
 
 

 

 
Abstract— This paper presents a multifractal analysis of the 

data generated by the ecosystem simulation, EcoSim. A 
wavelet-based method has been used for this analysis. 
Multifractal analysis of EcoSim's results demonstrates self-
similarity characteristics in the spatial distribution of 
individuals as it has been observed in real ecosystems. One 
important issue for ecologists is to understand where these 
structures come from. We analyzed different parameters of the 
simulation to detect which ones cause the multifractal 
behavior. We showed that the combination of the predation 
pressure associated with the distribution of food is an 
important factor for the emergence of multifractal phenomena. 
These results also prove the capacity of EcoSim to generate 
data with complex characteristics generally observed in real 
ecosystem studies. 
 

Index Terms— ecosystem simulation, modeling, 
multifractal analysis, wavelet transform 

I. INTRODUCTION 

ECENTLY, researchers have begun to recognize the 
ecosystem data as a highly nonlinear system [1]. 

Analysis of time series with high complexity, such as time 
series resulting from the interaction between individuals' 
behaviors in ecosystems, requires a nonlinear dynamical 
approach [2-5]. Dynamic studies of nonlinear systems allow 
to describe the specification of biological processes [6]. 
These methods are applicable to signals with a low 
dimensional deterministic nature. Most of the scientists 
believe that a chaotic behavior can be observed in many 
natural systems, such as the weather [7], and natural 
phenomena have to be considered as chaotic systems [8]. 
Therefore nonlinear dynamic methods based on the concept 
of chaos have been used to analyze ecosystem time series 
[9]. In most of the natural phenomena chaotic and self-
similarity properties co-exist [10], [11]. Since the seminal 
work of Mandelbrot [12], many patterns and processes have 
proven to be efficiently described by fractals in many fields 
of the natural sciences. Fractal geometry and their resulting 
scaling properties have also been suggested as a way to 
characterize space-time heterogeneity in ecology [13]. 
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Fractals identify the presence of patterns at multiple 

scales. Part of the fractals' appeal is that a single statistic can 
be used to describe potentially complex patterns in natural 
environments. The use of fractal geometry can be viewed as 
a tool to be used by landscape ecologists to aid in answering 
questions relating to scale [14]. Studies have shown that 
natural phenomena present self-similar property over time 
[15]. 
 A multifractal system is a generalization of a fractal 
system in which a single exponent (the fractal dimension) is 
not enough to describe its dynamics; instead, a continuous 
spectrum of exponents is needed. Self-similarity is a typical 
property of fractals. Scale invariance is an exact form of 
self-similarity where at any magnification, there is a smaller 
piece of the object that is similar to the whole [2]. 
Applications of multifractals to ecology still remain 
anecdotic, limited to forest ecology [16], [17], population 
dynamics [18], the characterization of species-area 
relationship, species diversity, and species abundance 
distribution [19], [20], and the characterization of nutrient, 
phyto- and zooplankton patchiness [21], [22]. Multifractal 
analysis techniques allow exploring features of signal 
distribution that are not considered very often [15]. In this 
paper, a wavelet-based method has been used for 
multifractality analysis. The wavelet transform takes 
advantage of multifractal self-similarities, in order to 
compute the distribution of their singularities. This 
singularity spectrum is used to analyze multifractal 
properties [23].  
 It has been shown that EcoSim, a large scale evolving 
predator-prey ecosystem simulation can be used to perform 
studies in theoretical biology and ecology [24], [25]. It has 
been shown in [9] that behavior of population in EcoSim is 
chaotic and in this paper we want to show that multifractal 
property also exists in spatial distribution of individuals. 
One of the issues ecologists have to deal with is not only to 
observe multifractal spectrum for the spatial distribution, 
but also to explain, from a phenomenological point of view 
where these structures come from. Because many 
environmental parameters display self-similarity, the 
observed biotic patterns could reflect the distribution of 
some abiotic factors presenting a template upon which 
individual operate [15], [26]. For this reason we analyzed 
different parameters of EcoSim such as the pattern of food, 
the predators' pressure and the raggedness of the 
environment to detect the factors which can explain 
multifractal behavior in spatial distribution of individuals. 
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 Because this simulation is a logical description of how a 
simple ecosystem performs, this analysis can help biologists 
to better understanding of long-term behavior of ecosystem. 
We analyzed the spatial distribution of individuals in 
various simulation experiments: one that used no specific 
pattern of food in world (EcoSim), experiment that has no 
predator (EcoSimNoPredator), experiments that used a 
specific pattern of food (EcoSimCircle, EcoSimStar) and 
experiments with obstacle cells in the world 
(EcoSimObstacle1%, EcoSimObstacle10%). 
 The paper is organized as follows: in next section, we 
present the EcoSim. Thereafter, we explain the wavelet-
based methods for the multifractal analysis. Finally, we 
present the results of applying multifractal analysis method 
to the different ecosystem simulation data. 

