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Abstract—The interaction between the convective flow and 

the interface morphology of the particle growing in the 
convective undercooled melt is studied for three types of 
straining flow by means of the matched asymptotic expansion 
method. The analytical results show that the convection driven 
by the far field uniform flow makes the growing particle 
enhance its velocity in the upstream direction of the flow but 
inhibit its growth in the downstream direction, both the particle 
growth in the upstream direction and the decay in the 
downstream direction make the particle evolve into an oval; 
both the uniaxial straining flow effect and the biaxial straining 
flow effect result in higher local growth rate near the surface 
where the flow is incoming and lower local growth rate near the 
surface where the flow is outgoing, and cause an initially 
spherical particle evolve into an oblate spheroid. The 
convection leads to destabilize the interface morphology of the 
particle growth. 
 

Index Terms—particle growth, convective flow, interface 
morphology, asymptotic solution  

I. INTRODUCTION 
The convective flow caused by mechanical and 

electromagnetic stirring is often employed in the 
experimental frame and practical materials processing to 
control the interface morphology of particle growth in melt 
and obtain the final materials of high property microstructure. 
The interaction between the convective flow and the 
morphology of the particle growth is of great interest in the 

field of materials science and technology. Mullins and 
Sekerka[1] first studied the morphological stability of 
growing particles controlled by diffusion in the supercooled 
liquid and found that the particle growth is stable below and 
unstable above a critical radius for instability. During several 
decades after their study of the interface morphological 
stability theory, significant progress [2-5] has been made by 
the inclusion of various additional effects such as the 
interface kinetics, anisotropy etc., among which convection 
effects are of utmost importance in the development of 
interface microstructures. The experiments and numerical 
simulations have shown that the convection helps to nucleate 
directly in the melt and grow spheroidally to a large scale 
from the convective melt[4-6]. Theoretically, however, when 
the melt convection is included, the morphological control of 
particles is modeled in a nonlinear dynamics problem, which 
does not have an exact analytical solution generally and 
whose theoretical study is greatly hindered. By employing 
the method of the matched asymptotic expansion[7-10], we 
seek the approximate analytical solution for the particle 
growth in the convective undercooled melt. With the 
obtained analytical result we show that the convection 
significantly increases the local growth rate, change the 
interface morphology of the particle in the undercooled melt 
and leads to destabilize interface morphology of the particle 
growth. 
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II. FORMATION OF THE PROBLEM 
Assuming a particle with an initial radius  grows in the 

convective undercooled melt that is referred to as an isotropic 
and incompressible Newtonian fluid. The temperature in the 
far field is T

0r

∞ , which is below the solidification equilibrium 
temperature for the pure substance MT . The interface of the 
particle, ( , , )r R tθ ϕ= , separates the melt into solid phase 
and liquid phase. When the particle grows in the undercooled 
melt, the relative fluid velocity near the particle for the flow 
field can be approximately decomposed into the uniform 
streaming flow past the particle and the linear flow about the 
particle. For the ambient flow fields, we consider the effect of 
three types of axisymmetric flow fields[13]: the uniform 
streaming flow, the uniaxial straining flow and the biaxial 
straining flow on the interface morphology of the particle, i.e. 
the following convection driven conditions are respectively, 
given by  

∞→U U ,                                   (1) 
for the uniform streaming flow,  

zU∞ ∞= −U e ; 
for the uniaxial straining flow,  
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∞ =U  1 1( )
2 2x y zx y zβ − −e e e ; 

and for the biaxial straining flow,  
1 1( )
2 2x y zx y zβ∞ = − + +U e e e , 

where U  is a positive constant, ∞ xe ,  and ye ze  are the unit 
vector in the rectangular coordinates, β  is the principal rate 
of strain of the linear flow, x ,  and  are the rectangular 
coordinates. The governing equations of the particle growth 
contain the temperature equations in the solid phase and 
liquid phase, the kinematical equation and the continuity 
equation, which are subject to the boundary conditions: the 
thermal dynamical equilibrium condition, the 
Gibbs-Thomson condition, the enthalpy conservation 
condition, the continuity condition of the tangential and 
normal components of velocity, etc.. By using the 
nondimensionalization given in Ref. [9,11] in which the 
initial radius of the particle as the length scale, the 
characteristic velocity of the interface  as the velocity 

scale, 

y z

pV

0 / pr V  as the time scale, and the undercooling 

 as the temperature scale, we derive the 
dimensionless governing equations[11]. For the sake of 
writing, we still use 

