
 

  

Abstract— The power system is generally characterized by 

its size, complexity and time varying, beforehand unknown 

electrical load. Even slight changes in the settings can produce 

significant economic savings, because large electric power is 

transferred. Based on the characteristics of the power system 

and the nature of the secondary voltage control, it is clear that 

the optimal pilot bus selection plays a key role in the quality of 

control and related economic impacts. This paper deals with 

the experimental verification of system architecture for 

optimal pilot bus selection of supervisory node voltage control 

in a large–scale power system, so that the key problem could be 

solved using the principle of parallelism and grid computing 

structure to make the computer time consumption as low as 

possible. 

 
Index Terms—Large-scale power system, Optimal pilot bus 

selection, Proof of concept, System architecture verification. 

 

I. INTRODUCTION 

HE system architecture design and proof of concept 

implementation of the system for optimal pilot bus 

selection for the need of power system supervisory control 

in the real time was introduced in [1] in the detail. 

Individual selection methods [2], [3], [4] require the 

calculation of objective functions. The calculation is based 

on simulating the operation of the power system. Hence 

parallel processing principles (grid computing) were used in 

the designed architecture. Optimal pilot bus selection is a 

problem with extensive state space, therefore the genetic 

algorithms (GA), which can also very well apply the 

principles of parallelism, were chosen as a base of the 
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architecture. 

Structure of the computational system captures the block 

diagram of the architecture shown in Fig. 1. 

This contribution deals with the experimental verification 

of the presented proof of concept implementation of the 

system for optimal pilot bus selection in real time. 

A steady-state model of the power system of the Slovak 

Republic was used during the experiments. The model at 

400/200 kV comprises 82 branches and has 59 nodes, of 

which 16 are generators and 43 represent load. The voltage 

sensitivity coefficients matrix for all tests was calculated to 

change the voltage of +5% of nominal voltage values for all 

generator nodes. The symmetrical load +15% of actual 

value of reactive power load of each node was applied. 

These values are the same as in [3] and [4] in order to 

compare the results. 

II. SIZE OF SEARCHED STATE SPACE 

As noted before, one of the biggest problems of optimal 

pilot bus selection or possibly combination of two and more 

pilot buses, is the size of the state space, which should be 

searched. The size of the state space is given by the number 

of generator and load nodes, included in the investigated 

power system, and which creates a candidate pair for the 

pilot bus selection. 

The power system model used consists of 16 generators 

and 43 load nodes. Therefore, the size of the state space for 

the search of exactly one pilot bus could be determined as 

follows: 

* 16 * 43 688P G QV N N= = =  (1) 

where: 

PV  - the state space size; 

GN  - the number of generators; 

QN  - the number of loads. 

 

It is obvious that the basic searched state space is made 

by 688 possible candidate pairs. The size of this space is 

therefore the starting parameter for determining the size of 

state spaces to be searched, if the optimal n-tuple of the pilot 

buses (for n> 1) has to be found, because it is the basic set 

of candidates for the pilot bus. Increasing the number of the 

searched pilot buses from one optimal n-tuple represents a 

combination of n-th class from the k-elements, without 

repetition. This dependence can be mathematically 

expressed by the following formula: 
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Fig. 1.  Block diagram of designed system architecture [1]. 
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where: 

n k≤ ; 

n  - the size of n-tuple (number of desired pilot buses); 

k  - the size of candidates set (the number of candidates for 

one pilot bus). 

The formula  (2) proves, that the bigger the values of the 

parameters n  and k  are, the bigger the size of the searched 

state space would be. Increasing of the parameter n  (the 

size of optimal pilot buses combination) is necessary 

according to the control of the investigated power system. 

Therefore, the only way to reduce the size of the searched 

state space is to decrease the parameter k  using the pilot 

bus candidate reduction methods. The brief description of 

the chosen reduction methods follows. 

A. Reduction by the Threshold of Sensitivity Coefficient 

This method is described in detail in [4]. It can 

significantly reduce the size of the searched state space. It 

presupposes the existence of dependence between the value 

of the sensitivity coefficient and the value of the objective 

function of the searched n-tuple of pilot buses. 