 

II. SIMULATION 

In this section, the main parts of the evolving agent-based 
predator/prey ecosystem (EcoSim) are briefly introduced. 
The comprehensive description of this simulation has been 
proposed by [27]. This simulation is a logical description of 
how a simple ecosystem performs. In this simulation, 
complex adaptive agents (or, simply, individuals), each one 
of them using a Fuzzy Cognitive Map (FCM) as a 
behavioral model, are either a prey or a predator in a virtual 
world implemented as a 1000×1000 matrix of cells. 

 

A. Fuzzy Cognitive Maps 

FCMs are weighted graphs aiming to represent the causal 
relationship between concepts and to analyze inference 
patterns. In EcoSim, the FCM is not only the base for 
describing and computing the agent behaviors, but also the 
platform for modeling the evolutionary mechanism and the 
speciation events as it is coded in the individual’s genome. 
Each individual performs an action during a time step based 
on its perception of the environment. The FCM (called a 
map in the simulation) is used to model the agent behaviors 
(structure of the graph) and to compute the next action of 
the agent (dynamics of the map). A map contains three 
kinds of concepts: sensitive, internal, and motor. The 
activation level of a sensitive concept is computed by a 
fuzzification of the information coming from the 
environment (see Fig. 1). The activation level of the motor 
concept is used to determine what the next action of the 
agent will be, and a defuzzification of its value can be used 
to determine the amplitude of the action. Finally, the 
internal concepts' activation levels correspond to the levels 
of intensity of the internal states of the agent and affect the 
computation of the dynamic of the map. 

 

B. Intelligent Agents 

Each agent has one FCM and several properties that 
determine its physical capabilities and its behaviors. The 
behaviors are determined by the interaction between the 
FCM and the environment. Each agent possesses its own 
FCM (coded by its genome, which is subject of the 
evolutionary process). The FCM contains sensitive concepts 

like foeClose, foodClose, energyLow, internal concepts like 
fear, hunger, curiosity, satisfaction, and motor concepts like 
evasion, socialization, exploration, breeding. It also contains 
links and weights representing the mutual influences 
between these concepts. The FCM of an agent is transmitted 
to its offspring after being combined with the one of the 
other parent and after the possible addition of some 
mutations. The behavioral model of each agent is therefore, 
unique. 

As an example, a very simple map can be defined to 
model an prey agent perceiving and reacting to its distance 
from a foe (predator). The closer the foe, the more 
frightened the agent. Depending on this distance and also on 
the fear level, the agent will decide whether it will evade or 
not. The more frightened the agent, the faster the evasion. A 
FCM corresponding to this example is given in Fig. 1. In 
this example, there are two sensitive concepts: foeClose and 
foeFar, one internal: fear and one motor: evasion. There are 
also three influence edges: closeness to a foe excites fear, 
distance to a foe inhibits fear and fear causes evasion. 
Activations of the concepts foeClose and foeFar are 
computed by fuzzyfication of the real value of the distance 
to the foe, and the defuzzyfication of the activation of 
evasion tells us about the speed of the evasion. In EcoSim, 
each individual posses its proper map which contains about 
30 concepts and hundreds of edges. 

