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Abstract— In this paper we present a novel heuristic 

approach that increases the accuracy of the K-means 

algorithm. K-means is a widely used iterative clustering 

algorithm but usually converges to a local best solution away 

from the optimal one. While some of the resulting clusters may 

include more than one natural cluster, some others may not 

correspond to any natural cluster. After several K-means 

iterations, clusters of each type are heuristically located in the 

proposed algorithm. The cluster of latter type is removed and a 

new cluster is introduced in the cluster of former type. 

Experimental results show that, our approach not only 

improves the results produced by the state of art K-means 

methods if it is employed as post process, but also outperforms 

them when initialized randomly. 

 
Index Terms— Clustering, initialization, K-means, 

perturbative-heuristics 

 

I. INTRODUCTION 

Clustering is to split data into subgroups according to 

some selected features of the samples. It aims to reveal 

similarity information about samples. A vast amount of 

heuristic and metaheuristic algorithms having various 

objective functions are developed to solve the clustering 

problem [12]. K-means is one of the oldest but still widely 

used algorithms [9]. It starts with some initial cluster centers 

(centroids). Samples are assigned to the clusters which have 

the nearest center points. Later cluster centers are updated to 

the center of gravity of the cluster members. Application of 

this process iteratively minimizes the objective function 

which is the total distance between samples and their cluster 

centers. The algorithm is terminated when the convergence 

is achieved or the change of the location of the center points 

decreases below a threshold value. 

K-means is an iterative improvement method; however 

the global optimum is not guaranteed [13]. The algorithm 

may be trapped in a local best solution. Running K-means 

algorithm for a number of times and selecting the best 

solution according to objective function value may improve 

performance of standard K-means [13, 14]. As the number 

of clusters increases, the chance of converging to a local 

optimum increases as well. So, while restarting K-means 

algorithm improves the result for small number of clusters,  

a constant number of repetitions does not benefit much for 
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problems which have large number of clusters, i.e., number 

of repetitions should be increased as K gets larger. 

There are two main kinds of approaches employed to 

improve the performance of the K-means algorithm [3]. One 

is to use perturbative heuristics. In this approach, 

improvements are made on an initial solution. For this kind 

of heuristics, using good starting center locations is essential 

since it may converge to a local optimum. The other 

approach is to use constructive heuristics. In this approach, 

each center location is constructed consecutively. These 

heuristics could also be used as initial center points for the 

perturbative heuristics. 

There has been a great deal of research on constructive 

heuristics [9]. In [2], (Refining K-means), clustering 

subsamples of data for a number of times is suggested. It 

creates a new data which consists of the center points 

obtained after all trials. Then, clustering this new data gives 

new initial center points. In [8], it is proposed to select 

centroids in turn. A new sample selected as centroid which 

has maximum distance to the closest one of the formerly 

selected centroids. The procedure continues until all K 

center points are found. In [1] (K-means++), a similar 

approach is suggested. The centers are selected iteratively. 

Each candidate point has the chance proportional to its 

distance to the nearest center.  

The second kind of procedure is not as widespread as the 

first one. Main drawback of the heuristic methods which use 

this approach is the speed. In [4], a neighborhood is defined 

as to change a sample with a cluster center. In each turn, a 

sample and cluster center pair is selected according to the 

change in the objective function value. A genetic algorithm 

is suggested in [6] to find the optimal solution. It uses K-

means algorithm as crossover and a distance based strategy 

as mutation. In [5], a tabu search procedure is used. Initial 

centroids are found by using K-means algorithm. Then tabu 

search is used to improve the solution. The cluster ids of the 

samples are changed using various neighborhood structures. 

Although these methods provide improvement over standard 

K-means, they require relatively long execution times. 

In our method, clusters' own fitness values are used to 

change the centroid locations iteratively. So, the algorithm 

can be considered as a cluster based perturbation method.  

When the standard K-means algorithm runs, some of the 

centroids are converged to the center of their natural clusters 

(real clusters which are independent from algorithms). 

However, some of them are not. These clusters are either 

does not correspond to a natural cluster (placed between 

natural clusters) or include samples from other clusters 

besides a natural cluster. We call the former as superfluous 

clusters and later as oversized clusters. Superfluous and 

oversized clusters are observed even when the clusters are 
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homogenous, spherically shaped, and separated by a certain 

distance. 

Our method is based on following two facts about 

superfluous and oversized clusters: An oversized cluster 

includes parts of other natural clusters which usually do not 

have any assigned centroids. Since we assume that the 

actual number of clusters (K) is known, if there is a 

superfluous cluster, there should be at least one oversized 

cluster as well. 

 In our algorithm, first, several iterations of K-means 

algorithm are performed to find initial centroid locations. 

Later, the center of a superfluous cluster is moved to a 

randomly selected sample in an oversized cluster and 

several K-means iterations are employed to improve the 

current centroids. The relocation of the centers and K-means 

iterations continues until no more further improvement is 

achieved. 