B. Reverse Selection Method 

This method is described in detail in [3]. It can 

significantly reduce the size of the searched state space and 

it gives very good results. Its main disadvantage is the use 

of the global search method (for n=1) for initialization. 

However, it is more efficient than the reduction by the 

threshold of sensitivity coefficient (TSC). 

 

For better understanding of the state space size and the 

effectiveness of selected methods the comparison of their 

results with unreduced space is shown in Fig. 2. In order to 

view all data in a common graph, the vertical axis 

representing the size of the state space uses the logarithmic 

scale. 

III. PARALLEL COMPUTATION OF FITNESS FUNCTION 

The chromosomes fitness function is evaluated in GA 

Slave modules (Fig. 1). The computational system enables 

the deployment of multiple GA Slave modules to solve 

separate parts of one defined task. The contribution of this 

approach is proved by the following tests. 

A. Test No 1. - Global Search of One Pilot Bus 

The global search of the whole state space was performed 

in this experiment in two different computational system 

configurations. These configurations vary in the number of 

used GA Slave modules. The size of the searched state 

space was 688 combinations. The results are shown in Table 

1. 

The obtained results confirm the suitability of using the 

parallel computation. The computation time of the task was 

significantly reduced thanks to the use of multiple GA Slave 

modules. These results also prove the ability to improve the 

performance of the reverse selection method, because as 

mentioned before this method uses global search for 

initialization. 

B. Test No 2. - Searching a Triplet of Pilot Buses Using 

GA 

The genetic algorithms with parallel computation of 

fitness function were used during this experiment in three 

different configurations. The size of the basic state space 

was 688 combinations and an optimal triplet of pilot buses 

was searched. The GA are able to find optimal solution even 

in an extensive state space, however they are essentially 

slow. This disadvantage could be efficiently removed using 

parallelism. The results shown in Table 2 prove this fact. 

Increasing the number of GA Slave modules used for the 

computation of one task led in a significant reduction of 

computing time as seen from the results. This test confirms 

the results obtained in Test no. 1 and again clearly 

demonstrates the correctness of the hypothesis, that the use 

of the parallel approach to calculate the fitness function of 

chromosomes provides notable reduction in computing time 

and hence the overall time for solving the defined task. 

IV. PERFORMANCE OF GENETIC ALGORITHMS 

The purpose of this experiment is to assess the main 

 
Fig. 2.  The size of the searched state space for selected reduction 

methods. [2]. 

 

TABLE I 

RESULTS OF GLOBAL SEARCH 

  Conf. 1 Conf. 2 

GA Master 1 1 Number of 

modules GA Slave 1 8 

Average time of one 

chromosome fitness 

evaluation [ s ] 

2.04 1.77 

Time consumption of the 

whole task [ h:m:s ] 
1:50:06 0:16:44 

 

TABLE II 

RESULTS OF TRIPLET OF PILOT BUSES SEARCH USING GA 

  C. 1 C. 2 C. 3 

GA 

Master 
1 1 1 

Number 

of 

modules GA Slave 1 4 8 

Time consumption of 

the task [ h:m:s ] 
2:58:14 0:44:01 0:34:29 
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features of the implemented genetic algorithms, particularly, 

the computational complexity and rate of convergence of 

the algorithm to the optimal solution. 

The computational complexity of classical genetic 

algorithms can be determined quite easily as the product of 

the population size and number of generations. 

This calculation is not applicable to the designed 

architecture, because with the procedures implemented on 

the database server, the fitness function is evaluated just 

once for just one chromosome. Therefore, it is not possible 

to determine the number of runs of the fitness value 

calculation for one population. 

For these reasons the computational complexity of each 

experiment is determined by using the average processing 

time of one population in order to gain a rough idea of the 

processing rate of defined task, and thus the speed of the 

implemented system. 