In this simulation, a species is a set of individuals 
associated with the average of the genetic characteristics of 
its members. The average map of a species is computed 
based on the FCM matrices of all individuals' members of 
this species. It is considered that a species splits if the 
difference between the maps of the two most dissimilar 
agents in the species is greater than a threshold; the 
threshold is the same for all species [27], [28].  

 

Fig 1. A simple fuzzy cognitive map for detection of foe (predator) and 
decision to evade with its corresponding matrix with 0 for “Foe close”, 1 
for “Foe far”, 2 for “Fear” and 3 for “Evasion” and the fuzzyfication and 

defuzzyfication functions. 
 
 

 The speciation method consists in applying a 2-means 
clustering algorithm. With this process an initial species is 
split into two new species, each one of them containing the 
agents that are mutually the most similar. At each time step, 
the values of the states of all the parameters in the model are 
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updated. The successive phases of the update process are as 
follows for each agent: perception of the environment, 
computation of all concepts of its map, application of their 
selected action and update of the energy level. Then, there is 
an update of the lists of agents, species and cells of the 
world. For each action which requires the agent movement, 
its speed is proportional to the level of activation of the 
corresponding action concept. 

 

C. Food Pattern 

Each cell can contain grass. There is a limit in the amount 
of grass available in each cell. This allows a competition for 
resource between individuals to occur. At the initialization 
time, the number of grass units is uniformly randomly 
determined for each cell. The number of grass units grows 
at each time step. The number of grass units in a cell 
decreases by one when a prey eats. If the prey eats all the 
grass in one cell the grass cannot grow anymore unless there 
is still grass in an adjacent cell. This later concept models 
the mechanism of diffusion of resources through the world 
changing and renewing the interest of regions of the world 
(Fig. 2a). We defined two other versions of the simulation 
based on specific pattern of food distribution. In the first 
version the food is distributed in concentric circles, we call 
it EcoSimCircle (see Fig. 2b). The second one, having the 
distribution shown in Fig. 2 is called EcoSimStar (Fig. 2c). 

 

D. The Raggedness of Environment 

We use also another version of EcoSim simulation to 
measure effect of the environment's raggedness on 
population fragmentation and speciation processes [25]. In 
order to do that small physical obstacles are included that 
obstruct the movement (dispersal) of agents. Each obstacle 
covers completely one cell and they also impede the vision 
of the individuals. The presence of obstacle cells in the 
world is also expected to disrupt the movement of the 
agents, change their spatial distribution, and in turn 
influence dispersal and ultimately the gene flow between 
populations. Two virtual worlds with various numbers of 
obstacles are considered: 1% and 10%. For example, in 
experiment "EcoSimObstacle 10%", ten percent of cells in 
world are obstacles. The spatial distribution of individuals 
in this version of simulation has been shown in Fig. 3 
(different color for different species). Each execution of the 
simulation for this analysis produced approximately 16,000 
time steps in 23 days. The computed average and standard 
deviation for the number of prey individuals are 190,000 
and 25,000 respectively (for predator 30,000 and 8,000) and 
the average and standard deviation for the number of prey 
species are 49 and 10 (for predator 58 and 9). 

 
 

Fig 2. Distribution of food (grass) after 10000 time steps in (a) EcoSim 
(b) EcoSimCircle (c) EcoSimStar 

 

 
 

Fig 3. The spatial distribution of individuals in the world with obstacles 
(EcoSimObstacle10%). The blue dots are obstacle cells. 
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III. THE CONTINUOUS WAVELET TRANSFORM (CWT) AND 

WAVELET-BASED MULTIFRACTAL ANALYSIS 

Multifractal analysis using the wavelet transform is a 
powerful tool for detecting self-similarity [29]. The wavelet 
transform is a convolution product of the data sequence (a 
function f(x), where x is usually a time or space variable and 
correspond in this study to time steps,) with the scaled and 
translated version of the mother wavelet, ψ(x) [29]. The 
scaling and translation are performed by two parameters; the 
scale parameter s stretches (or compresses) the mother 
wavelet to the required resolution, while the translation 
parameter b shifts the analysing wavelet to the desired 
location: 

