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Abstract— A nonlinear controller for accelerating a mobile 

inverted pendulum (MIP) with a slider mechanism is proposed. 

The controller shapes the total energy of the system and utilizes 

instability of the MIP for acceleration. The body angle and the 

displacement are controlled to keep states where the MIP is 

statically unstable, which leads to translational acceleration due 

to instability of the system. The total energy of the system is 

shaped to have the minimum at given desired states and the 

system is controlled to converge to them. The proposed 

controller can achieve various properties through the energy 

shaping procedure. Especially an energy function that will lead 

to safe operation of the MIP is proposed. The function ensures 

that motion of the MIP is restricted within predefined regions 

and converges to the desired states. The controller also returns 

the system back to the desired states with state-dependent gains 

that become large if the system comes close to fall over. 

Effectiveness of the proposed controller and utilization of 

instability for the MIP with the slider mechanism are verified 

through simulations. 

 
Index Terms—Energy Shaping, Mobile Inverted Pendulum, 

Instability, Slider Mechanism 

 

I. INTRODUCTION 

mobile inverted pendulum (MIP) has a small footprint 

and can turn in a small radius. Its mobility is 

energy-efficient due to it being lighter than ordinary cars. It is 

applied to personal mobility vehicles that are expected to be 

used near human living space. There are two types of MIPs. 

The one is the standing-type, for example, Segway. The other 

is the sitting-type, for example, MOBIRO and en-V, which 

have a slider mechanism. A diagram of the system is shown in 

Fig. 1. The slider shifts the center of mass (COM) of the MIP 

while a rider is sitting still. This mechanism enables the MIP 

to accelerate without the rider shifting his/her COM back and 

forth. Therefore various people including the elderly can use 

the MIP with the slider easily. In this study, this type of the 

MIP is focused on, and a safe controller to accelerate the 

mobility is proposed. We consider the safety in terms of the 
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body angle and the slider displacement. The controller utilizes 

instability of the MIP. The body angle and the slider 

displacement are controlled to keep statically unstable but 

dynamically stable states while theoretically restricting 

motion of the MIP in a predefined range. The intentional 

destabilization leads to indirect control of translational 

acceleration. 

Typical controllers for the MIP with the slider in previous 

studies are linear ones based on linearly approximated 

equations of motion[1]-[3]. They control the system to 

converge to statically stable states. The reference body angle 

is set in the vertical direction, and the slider displacement at 

the position where the MIP can stand still. However, the 

stability is only guaranteed in the neighborhood of the 

equilibrium. Thus, if the MIP is largely inclined due to 

disturbance or the way a rider operates it, it may fall over. 

Driving control is based on tracking a given reference 

translational velocity. Although the MIP must be destabilized 

transiently because of the dynamics when it accelerates or 
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Fig. 1.  A diagram of a mobile inverted pendulum with a slider 
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Fig. 2.  The concept of the proposed controller 
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decelerates, motion of the body is not directly considered in 

the previous controllers. Therefore, the MIP may fall over 

because of an inappropriate reference velocity.   

Thus, the authors have proposed controllers for the MIP 

without the slider that restrict motion of the body in a 

predefined range[4][5]. Especially, the acceleration controller 

utilizes instability of the system[5]. A reference body angle is 

directly given to the system, and the body is controlled to 

incline it intentionally, which leads to the indirect control of 

translational acceleration. The method is safe because the 

motion of the body is directly considered and easier to predict 

than that of previous controllers. 

Based on the background above, this study extends our 

acceleration controller for the MIP with the slider that utilizes 

instability. The body angle and the slider displacement are 

controlled to keep statically unstable but dynamically stable 

states. The translational acceleration is controlled indirectly 

through the direct control of the two states. The proposed 

control method provides the riders of a sitting MIP with a 

feeling of maneuvering while inclining back and forth, as can 

experienced with the standing MIP. In our previous study, 

there was a one-one relationship between the body angle and 

the translational acceleration at steady states. When a large 

acceleration needs to be achieved, the MIP has to be inclined 

largely. The large body angle can be suppressed using the new 

degrees of freedom of the slider. The combination of the two 

states can modify motion of the MIP, leading to safe operation. 

To achieve this concept, a nonlinear controller is applied 

called an interconnection and damping assignment 

passivity-based control (IDA-PBC)[6][7]. The method shapes 

the total energy of systems to stabilize them. The controller 

can achieve various properties that are difficult to achieve 

with a linear controller through the energy shaping procedure. 