MT T T∞Δ = −

LT  and  to denote the dimensionless 
temperature distributions in the liquid phase and solid phase 
respectively,  to denote the dimensionless flow field in the 
liquid phase and R  to denote the dimensionless interface 
shape. 

ST

U

   The governing equations are as follows  
0∇ ⋅ =U ,                                  (2) 

2( ) P Pt
t

ε ∂⎛ ⎞+ ⋅∇ = −∇ + ∇⎜ ⎟∂⎝ ⎠

U U U U ,            (3) 

2( )L
L L

T
T

t
ε

∂⎛ ⎞+ ⋅∇ = ∇⎜ ⎟∂⎝ ⎠
U T ,                    (4) 

2S
S

T
T

t
ελ

∂
= ∇

∂ S ,                            (5) 

where  

/ ( )p L

T
H c

ε
ρ

Δ
=

Δ
, Pt υ

κ
= , T

S
S

κλ
κ

= , 

in which υ  is the kinematical viscosity,  and Tκ Sκ  are the 
thermal diffusivities in the liquid and solid phases, 
respectively. It is assumed that the densities in the liquid and 
solid phases are equal, and the buoyancy effects are 
neglected. 

At the interface, the total mass conservation condition and 

the tangential non-slip condition, the thermal equilibrium 

condition, the Gibbs-Thomson condition and energy 

conservation condition hold, i.e. 
12L S IT T K E MUε ε −= = Γ − ,                  (6) 

(I S LU k T T )ε = ∇ − ∇ ⋅n ,                      (7) 

where IU  is the local interface velocity of the interface,  

the local mean curvature at the interface,  

K

0

( )M DT
r H T
γ

Γ =
Δ Δ

, 

and γ  is the isotropic surface energy,  

S

L

kk
k

= , 

and Lk  and  are respectively the heat conduction 

coefficients in the liquid and solid phases,  

Sk

( )M D

TE
T
Δ

= , 
( )M D

VM
Tμ

= , 

and μ  is the kinetics coefficient.  

The far field temperature condition and the convection 

driven condition are respectively that, as  ,r → ∞

LT ε→ − ,                                    (8) 

∞→U U ,                                    (9) 

where ∞U  is rescaled the characteristic velocity of the 

interface , for the uniform streaming flow,  pV

zU∞ ∞= −U e ;                                      
for the uniaxial straining flow,  

1 1( )
2 2x y zPe x y z∞ = − + +U e e e ; 

and for the biaxial straining flow,  
1 1( )
2 2x y zPe x y z∞ = − −U e e e , 

in which x ,  and  are the rectangular coordinates, Pe  

is defined as the Peclet number,  

y z

2
0rPe

V
β

= , 

and β  is a constant.  

Finally, the initial condition holds, in which the initial 

condition for the interface is, at time , 0t =

( , ,0) 1R θ ϕ = .                               (10) 

 

III. ANALYTICAL RESULTS AND ANALYSIS  
By using the method of matched asymptotic expansion, we 

can obtain the uniformly valid asymptotic solution in the 
entire melt region. For the uniform streaming flow, we have 
that for the interface shape and its growth velocity 

0 1 1( , , ) ( ) (cos )R t R t R Pθ ϕ ε θ= + + ,          (11) 

0 1
1(cos )

dR dRR P
t dt dt

ε θ∂
= +

∂
+ ,              (12) 

where 

2 1
0

1 ( 1) (2
2

t R E M−= − + Γ + )  
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0
0

2
( 1) 2 ln

1 2
R

R
− Γ⎡ ⎤× − + Γ⎢ ⎥− Γ⎣ ⎦

,                (13) 

