKLING 

The pioneering approach to ds buckling was undertaken 

by [3] with analysis procedures which considered the shear 

forces acting on a ds column. Later work by [4] considered 

the buckling and lateral vibrations of the ds in efforts to 

extend earlier research. More recently, the fatigue problem 

arising from ds bending and twisting was investigated in [5] 

using FE methods.  

In the analysis herein, only the principal loading 

components are considered together with the lateral effects 

from the pressurized mud flow following ds bending. 

Although drill strings are subjected to combined buckling, 

twisting and compressive loading resulting in complicated, 

longitudinal, three dimensional spiral deformations when 

unrestricted, in practice the ds contact with the concentric, 

borehole rock face, confines these deflections. In fact, 

before this contact is established, stabilizers are usually 

employed to limit lateral deflections and the prospect of ds 

shearing. 

Consequently, the prediction of the maximum deflection of 

the ds and the axial location of this maximum, for a specific 

borehole depth, is important. Once this maximum, lateral 

deflection equals the borehole diameter, before lining, the 

use of stabilizer supports becomes necessary. 

In this study the increasing gravitational load arising from 

the lengthening ds, before the use of stabilizers, to resist ds 

lateral deformation, will be investigated. With this loading 

configuration the task is to determine the ds deflections, 

( ) and (z),y z θ respectively, where z is the depth down the 

borehole, 0  and z L L< <  is the cutting bit depth. 

 

A. Buckling Analysis 

In this section, the ds drive axis will be assumed to be a 

distance -e from the vertical axis of the ds cutting head, as 

shown in Fig. 1. Consequently, with the gravitational 

loading at depth  of, z g Azρ arising from the advancing ds 

mass  of g,c bending- buckling of the ds would be 

inevitable. 
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Considered in this way the problem of buckling reduces 

to determining how much the ds column could be allowed to 

bend, before employing stabilizers, to constrain this 

deflection. 

The use of established procedures requires the induction 

of a complementary, harmonic function and a particular 

integral, see for example [6], governing the ds deflection 

curve, ( ),y z to achieve a solution. Unfortunately, the 

increasing gravitational loading arising from the steadily 

advancing ds length, inhibits this approach inviting thereby 

a polynomial, series assessment for ( ),y z as considered in 

[7]. 

In accordance with the free body diagram of Fig. 1, the 

bending moment equation is: 

( ) ( )= − − −
dy

M Hz P z y z Mge
dz

              (1) 

where in (1) ( )P z is the increasing gravitational force, so 

that at depth z:  
( )P z g Azρ=  

and the ds motor and coupling, gravitational force is ,Mg e

is the loading eccentricity, and Hz dy dz− is the mud flow, 

lateral component of the bending moment ,M  respectively. 
This effect varies with the borehole depth z changing the ds 

slope and distorting the ds-borehole hydraulic annulus 

which results in an increasing, lateral moment on the ds. 

At zero depth ( 0)z = this distorting moment would be 

zero, whereas at 1000m the hydraulic pressure would be 

approximately 103.4 bar (1500 lbf/in
2
). 

The equation for the elastic ds curve is: 

2

2

( )d y z M

dz IE
=  

Hence, substituting for (1): 
2

2

( ) ( ) ( )
( )

d y z Hz dy z P z F
y z e

dz IE dz IE IE

   
+ + = −   

   

       (2) 

where in (2): 
 modulus of elasticity

moment of inertia

( )   

and lateral bending moment at .