In this study, an energy function is proposed that ensures that 

the body angle and the slider displacement are restricted 

within predefined regions and converge to reference states. 

The controller also helps to return the MIP to the desired 

states using state-dependent gains that become large if the 

MIP comes close to falling over. Effectiveness of the 

controller is verified in simulations. The conceptual diagram 

of the proposed controller is shown in Fig. 2. 

II. EQUATIONS OF MOTION AND ANALYSIS OF DYNAMICS 

A. Equations of Motion 

A diagram of the MIP is shown in Fig. 1. In this study, the 

shifting body means a part of the body on the slider and base 

body is one under it. M , 
wm , and 

sm  represent masses of 

the base body, wheel, and shifting body respectively. J , 
wJ , 

sJ , and 
mJ  are inertia of the base body, the wheel, the 

shifting body, and the rotor of the motor respectively. l , 
sl , 

and 
tl  represent minimum distances between the center of the 

wheel and the COM of the base body, shifting body, and the 

slider respectively. r
 
is wheel radius and mn  is reduction 

ratio of the actuator. Physical parameters of the system are 

shown in Table I. The values are selected based on an 

experimental setup of the MIP which is being developed in 

our laboratory. 1q  is the body angle with respect to the 

vertical direction, 2q  is the wheel angle relative to the body, 

and 3q  is the displacement of the slider. Its origin is set at the 

position where the MIP can keep the upright posture statically 

when 1 0q   rad.  1 2x r q q   is the travel distance. 

 1 2 3

T
q q qq  is the generalized position vector and g  

is the acceleration of gravity. The equations of motion of the 

MIP are described as follows: 

S S S I  M q C G G u  (1) 

  2

11 1 1 3 1 32 cos cos sinS s s s sr m l q Ml q m q q m q   M  
(2) 

             2 2 2

s w s s s wM m m r Ml m l J J J         

 12 1 1 3 1cos cos sinS s s sr m l q Ml q m q q  M  
(3) 

                            2

s w wM m m r J     

 13 1cosS s sm l r q M  (4) 

  2 2

22S s w m m wM m m r n J J    M  (5) 

23 1cosS sm r qM  (6) 

33S hmM  (7) 

2

1 1 3 1 3 1 3 1 12 sin 2 sinS s sm rq q q m q q q Mlrq q   C  
(8) 

                                 2 2

3 1 1 1 1cos sins s sm rq q q m l rq q   

2

2 1 3 1 1 12 sin sinS sm rq q q Mlrq q  C  
(9) 

               2 2

3 1 1 1 1cos sins s sm rq q q m l rq q   

Table I 

PARAMETERS OF THE MOBILE INVERTED PENDULUM 

Parameter Unit Value 

M  kg  5 

wm  kg  1 

sm  kg  3 

J  2kg m  -26 10  

wJ  2kg m  -33 10  

sJ  2kg m  -22 10  

mJ  2kg m  -67 10  

l
 

m  0.1 

sl  
m

 
0.50 

tl  
m

 
0.15 

r  m  0.075 

mn  - 30 
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Fig. 3.  Relationship between instability and translational acceleration 
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2

3 3 1S sm q q C  (10) 

 1 3 1 1 1cos sin sinS s s sg m q q m l q Ml q   G  (11) 

2 0S G  (12) 

3 1sinS sm g q G  (13) 

0 0

1 0

0 1

I

 
 


 
  

G  (14) 

 
T

fu . (15) 

SijM  denotes the i - j  term of SM , and SiC  and SiG denote 

the i -th element of SC  and SG  respectively. The potential 

energy of the system are 

    1coss w s sV M m m gr Ml m l g q      
(16) 

                                                  3 1sinsm gq q . 

B. Relationship between Instability and Acceleration 

Consider the case in which the body angle and the 

displacement of the shifting body converge to reference angle 

1 1refq q  and displacement 3 3refq q , respectively. The 

following relations are obtained. 