0 0
1

0 0

2
,

( )
dR R
dt R R E M−

− Γ
=

+
 

1 0,0 1,0( ) ( )R g t g t= + , 

20
0,0 02

0

( 2 )( ) 3(1 4 ) 1 2
6

U Rg t R
R

∞ − Γ ⎡= − + Γ Γ − + Γ⎣  

2 3 3 0
0 0

2
3 24 ln

1 2
R

R R
− Γ ⎤+ Γ + + Γ ⎥− Γ ⎦

, 

2
1,0 0

3
( ) ( 1)

16
U

g t R∞= −  

          
1

0
3 ( 2)

( 1
8

U k E M
R

−
∞ +

− − )  

            
12 2 2

0
1

( 2)3 ( 2)
ln

8 1 ( 2)
R k E MU k E M

k E M

−−
∞

−

+ ++
+

+ +
; 

( )
( )

0,0 0 0 0,0
2 1
0 0

( ) 4 ( 2 ) ( )
( 1)

ndg t R R d g t
dt R R nk n E M−

− Γ − − Γ
= −

+ + +
 

0 0
1 2

0

( 2 )
2( )
U R R

R E M
∞

−

− Γ
+

+
, 

1,0 0 0
1 1

0 0

( ) 3 ( 2 )
8( )( ( 2) )

dg t U R R
dt R E M R k E M

∞
− −

− Γ
=

+ + +
, 

in which,  
1

1
0 2n

E Md
R E E

−

−=
− Γ + M

r R=

. 

The formula in (13) is the relation between the time t  and 

the leading order radius of the interface shape , then 

it is equivalent whether the time  t  or the leading order 

radius  of the interface shape of the particle  is given. 

0 ( )t

0R
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Fig. 1. The intersection of the interface shape of a particle in the convective 
undercooled melt driven by the far field uniform flow, where 0 8R = , 

, 0.55U∞ = 0.5ε = , , , . 0.4E = 0.16M = 1k =
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Fig. 2. The intersection of the interface shape of a particle in the convective 
undercooled melt driven by the far field uniform flow, where 0 10R = , 

, , , , . 0.55U∞ = 0.5ε = 0.4E = 0.16M = 1k =

 
Fig.1 and Fig.2 show that the convective flow induced by 

the far field uniform flow makes the growing interface of the 
particle enhance its growth velocity in the upstream direction 
of the far field uniform flow but inhibit its growth in the 
downstream direction. 

For the uniaxial straining flow, we have that 
         0

0 0,0 2,0 2 (cos )R R h h Pε ε= + + θ                                           
2

2,2 2 (cos ) cos 2h Pε θ ϕ+ + ,               (14) 

 0,0 2,0 00
2 (cos )

dh dhdRR P
t dt dt dt

ε ε θ∂
= + +

∂
 

2,2 2
2 (cos ) cos 2

dh
P

dt
ε θ ϕ+ + ,           (15) 

where  (cos )m
nP θ  is the modified Legendre polynomial,  

 0
0,0 1

0 0

( 2 )
3 ( )

R
h

R R E M−

− Γ
=

+
   

               0
1 3

2 11

(6 6 )
( 2 ) ( )

R SE M k
d

E M
ω λ ω ω

ω
ω ω

−

−

⎡ Γ − +
×⎢ − Γ +⎣

∫  

               0
4

2 11

(2 3 )
+ ,

( 2 ) ( )
R Sk

d
E M

λ ω ω
ω

ω ω −

⎤Γ −
⎥− Γ + ⎦

∫         

2 1
0 0

2,0
0

5 ( (2 3) )
16( 2 )

c

b

R R k E MP
h

e
R

−+ +
=

− Γ
 

0

1 11

( 2 )
( (2 3) )

bR

c d
k E M
ω ω

ω − +

− Γ
×

+ +∫ , 

2 1
0 0

2,2
0

5 ( (2 3) )
32( 2 )

c

b

R R k E M
h

R
Pe −+ +

= −
− Γ

 

0

1 11

( 2 )
( (2 3) )

bR

c d
k E M

ω ω ω
ω − +

− Γ
×

+ +∫ ; 