Determining the number of generations needed to reach 

the global minimum of the fitness function is also 

complicated. This number can be determined experimentally 

based on the speed of convergence of genetic algorithm to 

the global optimum. The speed of convergence is strongly 

dependent on many factors. The structure of the algorithm 

has significant influence, which means not only the 

implemented functions, but also a way of sorting of these 

functions. Other factors that significantly affect the rate of 

convergence are: 

� population size, 

� number of best chromosomes passing into the 

new population, 

� number of original individuals passing into the 

new population, 

� method of the original individuals selection, 

� size and the method of a working group of 

chromosomes selection on which the genetic 

operations are carried out, 

� probability of crossover, mutation and migration. 

The genetic algorithms convergence speed was 

investigated for different settings of the above-mentioned 

parameters during the experiments. The structure of the 

algorithm used was implemented according to [2] and 

multiobjective function was used to evaluate the fitness 

function. The populations were generated randomly without 

initialization. Several experiments with different 

configurations were done while different n-tuples of optimal 

pilot buses were searched. Given the amount of obtained 

data, only the representative result was described. Similar 

results were achieved in other experiments, too. 

The result of genetic algorithm convergence for searching 

the optimal sextuplet of pilot buses (n=6) is shown in Fig. 3. 

Each curve corresponds with one search carried out using 

the genetic algorithms. The main aim of the experiment was 

to test the system's ability to find an optimal solution and 

determine the speed of convergence for several runs of the 

same task with unchanged parameters. The results show that 

the algorithm converges to the optimum after approximately 

100 generations. The number of generations is plotted in a 

logarithmic scale for better resolution. 

Tests were performed with the following setup of 

parameters: 

� number of generations: 800, 

� population size: 30, 

� number of best individuals: 3, 

� number of original individuals: 3, 

� working group size: 24 (12 of best and 12 of 

original individuals), 

� normal mutation probability: 0.2, 

� additive mutation probability: 0.2, 

� amplitude of the additive mutation: 5, 

� number of normal crossover points: 3. 

The searched state space was reduced using the TSC 

method with the threshold value σ = 0, which means that the 

size of basic state space was 598 candidates. This 

corresponds with the value of 61 936 603 045 317 possible 

combinations. During the computation 8 GA Slave modules 

was involved. 

Results of experiments show the potential of genetic 

algorithms. Despite the slowness of calculation resulting 

from the nature of genetic algorithms, experiments proved 

that the designed architecture is effective. It is clear that by 

further tuning of parameters of the genetic algorithm, or by 

a suitable change of its structure, better results can be 

achieved. 
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Fig. 3.  The convergence of computation for n=6. 
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V. PERFORMANCE OF PARALLEL GENETIC ALGORITHMS 

This section describes the experimental verification of the 

functionality of a parallel genetic algorithm implemented in 

the context of the designed architecture. The structure of the 

migration of best subpopulations individuals is shown in 

Fig. 4. The migration of chromosomes takes place at 

random generation with some probability, which is freely 

adjustable for each GA Master module. The module 

managing A subpopulation, will request the best 

chromosome from the last generation of B subpopulation, 

when the condition of the probability is met. The module 

taking care of B subpopulation, works the same way. Two 

separate GA Master modules were used for the purpose of 

the experiment, as apparent from the description. 

 

An optimal triplet of pilot buses was searched in this 

experiment and following common parameters were used 

for separate tests: 

� number of generations: 600, 

� subpopulation size: 20, 

� number of GA Master modules: 2, 

� number of GA Slave modules: 8. 

Based on the results of previous experiments, the 

searched state space was reduced using the reverse selection 

method. Thus the size of basic state space was 50 

candidates, which corresponds with the value of 19 600 

possible combinations. The parameters varied for individual 

tests during the experiment, are shown in the Table 3. 

Convergences of performed tests in the presented 

experiment are captured in a few charts for the best possible 

comparison. Graphs in Fig. 5 and Fig. 6 compare the 

convergences of subpopulations A and B for all performed 

tests. The number of generations is plotted in a logarithmic 

scale for better resolution. Common trend of convergence of 

subpopulations A and B separately for each test is shown on 

graphs in Figs. 7 - 11. 