  2 1 3 1

12

sin cosss s s ref s ref ref

S

g
q Ml m l q m q q  

M
 (17) 

22 2ss S ssq  M  (18) 

23 2 1sinss S ss s reff q m g q M  (19) 

where 2 2ssq q , ss  , and ssf f  are constants. The 

relationship is graphically represented in Fig. 3. The steady 

translational acceleration 2ss ssx rq  can be controlled by 

applying the reference states 1refq  and 3refq  to the system. In 

our previous study[5], the slider mechanism was not 

introduced to the MIP and the body angle and the translational 

acceleration had a one-one relationship. When a large 

translational acceleration needs to be achieved, the body 

angle must be large, which is undesirable in terms of safe 

operation of the MIP. The problem can be solved by 

introducing the slider mechanism. A desired translational 

acceleration can be achieved with small 1refq  combined with 

the degrees of freedom of 3refq . 

III. DERIVATION OF PORT-HAMILTONIAN SYSTEM 

To achieve the concept, a nonlinear control method called 

IDA-PBC[6][7] is applied. The method shapes the total 

energy preserving port-Hamiltonian (PH) structure[8] of the 

system. Stabilization is achieved using passivity of the PH 

system. Passivity is an essential energetic property of physical 

systems. In general, control methods that utilize passivity are 

expected to be robust[9][10]. In addition, the IDA-PBC has 

been shown to have powerful stabilizing performance[6]. We 

show that the MIP with the slider can be appropriately 

described as a PH system and derive the IDA-PBC controller. 

Feedback linearization[11][12] which will be fragile to 

modeling errors, and linear approximation of the equations 

motion[13][14] which leads to guaranteeing stability at least 

in the neighborhood of an equilibrium are not used. Therefore, 

robustness and large domain of attraction are expected in our 

controller. The following equations can be derived by 

eliminating 2q  from the equations of motion (1). 

L L L L IL  M q C G G u  (20) 

2

12 12 23
11 13

22 22

2

12 23 23
13 33

22 22

S S S
S S

S S

L

S S S
S S

S S

 
  

 
 

  
  

M M M
M M

M M
M

M M M
M M

M M

 (21) 

12 23
1 2 3 2

22 22

T

S S
L

S S

 
   
 

M M
C C C C C

M M
 (22) 

12 23
1 2 3 2

22 22

T

S S
L

S S

 
   
 

M M
G G G G G

M M
  

  1 3 1 1sin cos sin
T

s s s sMl m l g q m gq q m g q        (23) 

12

22

23

22

0

1

S

S

IL

S

S

 
 
 
 
 
 

M

M
G

M

M

 (24) 

where  1 3

T

L q qq . We assume that the potential energy of 

the above system that is related to LG  as 

  1 3 1cos sinL s s sV Ml m l g q m gq q   . (25) 

We also consider LM  as the inertia matrix of the system (20) 

and calculate Euler-Lagrange equations of motion 

1

2

T

L L L L LL V q M q  (26) 

 
L LL L L

d
L L

dt
  q qQ . (27) 

We can check LQ  corresponds to the left-hand side of (20). 

Therefore, the system can be represented as a PH system 

because Euler-Lagrange systems are contained in PH 

systems[8]. 

2

2

L

L

LL

LL IL

H

H

      
             

q

p

q 0 I 0
u

p I 0 G
 (28) 

11

2

T

L L L L LH V p M p  (29) 

where L L Lp M q . 

IV. IDA-PBC CONTROLLER DESIGN 

A. Derivation of Controller 

In this study, the ranges of the body angle is considered in 

1 2q   rad and the displacement of the slider in 3 0.2q   
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m based on the experimental setup.   0L L M q  in the above 

ranges can be checked numerically with the physical 

parameters of the MIP in Table I. We define the desired 

inertia matrix LdM , the desired potential energy LdV  , and the 

desired total energy LdH , which are going to be assigned to 

the PH system with the IDA-PBC controller. It can be 

represented as below using arbitrary LdH  and a 

skew-symmetric matrix 2LJ  because the open-loop PH 

system is full-actuated and  det 0IL G [6]. 

es di u u u  (30) 

 1 1 1

2L Les IL L Ld L Ld L Ld LH H      q qu G M M J M p  (31) 

di Ldi Lc u K y  (32) 

where 0T

di di K K  is a parameter of the controller and 

Lcy is the passive output of the closed-loop PH system. esu  is 

the energy shaping control input which shapes the total energy 

of the open-loop PH system and guarantees stability. diu  is 

called damping injection that is used to achieve asymptotic 

stability. The IDA-PBC controller (30) change the open-loop 

PH system into the closed-loop one. 