0,0 0
0 0,02 1

0 0

1 ( ,0)
( )

dh R
R h

dt R R E M−= − ℜ +
+

 

0 0 0

0

( ) ( )
3
Sk R b t db td

dt R dt
λ⎛ ⎞⎛ ⎞

× −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, 

2,0 0
0 2,02 1

0 0

5 ( )1 ( , 2)
16( 7 )

Pedh b t
R h

dt R R E M−= ℜ +
+

, 
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2,2 0 0
0 2,22 1

0 0

( )1 ( , 2)
32( 7 )

5dh PeR b t
R h

dt R R E M−= ℜ −
+

, 

in which,  
[ ]0

0 1
0

( 2) 2 ( 1)( 2)
( , )

( 1)
B

B
B

R kn n n n
n R

R nk n E M−

− + + + + +
ℜ =

+ + +
Γ

0
1

0

( 2 )
( 1)
n B

B

d R
R nk n E M−

− Γ
−

+ + +
, 

                 0 0
0 1

0

( 2 )
( )

R R
b t

R E M−

− Γ
=

+
, 

and  and  are two abbreviations, b c
1

1

2(2 3)(2 )
2 (2 3)

k Eb
k E M

−

−

+ Γ +
=

Γ + +
M , 

1

1

10 8 (2 3)
2 (2 3)

k k Ec
k E M

−

−

Γ + Γ + +
=

Γ + +
M . 

It is seen from (14) and (15) that the growth of the particle 
contains two parts: one is the symmetrical growth that is not 
influenced by the uniaximal straining flow, in which the term 

0,0hε  is due to the change of temperature in the melt; the 
other terms represent the non-symmetrical growth that is 
influenced by the uniaximal straining flow. The solution for 
the interface shape of a growing particle in a uniaximal 
straining flow is the function of both θ  and ϕ . Fig. 3 shows 
the interface shape evolutions of a particle growing in a 
uniaxial straining flow on the cross-section of the Oxz plane. 
The energy transfer rate is higher near the poles and lower 
near the Oxz plane of the equatorial plane and the particle 
grows into a prolate shapes on the cross-section of the Oxz 
plane. It is consistent with the results on the cross-section of 
interface shape evolution made by Noh et al.[13]. However, 
the situation on the cross-section of the Oyz plane is contrary 
to that on the cross-section of the Oxz plane. Fig. 4 shows the 
evolution shapes of a particle growing in a uniaxial straining 
flow on the cross-section of the Oyz plane. The energy 
transfer rate is higher near the Oyz plane of the equatorial 
plane and lower near the poles and then the growth velocity 
near the Oyz plane of the equatorial plane is higher than that 
near the poles, and the particle grows into an oblate shape on 
the cross-section of the Oyz plane. This is the case that Noh 
et al.[13] neglected in their numerical simulations. 

For the biaxial straining flow, we have that  
0

0 0,0 2,0 2 (cos )R R h h Pε ε θ= + +  
2

2,2 2 (cos ) cos 2h Pε θ ϕ+ + ,               (16) 

0,0 2,0 00
2 (cos )

dh dhdRR P
t dt dt dt

ε ε θ∂
= + +

∂
 

2,2 2
2 (cos )cos 2

dh
P

dt
ε θ+ +ϕ ,           (17) 

where 
0

0,0 1
0 0

( 2 )
3 ( )

R
h

R R E M−

− Γ
=

+
   

               0
1 3

2 11

(6 6 )
( 2 ) ( )

R SE M k
d

E M
ω λ ω ω

ω
ω ω

−

−

⎡ Γ − +
×⎢ − Γ +⎣

∫  

                  0
4

2 11

(2 3 )
+ ,

( 2 ) ( )
R Sk

d
E M

λ ω ω
ω

ω ω −

⎤Γ −
⎥− Γ + ⎦

∫  

2 1
0 0

2,0
0

5 ( (2 3) )
16( 2 )

c

b

R R k E Mh
R

Pe −+ +
= −

− Γ
 

0

1 11

( 2 )
( (2 3) )

bR

c d
k E M
ω ω

ω − +

− Γ
×

+ +∫ , 

2 1
0 0

2,2
0

5 ( (2 3) )
32( 2 )

c

b

R R k E MP
h

e
R

−+ +
=

− Γ
 

0

1 11

( 2 )
( (2 3) )

bR

c d
k E M

ω ω ω
ω − +

− Γ
×

+ +∫ ; 