*1
( )( , ) ( ). ( )

x b
Wf s b f x dx

s s







 

 
(1) 

where s, b are real, s > 0 for the continuous version 
(CWT) and ψ* is the complex conjugate of ψ. The wavelet 
transform acts as a microscope: it reveals more and more 
details while going towards smaller scales, i.e. towards 
smaller s values. The mother wavelet (ψ(x)) is generally 
chosen to be well localized in space (or time) and frequency 
[30]. 

Usually, ψ(x) is only required to be of zero mean, but for 
the particular purpose of multifractal analysis ψ(x) is also 
required to be orthogonal to some low order polynomials, 
up to the degree n: 

( ) 0,        ,   0mx x dx m m n



     (2) 

Thus, while filtering out the trends, the wavelet transform 
can reveal the local characteristics of a signal, and more 
precisely its singularities. (The Hölder exponent can be 
understood as a global indicator of the local differentiability 
of a function.) By preserving both scale and location (time, 
space) information, the CWT is an excellent tool for 
mapping the changing properties of non-stationary signals.  

It can be shown [30] that the wavelet transform can reveal 
the local characteristics of f at a point xo. More precisely, 
we have the following power law relation: 

0( )( )
0( , )

h xNW f s x s (3) 

where h is the Hölder exponent (or singularity strength). 
The symbol “(N)”, which appears in the above formula, 
shows that the wavelet used (ψ(x)) is orthogonal to 
polynomials up to degree n (including n). The scaling 
parameter (the so-called Hurst exponent) estimated when 
analyzing time series by using “monofractal” techniques is a 
global measure of self-similarity in a time series, while the 
singularity strength h can be considered a local version (i.e. 
it describes “local similarities”) of the Hurst exponent. In 
the case of monofractal signals, which are characterized by 
the same singularity strength everywhere (h(x) = ct), the 
Hurst exponent equals h. Depending on the value of h, the 
input series could be long-range correlated (h > 0.5), 
uncorrelated (h = 0.5) or anti-correlated (h < 0.5). 

To characterize the singular behavior of functions, it is 
sufficient to consider the values and position of the Wavelet 
Transform Modulus Maxima (WTMM) [31]. The wavelet 
modulus maxima is a point (s0, x0) on the scale-position 
plane, (s,x), where |Wf(s0, x0)| is locally maximum for x in 

the neighborhood of x0. These maxima are located along 
curves in the plane (s,x). The WTMM representation has 
been used for defining the partition function based 
multifractal formalism [32], [33]. 

Let {un(s)}, where n is an integer, be the position of all 
local maxima at a fixed scale s. By summing up the q’s 
power of all these WTMM, we obtain the partition function 
Z: 

( , ) ( , )
q

n
n

Z q s Wf u s
 

(4) 

By varying q in Eq. (4), it is possible to characterize 
selectively the fluctuations of a time series: positive q’s 
accentuate the “strong” inhomogeneities of the signal, while 
negative q’s accentuate the “smoothest” ones. In this work, 
we have employed a slightly different formula to compute 
the partition function Z by using the “supremum method”, 
which prevents divergences from appearing in the 
calculation of Z(q,a), for q < 0 [33].  

Often scaling behavior is observed for Z(q,s) and the 
spectrum τ(q), which describes how Z scales with s can be 
defined: 

( )( , ) qZ q s s  (5) 

If the τ(q) exponents define a straight line, the analyzed 
signal is a monofractal; otherwise the fractal properties of 
the signal are inhomogeneous, i.e. they change with 
location, and the time series is a multifractal. By using the 
Legendre transformation we can obtain the multifractal 
spectrum D(h) from τ(q). 