E

I

F Mg

P z g Az

H z

ρ

=

=

=

=

=

 

Hence, (2) can be written as: 
2

2

( ) ( )
( )

d y z dy z
Rz kzy z Fe

dz dz

 
+ + = − 

 
         (3) 

where in (3):  and .
A H

k g R
IE IE

ρ= =   

A solution for (3), in accordance with [8], is proposed as: 
2

2 1 0( )y z a z a z a= + +               (4) 

with boundary conditions of: 

(0)  and ( ) 0y e y L= − =              (5) 

 Equation (3), together with the boundary conditions may be 

written as: 
3 2 2

2

1

2

0

2 2

0 0 1 1

1 0

kz Rz kz Rz kz a Mg

a e

L L a

 + + +    
     = −     
         

     (6) 

Clearly, proposing any ( )y z of greater degree would not 

provide a unique solution for the coefficients 
0 1 2,  and ,a a a in 

consideration of (6) and the boundary conditions, stated in 

(5). 

The proposition implied by (4) reflects the theory of 

Frobenius F.G, given in [8] which state that (3) will have at 

least one solution of the form: 

0

( )
n

m n

n

n

y z z a z
=∞

=

= ∑                (7) 

Inverting (6) and multiplying by the loading – boundary 

condition vector yields: 

( )
( )

( )
( )

2

2 3 2 2

2 3 2 2

1 3 2 2

0

2 2

2 2

2 2

e FL kz Rz kzL
a

L kz Rz Lkz LRz

e FL kz Rz kzL
a

L kz Rz Lkz LRz

a e

 + + −
 =

− − − + +  

 + + + −
 = −

− − − + +  

= −

       (8) 

Substituting for 
2 1 0,  and a a a in (4) results in: 

( ) ( )
( )

2 2 2 3 2 2

3 2 2

2 2
( )

2 2

         ,   0

z e FL kz Rz kzL ze FL kz Rz kzL
y z

L kz Rz Lkz LRz

e z L

 − + + − + + + + −
 =

− − − + +  

− < <   

(9)  

B. An Upper Bound for H 

In view of the effective length L >> 0, selecting 1z ≤
would result in conditions similar to those at 0.z = Thus: 

2

2
0,   and 

d y dy e
y e

dz dz L
= − = −�

 

Then from (2): 

( )
e

H g A e Mge
L

ρ
 

− + − = − 
 

          (10) 

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012



 

 

 

enabling an upper bound to be established for H. 

 

III. BUCKLING APPLICATION STUDY 

 

In this section the buckling locations, for a 1000 m ds 

with loading eccentricity (e) of 0.01 m, will be investigated. 

The ds standard dimensions of 16.82 cm ''
(6.625 )outside 

diameter and 12.7 cm ''(5 ) inside diameter have been 

accepted leading to: 

( )

5

3 2

3

4 4 4

0

2

13.3875 10

where:

ds cross sectional area( ) 2.3587 10 m ,

density of steel ( ) 7800 kg/m ,

ds polar moment of inertia ( ) 0.2652 10 ,
64

gravity acceleration ( ) 9.81 m/sec

motor gravi

i

A
k g

IE

A

I d d

g

ρ

ρ

π

−

−

−

= = ×

= ×

=

= − = ×

=
3

tational load ( ) 0.13 10  N 

and modulus of elasticity of steel ( ) 200 GPa.

Mg

E

−= ×

=

 

In accordance with (10):  0 0.05R< <  

for this particular loading configuration. 

As shown in Fig. 2 the curves for 0.01 and R =  
3

/ 0.26 10 ,Mg IE
−= ×

3 31.3 10  and 2.6 10 .− −× ×  The buckling 

deflections occur at a depth of approximately 920m.  In 

heavy, pressurized mud the ds bending dynamics would be 

over damped. A loading delay of 10 - 20 seconds is 

normally incorporated to avoid transient shock loads on the 

ds. This provision is included in the principal stress 

computation problem, developed in Section 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. THE DISTRIBUTED PARAMETER MODELLING 

OF DRILL STRINGS IN TORSION 

 

In this section, the ds will be modeled as a distributed 

parameter shaft, as shown in [9], with rotational inertias and 

viscous damping, represented by lumped parameter models, 

at the ds extremities. 