0,0 0
0 0,02 1

0 0

1 ( ,0)
( )

dh R
R h

dt R R E M−= − ℜ +
+

 

0 0 0

0

( ) ( )
3
Sk R b t db td

dt R dt
λ⎛ ⎞⎛ ⎞

× −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, 

 

2,0 0
0 2,02 1

0 0

5 ( )1 ( , 2)
16( 7 )

Pedh b tR h
dt R R E M−= ℜ −

+
, 

2,2 0 0
0 2,22 1

0 0

( )1 ( , 2)
32( 7 )

5dh PeR b tR h
dt R R E M−= ℜ +

+
. 
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Fig. 3. The cross-sections of interface shape of a particle in the uniaxial 

straining flow, at time 5,10,15,20,25t =  (from inside to outside), where 

0.5β = , 0.1Γ = , 370TΔ = , , , , 0.01Sλ = 0.4E = 0.16M = 0.15ε = . 
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Fig. 4. The cross-sections of interface shape of a particle in the uniaxial 
straining flow, at time 10,20,30,40,50t =  (from inside to outside), where 

0.5β = , 0.1Γ = , 370TΔ = , , , , 0.01Sλ = 0.4E = 0.16M = 0.15ε = . 
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It is seen from (16) and (17) that similar to the case of  
uniaxial straining flow the solution for the shape of a growing 
particle in a biaximal straining flow is the function of both θ  
and ϕ . Fig. 5 shows the interface evolution shapes of a 
particle growing in a biaxial straining flow on the 
cross-section of the Oxz plane. The energy transfer rate is 
higher near the poles and lower near the Oxz plane of the 
equatorial plane and the particle grows into a prolate shapes 
on the cross-section of the Oxz plane. It is consistent with the 
results on the cross-sections of the interface shape made by 
Noh et al.[13]. However, Fig.6 shows the situation on the 
cross-sections of the Oyz plane is contrary to that on the 
cross-sections of the Oxz plane. 

Further study on the interface stability of the particle 
growth shows that the convection significantly leads to 
destabilize the interface morphology of the particle growth. 
The convection makes the particles growing in the 
undercooled melt evolve into various shapes of the interface 
morphology which have high strength/weight ratio and 
specific surface fraction and then help to form the final 
material of excellent mechanical and physical properties[7]. 
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Fig. 5. The cross-sections of interface shape of a particle in the biaxial 
straining flow, at time  (from inside to outside), where 10, 20,30, 40,50t =

0.5β = , , , , , , . 0.1Γ = 370TΔ = 0.01Sλ = 0.4E = 0.16M = 0.15ε =
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Fig. 6. The cross-sections of interface shape of a particle in the biaxial 
straining flow, at time  (from inside to outside), where 5,10,15, 20, 25t =

0.5β = , , , , , , 0.1Γ = 370TΔ = 0.01Sλ = 0.4E = 0.16M = 0.15ε = . 

 

IV. CONCLUSION  
We have studied the interaction between the convective 

flow and the morphology of the particle growth in the 

convective undercooled melt for three types of straining flow 
by using the method of matched asymptotic expansion. The 
analytical results show that the convection driven by the far 
field uniform flow makes the interface of the growing 
particle enhance the growth velocity in the upstream 
direction of the flow but inhibit growth in the downstream 
direction. Both the growth in the upstream direction and the 
decay in the downstream direction make the particle evolve 
into an oval; both the uniaxial straining flow effect and the 
biaxial straining flow effect result in higher local growth rate 
near the surface where the flow is incoming and lower local 
growth rate near the surface where the flow is outgoing, and 
both the uniaxial straining flow and the biaxial straining flow 
cause an initially spherical particle evolve into an oblate 
spheroid. The convection leads to destabilize the interface 
morphology of the particle growth.  
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