IV. RESULTS OF MULTIFRACTAL ANALYSIS USING WAVELETS-
BASED METHOD 

It is essential to measure the correlation between the 
positions of the main biotic factors to gain new insights into 
the origin of distributions in biological systems. For that 
reason the effects of two environmental parameters and the 
effect of predators' pressure on prey's spatial distribution 
have been examined. The snapshots considered in the 
analysis correspond to a typical spatial distribution of the 
individuals, and the same results have been obtained at 
different time steps. For each experiment, we conducted five 
independent runs using the same parameters and averaged 
the results. 

A. Predators' pressure 

This section is an analysis of the spatial distribution of 
prey individuals generated by two simulations: EcoSim and 
EcoSimNoPredator (EcoSim with no predator in the world) 
in order to investigate the effect of predators' pressure. 
Multifractal spectra have been calculated for the spatial 
distribution of prey individuals in both experiments. In both 
experiments there is an initial uniform random distribution 
of food. The evolution of the individuals and their 
interactions then shape the spatial distribution of 
individuals. 

The spatial distribution of individuals for EcoSim and 
EcoSimNoPredator simulation are shown in Fig. 4 (different 
color for different species). Contrary to the emerging herd 
patterns observed in the EcoSim simulation (Fig. 4a), the 
spatial distribution of individuals in the other simulation 
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forms simpler patterns, which prey expand in all direction in 
absence of predators (Fig. 4b). 

 

Fig 4. Spatial distribution of individuals in (a) EcoSim (b) 
EcoSimNoPredator 

Fig. 5 shows the CWT representation of the prey 
individuals' spatial distribution in EcoSim. From an intuitive 
point of view, the wavelet transform shows a “resemblance 
index” between the signal and the wavelet. If a signal is 
similar to itself at different scales, then the “resemblance 
index” or wavelet coefficients also will be similar at 
different scales. In the coefficients plot (Fig. 5), which 
shows scale on the vertical axes, this self-similarity 
generates a characteristic pattern. This is a good 
demonstration of how well the wavelet transform can reveal 
the fractal pattern of the behavioral activity at different 
times and scales. 

Fig 5. CWT coefficients plot of the spatial distribution of prey individuals 

in EcoSim. Scale and position are on the vertical and horizontal axis, 
respectively. 

Fig. 6a displays the “tau spectrum, τ(q)”, obtained by 
using the WTMM method, applied to the spatial distribution 
of prey individuals in the EcoSim experiment. The spectrum 
is curved, which indicates the multifractal nature of the 
spatial distribution. We computed the spectrum D(h), 
represented in Fig. 6b, which clearly confirms the non-
uniqueness of the Hölder exponent h, and thus the 
multifractality of the process. 

 

Fig 6. (a) “Tau spectrum” of the spatial distribution of prey individuals in 
EcoSim (b) Multifractal spectrum of the spatial distribution of prey 
individuals in EcoSim. By analyzing the spectrum one can assume a 

multifractal process. Every curve represents an average value obtained from 
five independent runs. 

 

These results shown that the interaction between 
individuals over the time and the uniform distribution of 
food in the world make a complex spatial distribution of 
prey individuals with multifractal characteristics.  

As the food is initially uniformly distributed, it cannot be 
the leading factor that generates the fractal property. Since 
this is a prey-predator model, the behaviors of prey and 
predator have to evolve simultaneously to give them the 
abilities needed to survive, so the affect of predator is 
important in this matter. Therefore the multifractal analysis 
was also applied to the spatial distribution of predators. The 
results show that the spatial distribution of predators has the 
same multifractal characteristics as the spatial distribution of 
prey (data not shown). These results confirm previous 
results real data, such as the population dynamics of soil 
microorganisms [34], the swimming behavior of the 
calanoid copepod Temora longicornis, the displacements of 
male Daphniopsis australis and the microphytobenthos 
biomass distribution [15], that have multifractal properties. 

 

Fig 7. CWT coefficients plot of the spatial distribution of prey individuals 
in EcoSimNoPredator. Scale and position are on the vertical and horizontal 

axis, respectively. 
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The wavelet analysis has been also applied to the spatial 
distribution of prey individuals in EcoSimNoPredator 
simulation. The EcoSimNoPredator simulation's parameters 
are identical, with the same initial parameters and scales and 
population dynamic in the EcoSim. The only difference is 
absence of predators in the world. In the coefficients plot 
(Fig. 7), there is no pattern like the patterns in Fig. 5. 
Therefore, at least from a visual point of view, it seems that 
there is no self-similar pattern. 