The graphs show how subpopulations influenced each 

other. The influence of genetic algorithms parameters 

settings on subpopulations evolution or possibly the rate of 

result convergence to the global optimum is noticeable as 

well. This is best seen in the graph in Fig. 11, which belongs 

to Test no. 5. The mutation probability of A subpopulation 

in this test was set at quite a low value, resulting in an 

algorithm travels in quite a small space and long stuck in 

local extrema. On the other hand, the mutation probability 

of B subpopulation was set at quite a high value. The 

algorithm in this case traveled in a much larger space, but 

also stuck for a long time in local extrema. Nevertheless, the 

result eventually converges to the global optimum even if 

the number of generations is much higher than in other 

cases, as seen in the charts. 

The presented results clearly show that the parallel 

genetic algorithm is valid and can improve the behavior of 

ordinary genetic algorithm mainly due to its ability to search 

through a much larger state space at the same time. The 

indisputable advantage is also its increased ability to get out 

of the local extrema.  

Finally, the average total time of the defined task 

calculation is evaluated. The time is evaluated for the 

processing of 600 generations. However, it should be noted, 

that in this configuration, the system worked in parallel with 

two subpopulations, which corresponds with the number of 

1200 generations processed within a single computing task. 

The time consumption of individual experiments is captured 

in Table 4. 

 

 

 
Fig. 4.  The structure of tested parallel genetic algorithm. [2]. 
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PARAMETERS OF PARALLEL GA FOR SEPARATE TESTS 
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A 2 2 
16 

(8+8) 
0.2 0.2 1 1 0.3 

1 

B 2 2 
16 

(8+8) 
0.6 0.6 5 1 0.3 

A 2 2 
16 

(8+8) 
0.2 0.2 1 1 0.2 

2 

B 2 2 
16 

(8+8) 
0.4 0.5 8 1 0.15 

A 2 2 
16 

(8+8) 
0.2 0.2 1 1 0.2 

3 

B 2 2 
16 

(8+8) 
0.4 0.5 8 1 0.15 

A 1 1 
18 

(9+9) 
0.2 0.2 1 1 0.2 

4 

B 2 2 
16 

(8+8) 
0.4 0.5 8 1 0.1 

A 1 1 
18 

(9+9) 
0.1 0.1 1 1 0.2 

5 

B 1 1 
18 

(9+9) 
0.9 0.9 8 1 0.05 
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TABLE IV 

EXPERIMENT TIME CONSUMPTION EVALUATION 

Test 

The average time of one 

population evaluation 

[s] 

The average time 

consumption of the task 

[h:m:s] 

1 7.99 1:19:55 

2 4.72 0:47:12 

3 4.86 0:48:36 

4 8.68 1:26:49 

5 6.18 1:01:48 

 

 
Fig. 5.  The convergence of the subpopulation A. 

 
Fig. 6.  The convergence of the subpopulation B. 

 
Fig. 8.  The convergence of subpopulations A and B in Test 2. 

 
Fig. 7.  The convergence of subpopulations A and B in Test 1. 

 
Fig. 9.  The convergence of subpopulations A and B in Test 3. 

 
Fig. 10.  The convergence of subpopulations A and B in Test 4. 
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VI. CONCLUSION 

The experiments described in this paper clearly prove the 

assumptions that were taken into account during the design 

of the architecture of the optimal pilot bus selection system 

for the needs of the power system supervisory control in real 

time. It should be noted that the proof of concept 

implementation of the architecture cannot be considered 

definitive. Its purpose was purely experimental and should 

only serve to verify the proposed architecture. 

Experiments have shown the potential of the GA and the 

parallelism for solving the problem of optimal pilot bus 

selection in real time. With regards to the achieved results 

the designed architecture could be considered as verified. 
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Fig. 11.  The convergence of subpopulations A and B in Test 5. 
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