( )

( )

1 2
2

1 1 1 11 1

1 2
22 2

1 1 1 1

( ) ( ) 1( ) ( )

( ) ( )( ) 1 ( )

w s w sT s s

T s sw s w s

ζ ζ ω

ωζ ζ

 − −    =       − −  

  (11) 

In (11), and if: 

( )
1 21 1 1

1

1 and 
s

s

L J C
G J

ρ= =
 

then: ( )1
1 1 1

1
s

L
J G

C
ζ ρ= =  

Also: 
1 1

1 1

2 ( )

1 2 ( )

1
( )

1

l s

l s

e
w s

e

Γ

Γ

+
=

−
             (12) 

where in (12): 

1 1 1 1 1(s) s L C s GΓ = = ρ  

If in (1): 
2 1( ) ( )T s R sω=  

then following the inversion of (11): 

( )

( )
( )

1
2 2

1 1 1 1

1
2 2

1 1 1 11 1

2

( ) ( ) 1

( ) 1 ( )( ) ( )

( ) 0( )

w s w s

w s w ss T s

s w s R

ζ ζ

ζ ζω

ω ζ ζ

 
− 

 
−     =   

+   

   (13) 

and in delay form: 

( )
( )

1 1

1 1

2 ( )

1 2 ( )

1
( )

1

l s

l s

e
w s

e

− Γ

− Γ

+
=

−
  

Completing the ds torsional analysis. 

 

V. DRILL STRING TORSIONAL MODEL 

 

The arrangement, for analysis purposes, is shown in Fig. 

3, where the motor armature and cutting head will be 

incorporated as rigid, lumped parameter, point wise units. 

Owing to the dimensions of the ds, this component will be 

described as a distributed parameter element, where the ds 

inertia and stiffness are continuous functions of ds length. 

The notation employed in [10], will be adopted. 

In accordance with Fig. 1, (1), the Laplace transformed 

model for the distributed-lumped parameter description is: 

( )

( )

1 2
2

1 1 1 11 1 1 1 1 1

1 2
2

2 2 2 2 2 2
1 1 1 1

( ) ( ) 1( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) 1 ( )

w s w sT s J s s c s s

J s s c s T s sw s w s

ζ ζω ω ω

ω ω ωζ ζ

 − −− −    =    + +   − −  

 

Since 
2( )T s in this application is zero the impedance 

description becomes: 

( )

( )

1 2
2

1 1 1 1 1 11

1 2
2

2
1 1 1 1 2

( ) ( ) ( ) 1 ( )( )

( )0 ( ) 1 ( ) ( )

w s s w s sT s

sw s w s s

ζ γ ζ ω

ωζ ζ γ

 + − −     =        − − −  

  (14) 

In (14): 

( )

1 1 1 2 2 2

1 1 1
1

( ) ,  ( )

1 and s
s

s J s c s J s c

L J C
G J

γ γ

ρ

= + = +

= =
 

and ,  ( ) and ( )w s sζ Γ are given by (11) and (12), 

respectively.  

Then following the inversion of (14): 

( )
1 1 2

1 1
1 2

2
12 1 1

( ) ( )( ) ( )
( )( ) ( ) 1

w s ss T s
ss w s

ζ γω

ω ζ

+  
 =  ∆−    

       (15) 

where in (15): 

( ) 2

1 1 1 2 1 1 2 1( ) ( ) ( ) ( ) ( ) ( )s s s w s s sζ γ γ γ γ ζ∆ = + + +  
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VI. APPLICATION STUDY 

 

In this illustrative example, a ds which is 1000m long, 

0.1682m outside diameter and 0.127 m inside diameter will 

be considered. The arrangement of the system is as shown in 

Fig. 3, where there are relatively lumped motor and cutting 

head inertia discs and per meter, ds gravitational loads, as in 

[11]. 