1

1

2

L L Ld

L Ld L L





   
         

q 0 M M

p M M J
 

(33) 

                                    L

L

Ld

T
LdIL Ldi IL

H

H

  
        

q

p

0 0

0 G K G
 

11

2

T

Ld L Ld L LdH V p M p  (34) 

1

LLc IL Ld IL Ld LH   py G G M p . (35) 

B. Conditions for Stability 

Conditions to guarantee stability with the Lyapunov 

function LdH  at least in the neighborhood of 

   , ,L L Lrefq p q 0  are as follows: 

  0Ld Lref M q  (36) 

 argminLref Ld LVq q  (37) 

where 1 3

T

Lref ref refq q   q . The condition (37) can be 

interpreted as 

 
L Ld LrefV q q 0  (38) 

 2 0
L Ld LrefV q q . (39) 

Under all the conditions above, we have 

0T

Ld Lc Ldi LcH   y K y . (40) 

Asymptotic stability is guaranteed when zero-state 

detectability is satisfied. The IDA-PBC controller has degrees 

of freedom in designing LdM  and LdV . Various properties 

can be achieved that are difficult to realize with a linear 

controller. 

C. Design of Energy Function 

In this study, the kinetic energy is not going to be shaped, 

that is, 0Ld L M M , to verify basic properties of the 

proposed controller. The desired potential energy is designed 

as 

 
21

1 12 2

1 1

1

2

p

Ld ref

l

K
V q q

q q
  


 

(41) 

                   
23

3 32 2

3 3

1

2

p

ref

l

K
q q

q q
  


. 

1lq  and 3lq  are parameters which have to be set to restrict 

motion of the MIP in 1 1lq q  and 3 3lq q . 1pK  and 3pK  
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Fig. 4.  Comparison of IDA-PBC controllers for systems with or without the slider mechanism 

0 1 2 3 4 5
-0.5

0

0.5

time [s]

q
1
 [

ra
d
]

 

 

q1

Reference

1q
[r

ad
]

1q

0 1 2 3 4 5

-10

-5

0

5
x 10

-3

time [s]

q
3

 [
m

]

 

 

q3

Reference
1q

1refq

 

0 1 2 3 4 5

0

0.1

0.2

time [s]

q
3

 [
m

]

 

 

q3

Reference

3
q

[m
]

0 1 2 3 4 5

-10

-5

0

5
x 10

-3

time [s]

q
3

 [
m

]

 

 

q3

Reference
3q

3refq

 
(a) Body angle (b) Displacement of center of gravity 

Fig. 5.  Tracking for constant reference states from the edge of the domain of attraction 

 

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012



 

are positive constants. As long as initial conditions are set 

satisfying 1 1lq q , 3 3lq q  and reference states are also 

selected from the ranges, the proposed desired potential 

energy (41) satisfies the condition (37). LdV  has the unique 

minimum at    , ,L L Lrefq p q 0 . Stability of the system is 

guaranteed with the Lyapunov function LdH . We can also 

check Lc y 0 , di u 0 
LIL LdH pG 0  L p 0 , and 

L LdH q 0 
L LdV q 0  L Lrefq q using (33). 

Zero-state detectability is satisfied and asymptotic stability is 

guaranteed. 

D. Properties of Proposed Controller 

The desired potential energy LdV  contributes the control 

input in the form of 

   1 1 1 3 3 3L

T

Ld pv ref pv refV K q q K q q     q  (42) 

 

 

2

2
2 2

il i iref

pvi pi

il i

q q q
K K

q q


 


   1,3i 

. (43) 

This is a kind of a proportional control using deviations 

i irefq q  multiplied with the state-dependent gains  pvi iK q . 

The gain property is designed based on our previous study[5]. 

If the body angle comes close to falling over beyond the 

reference angle, the gain increases and the controller actively 

returns the MIP from the dangerous states. A similar property 

is also achieved for the displacement of the slider. They are 

desirable in terms of safe operation of the MIP. 

V. SIMULATION 

In simulations, the proposed controller is compared with 

one from our previous study that deals with a MIP without the 

slider[5]. Effectiveness of the acceleration control using the 

intentional destabilization of the body angle and the 

displacement is verified. The control input (30) is applied to 

the system (1) in the following simulations. In all cases, initial 

values of the wheel angle and its angular velocity are zeros. 