Fig. 8a displays the “tau spectrum, τ(q)”, obtained by 
using the WTMM method, for the prey individuals' spatial 
distribution. The spectrum is not curved, confirming that 
there is no multifractal property in these patterns. We obtain 
the spectrum D(h), represented in Fig. 8b, which clearly 
does not confirm the non-uniqueness of the Hölder 
exponent h. The figure shows just a straight line which 
stands for one value thus the multifractality of the spatial 
distribution can be rejected. 

Fig 8. (a) “Tau spectrum” of the spatial distribution of prey individuals in 
EcoSimNoPredator (b) Multifractal spectrum of the spatial distribution of 

prey individuals in EcoSimNoPredator. By analyzing the spectrum one can 
assume a multifractal process. Every curve represents an average value 

obtained from five independent runs. 

This outcome showed that the predators' pressure can 
lead to a multifractal behavior when there is no limit on 
mobility of individuals. With equal ease of movement in all 
directions, predators will be able to push prey in different 
scales. Individuals distribution forming spiral waves is one 
property of prey-predator models (like in Fig. 4a). The prey 
near the wave break have the capacity to escape from the 
predators sideways. A subpopulation of prey then finds 
itself in a region relatively free from predators. In this 
predator-free zone, prey start expanding intensively and 
form a circular expanding region. The whole pressure 
process and spiral formation will be applied to this 
subpopulation of prey and predators again leading to the 
formation of a second scale. This process repeats over and 
over and this is a common property of self-similar processes 
[35]. Because there are consecutive interactions between 
prey and predators during time, the same pattern repeats 
over and over and then self-similarity emerges in spatial 
distribution of individuals. 

Indeed, prey distribution and food distribution are very 
important for predators because food availability changes 
depending on the fractal dimension. Non-multifractal 
behavior indicates a smooth and predictable distribution of 
particles gathered in small numbers of patches, while 
multifractal behavior indicates rough, fragmented, space-
filling and less predictable distributions. When a predator 
has no remote detection ability (which is our case because 
predators don't have long range vision), prey distributions 

with multifractal behavior could be efficient for predators, 
because available food quantity become proportional to the 
searched volume as multifractal behavior increases [15]. 

B. Various Food Pattern 

This section is an analysis of the simulation’s spatial 
distribution of prey individuals generated by two 
simulations: EcoSimCircle (EcoSim with circle pattern of 
food) and EcoSimStar (EcoSim with star pattern of food) in 
order to investigate the effect of food pattern. Multifractal 
spectra have been calculated for the spatial distribution of 
prey individuals in all experiments. In EcoSimCircle and 
EcoSimStar, the spatial distribution of food is kept fixed 
during the whole simulation. 

The spatial distribution of individuals for EcoSimCircle 
and EcoSimStar simulation are shown in Fig. 9. Contrary to 
the emerging herd patterns observed in the EcoSim 
simulation (Fig. 4a), the spatial distribution of individuals in 
the these two simulations followed the circle and star food 
distribution respectively (Fig. 9a, 9b). For space 
consideration, we do not present the graphs of the 
multifractal analysis as they are almost identical to the ones 
already presented. 

The wavelet analysis has been applied to the spatial 
distribution of prey individuals in EcoSimCircle simulation. 
The EcoSimCircle simulation's parameters are kept the 
same, with the same initial parameters and scales and 
population dynamic in the EcoSim. The only difference is 
the fixed distribution of food in the world. 