For this model: 

( )

2 6 2

1 2

1 2

9 2 3

1 1 1

4

3 kgm ,  (shaf ) 0.61359 10 ,  3 kgm ,  

1.0,  100,200 and 300 Nmsec/rad

1000m,  r 0.0738m,  80 10 N/m , 7800kg/m

Hence:   1323.94 

and ( ) 3.12 10  sec

s

s

J J t J

c c

l G

J G

s s
G

ρ

ζ ρ

ρ

−

−

= = × =

= =

= = = × =

= =

 
Γ = = × 

 

 

 

The block diagram for the torsional, series form of (15) is as 

shown in Fig. 4. This block representation reflects the 

topology of the system enabling easy access to the ds 

dynamics and shaft shear stress transients. 

Following a motor voltage input of V = 100v, the ds 

would be accelerated to 10 rad/sec, with c2 = 100 Nm 

sec/rad as shown in Fig. 5. Correspondingly, the torsional 

stress, in the 1000 m long ds would increase to 1.4.10
6 

N/m
2
, 

also shows the ds angular velocity, for increasing cutting 

load of 200 and 300 Nsec/rad with the ds velocity at the 

cutting head falling to approximately 5.0 and 3.4 rad/sec, 

respectively. Equally, the ds, steady state, torsional stress 

remains virtually constant, as would be expected, as the 

motor speed falls, in sympathy with the increasing, frictional 

cutting loads of 100, 200 and 300 N/(rad/sec), respectively. 

The ds twist angle for the above cutting conditions also 

remain virtually constant at 0.23 rad. However, any attempt 

to increase the cutting speed would result in proportional 

increases in the ds angular, deformation. 

 

VII. PRINCIPAL STRESS COMPUTATION 

 

Failure of the ds due to the combined bending- buckling, 

compression and torsional stresses may occur owing to 

fatigue following repeated loading cycles. Otherwise, 

rupture when exceeding the ds material yield point could 

occur with transient torque loading, at cutting start up, or 

with sudden cutting load disturbance increases, owing to the 

changing rock strata encountered. 

An estimate for the principal dynamic stress can be simply 

achieved, as shown in Fig. 3, by assessing the ds twist angle. 

The compression and bending stresses are also available 

from the buckling analysis bending moment, of (1) and the 

ds deflection curves shown in Fig. 2. This assessment results 

in 9 325 10  N/m  andM I = ×  65.92 10 .Gr l = ×  

The twisting, bending and delay dynamics are also included 

in the computation of the principal stress level, as shown in 

Fig. 6, where for ( )20.02 and 300 N/ / sec ,R c rad= = the 

maximum principal stress value reaches 6 2250 10  N/m .×  

This is less than the elastic limit for steel, with the major 

loading contribution arising from the bending load. 

 

 

VIII. CONCLUSION 

 

In this contribution, procedures enabling the 

determination of ds buckling and twisting under eccentric 

and ds mass, gravitational loading were considered. 

Torsional loading conditions, applied at the ds apex, were 

also included in the analysis ultimately enabling the 

principal stress concentration to be identified. 

Separate solutions for the ds bending / buckling 

configuration, based on the deflection of the structure, were 

incorporated whereas a lumped- distributed approach to the 

torsional problem, was invoked. This approach replicates the 

physical distortion of tubular ds where bending/ buckling 

and twisting distortion occur simultaneously, as a result of 

vertical compression and apex ds torque loading. The 

accumulated loading may ultimately manifest itself in the 

form of ds spiraling, along the whole length of the ds 

structure.  

A series solution to the ds bending moment equation was 

proposed with appropriate boundary, termination conditions. 

Equally, the distributed - lumped parameter torsional model 

required the resolution of the continuous, partial differential 

equations, to achieve a compact solution. 

To provide accurate results, in respect of the bending / 

buckling deflection, eccentric loading and the hydraulic 

bending moment which varies with borehole depth and 

annulus concentricity, was also included in the modeling 

process. 

Owing to the requirement for a unique solution for the ds 

vertical loading model, inversion of the elastic, ds curve 

matrix was necessary. This confines the number of terms of 

the series solution producing thereby a simple polynomial 

representation for the ds deflection curve. 
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