The parameters of the proposed controller are set as 

1 0.55lq   rad, 3 0.2lq   m, 1 10.5pK  , 3 8pK  , 2L J 0 , 

and = diag(0.6, 35)LdiK . Although the IDA-PBC controller 

for the MIP without the slider has a structure different from 

that with the slider, we omit the detail in this study. Please 

refer to our previous study[5]. 

Fig. 4 compares basic performance of the two controllers. 
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(c) Actuator torque (d) Slider force 
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(e) Translational acceleration (f) Total energy of closed-loop PH system 

Fig. 6.  Simulation results of acceleration control 
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The initial conditions are all zeros. The reference body angle 

and displacement are 1 0.1refq   rad, 3 0refq   m. The 

controller for the MIP without the slider is applied to the 

system (1) with a constraint 3 0q   m. Both controllers are 

designed to show similar responses in the body angles, as 

shown in Fig. 4 (a). In Fig. 4 (b), the shifting body slightly 

moves and converges to zero in about 1 s. 

Theoretical restrictions of 1 1lq q  and 3 3lq q  are 

checked in Fig. 5. The initial conditions are set as 10 0.54q   

rad and 30 0.19q   m, which are on the edges of the 

restriction ranges. To make the situation difficult, we set the 

initial body angular velocity 10q   rad/s and the slider 

velocity 30 2q   m/s which are in the directions of coming 

closer to the edges. The reference states are 1 0.1refq   rad, 

3 0.1refq   m. In Fig. 5, although the responses are 

precipitous, the two states converge to the references without 

violating the restriction. 

Fig. 6 compares the two controllers with the reference 

translational acceleration 1ref ssx x   m/s
2
. The initial 

conditions are all zeros. From (17) to (19), there are many 

combinations of 1refq  and 3refq  to achieve the given 

reference acceleration. Three cases of 1refq  are verified in Fig. 

6. 3refq  is uniquely determined for each 1refq . Fig. 6 (e) 

shows the translational acceleration converge to the reference 

in all cases. Fig. 6 (f) shows that LdH  is monotonically 

non-increasing in all cases and plays the role of the Lyapunov 

function as is theoretically expected. In Fig. 6 (a), the case 

“without Slider” shows the largest maximum body angle, 

whereas it is suppressed in the other three cases by utilizing 

the slider. In Fig. 6 (b), the case “ 1 0refq  ” shows the largest 

maximum displacement, which is about 3q  0.9 m. However, 

there is a margin against the restriction of 3 3 0.2lq q   m. 

The reference acceleration is reasonably achieved by utilizing 

the combination of the body angle and the displacement. The 

cases “ 1 0refq  ” and “ 1 0.05refq  ” in Fig. 6 (a) show 

undershoot. This will be undesirable for the rider of the MIP. 

Although controlling the MIP with the reference angle as the 

vertical direction has been very common in previous studies, 

the case “ 1 0.1refq  ” does not show undershoot. The results 

indicate that utilizing instability effectively accelerates the 

MIP with the slider. The proposed controller can modify the 

motion of the body angle using the shifting mechanism 

appropriately. In Fig. 6 (c), the maximum input torques of the 

proposed controllers are more suppressed than  previous one. 

This will prevent slipping when the MIP starts to accelerate. 

Fig. 6 (d) shows that the larger the reference angle, the smaller 

the maximum slider force. The acceleration control with the 

combination of inclining and shifting the body has the merit of 

reducing the required maximum torque and force of the 

actuators as well as modifying the motion of the MIP. 

VI. CONCLUSION 

An energy shaping nonlinear acceleration controller for a 

mobile inverted pendulum (MIP) with a slider mechanism is 

proposed. The controller accelerates the mobility utilizing 

instability of the system. The body angle and the slider 

displacement are controlled to keep states where the system is 

statically unstable, which leads to translational acceleration 

due to the instability of the MIP. Various controller properties 

can be achieved through the energy shaping procedure. 

Especially an energy function which will lead to safe 

operation of the MIP is proposed. The function ensures that 

the body angle and the slider displacement are restricted in 

predefined regions and converges to a desired state. The 

controller also returns the system back to the desired states 

with state-dependent gains that become large if that the 

system comes close to fall over. Effectiveness of the proposed 

method is verified in simulations. The results have indicated 

that motion of the MIP can be modified by the combination of 

intentional inclination and shift of the body. Required 

maximum input torque and force to accelerate the MIP are 

shown to be suppressed with the utilization of instability. 
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