Fig 9. Spatial distribution of individuals in (a) EcoSimCircle (b) 
EcoSimStar 
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In the coefficients plot, there is no self-similar patterns 
like the patterns in Fig. 5. Multifractal spectrum have been 
calculated for the spatial distribution of prey individuals. 
The “tau spectrum, τ(q)” and the spectrum D(h) (like Fig. 
8), clearly demonstrate that there is no multifractal behavior 
in the spatial distribution of prey (results not shown). The 
multifractal analysis was also applied to the spatial 
distribution of predators in this experiment. The result 
shows there is no multifractal characteristic in spatial 
distribution of predators. The same wavelet-based analysis 
has been applied to EcoSimStar and the same results have 
been obtained: no multifractal pattern for grass and for 
spatial distribution of prey and predators. When the 
distribution of food in the world becomes fixed, the 
multifractal phenomenon vanished. Therefore, as long as 
there is specific fixed pattern of food in the world it seems 
that the complex multifractal phenomenon doesn't show up 
for spatial distribution of individuals. The dynamic 
distribution of food is needed for complex patterns to 
emerge as it strongly affects the spatial distribution of the 
prey that need this food to survive. 

C. Various Levels of Environment's Raggedness 

We are also interested in studying whether various levels 
of raggedness in the world, as it also has impact on the 
movement of the individuals, can affect the fractal 
properties observed. We use two new simulation 
experiments with various numbers of obstacles: 1 and 10 
per cent, EcoSimObstacle(1%) and EcoSimObstacle(10%). 
The raggedness of the world increases when the number of 
obstacle cells raises. Multifractal spectrum have been 
calculated for the spatial distribution of individuals in all 
these experiments and compared them with results of 
EcoSim. 

In EcoSim, there is no obstacle cells in the world and the 
results of this simulation has been shown in previous section 
which shows existence of multifractal behavior in 
individuals' spatial distribution. We measured the CWT 
representation of the individuals' spatial distribution for 
EcoSimObstacle(1%) and EcoSimObstacle(10%). The 
coefficients plot (like Fig. 5), the “tau spectrum, τ(q)” and 
the spectrum D(h) (like Fig. 6), clearly demonstrate the 
multifractality of the process.  

In these two experiments, with different level of 
raggedness, a multifractal behavior also emerged. We can 
conclude that this parameter doesn't play a major role in 
multifactal behavior of spatial distribution. Regardless of 
the level of raggedness, individuals finally find their way to 
adopt and form the complex pattern. 

V. CONCLUSION 

The purpose of this paper is to analyze the multifractal 
behaviors of individuals' spatial distribution that are 
produced by the ecosystem simulation (EcoSim). 
Understanding of the origin of individuals patchiness is an 
important issue. It is stressed here that the knowledge of the 
multifractal distributions of relevant parameters such as 
food concentration, spatial distribution of prey and 
predators and density of obstacles could be the first step to 
infer their phenomenological links. We applied our analysis 

to different kinds of simulations: the ecosystem simulation 
with fixed specific pattern of food in the world, the world 
without predators' pressure and the world with several 
amounts of obstacles and then we compared the results with 
the ones obtained with the simulation without constraints.  

We used a wavelet-based method for this analysis. It 
showed that the behavior of the individuals without any 
constraints, or restricted by a limited amount of obstacles 
with predators' pressure can lead to the multifractal 
phenomena as the ones observed in real ecosystems. It is 
also another important confirmation of the capacity of 
EcoSim to model complex and realistic large scale systems. 
On the contrary, we have shown that when the food 
distribution is fixed, which strongly reduces the possibility 
of movement of the prey, the multifractal pattern disappears. 
It seems that it is the complex interaction between the 
predation pressure, the eating behavior of the prey and the 
diffusion of food that conducts to the apparition of the 
multifractal phenomenon.  

There are a number of possible extensions of this study. 
We will be interested to analyze other versions of the 
current simulation or even other different simulations. We 
will be also interested to compare more into detail the 
correspondence between the patterns observed in EcoSim 
with the ones coming from real data. Finally, we will be 
interested to see if different kinds of ecosystems can be 
characterized by different multifractal properties. We will 
be able to use EcoSim to investigate different hypotheses 
and to see what properties of the system have an influence 
on the multifractal patterns. 
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