The algorithm is tested using some real world data from 

UCI respiratory. To examine the weaknesses and strong 

sides of the algorithm several experiments on synthetic 

datasets obtained by CARP [7] dataset generator are 

performed as well. CARP generator offers means to change 

the number of dimensions, overlap percentage between 

clusters, homogeneity, and distribution style and number of 

clusters. Our algorithm achieved global optimum for most of 

the datasets even when the number of clusters is large and 

obtained good results for harder datasets. 

The structure of the paper is as follows. Section 2 

introduces the metrics which are used to locate superfluous 

and oversized clusters and the proposed SO K-means 

algorithm. In section 3, experimental datasets are presented 

and our algorithm is compared with the state of art K-means 

methods experimentally. We conclude the paper in section 

4. 

  

II. METHODOLOGY 

A. Intuition 

As mentioned earlier, the proposed algorithm is different 

from other methods as cluster fitness values are employed  

besides the regular K-means objective function. By using 

these fitness values, oversized and superfluous clusters are 

identified. 

In the following, the supporting idea and the terminology 

used are explained with the example in Fig. 1. There are 10 

clusters with zero covariance, Gaussian distribution and 

equal mixing proportions in the example dataset. Even if it 

is a simple data, in experiments, K-means result in Fig. 1 (a) 

where cluster centers converges to some local optima apart 

from the global one is observed. It is easily seen that, while 

some of the natural clusters have multiple centroids {(2, 9), 

Fig. 1 (a). Cluster distribution after k-means algorithm with random 

initial centers converged. 

  

 
Fig. 1 (b).  Cluster distribution after first SO iteration. 

  

 
Fig. 1 (c).  Cluster distribution after second SO iteration. 

  

 
Fig. 1 (d).  Cluster distribution after last SO iteration. 
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(3, 7), (5, 6)}, others do not have any centroid. The members 

of such natural clusters are assigned to some clusters which 

have the nearest centroids {0, 1}. In this paper, the name 

“superfluous cluster” is used for the clusters which do not 

correspond to any natural cluster but located in a natural 

cluster with other clusters i.e., clusters 2, 9, 3, 7, 5 and 6. 

The clusters which include a natural cluster and parts of 

other clusters are called “oversized clusters” i.e., cluster 0 

and 1. So, moving the center of a superfluous cluster to a 

position in an oversized cluster may improve clustering 

result. Fig. 1 (b) shows the clusters after moving the center 

of a superfluous cluster (cluster 2) to a sample in an 

oversized cluster (cluster 1) and performing several K-

means iterations. Here, the clusters 2 and 9 perfectly 

correspond to natural clusters. Similarly in Fig. 1 (c), the 

center of cluster 7 and in Fig. 1 (d) the center of cluster 6 are 

relocated to more natural places. 

 

B. Metrics 

Detecting superfluous and oversized clusters is the core of 

our algorithm. However, identifying a cluster as a 

superfluous or oversized is a rather hard problem. So we 

propose heuristic metrics to identify the most probable 

superfluous and oversized clusters.  

 

Cluster Absence Metric (CAM) 
Assume cluster centers are converged after a number of 

K-means iterations. If a center is removed and all members 

of the corresponding cluster are assigned to other nearest 

clusters, WSS (Within group Sum of Square Distance) value 

increases. This increase is called Cluster Absence Metric. If 

nearest clusters are not far away from the members 

compared to the removed center, the increase in WSS will 

be small. If a cluster’s absence metric is small the cluster is 

dispensable, i.e., the cluster does not correspond to a natural 

cluster. The cluster which has smallest CAM is the most 

probable Superfluous Cluster. In the algorithm such a cluster 

is removed without a considerable increase in the WSS. 

It is quite clear that, the cluster absence metric is not a 

good indicator for an oversized cluster. Even though 

deleting an oversized cluster is a costly operation, removing 

a natural cluster which is far away from all other clusters 

can be costlier. So, other metrics for detection of oversized 

clusters are required.  

 

Cluster Presence Metric (CPM) 
CPM is the WSS value of the members of an individual 

cluster. If member counts of the clusters are similar, and the 

distributions of the clusters are not so different from each 

other, the oversized clusters will most likely have larger 

CPM value, compared to the natural or superfluous clusters.  

 

Normalized Cluster Absence Metric (NCAM) 
NCAM value of a cluster is calculated by dividing its 

CAM value by the number of cluster members. If the 

member counts of the clusters vary excessively, this metric 

offers a standard comparison independent of member 

counts.  

 

 

Normalized Cluster Presence Metric (NCPM) 
NCPM value of a cluster is calculated by dividing its 

CPM value by its member count. This metric also offers a 

standard comparison independent of the member counts of 

clusters.  

 

Two Nearest Center Metric (NCM) 
It is calculated by dividing CPM value by CAM value. If 

the members of the cluster are all on the center the value of 

the metric is 0, but if the nearest centers of other clusters are 

as close as the removed center the value approaches to 1.  

Experiments indicate that CAM and CPM are more 

accurate metrics than others for detecting the most probable 

superfluous and oversized clusters, respectively. 

 

C. The Algorithm 

Let   *         +     
  be a dataset with N 

observations,   *         + be a set of K clusters, and 

  *         +     
  be the set of centroids 

corresponding to these clusters. The objective is to minimize 

Within Cluster Sum of Square distance (WSS) value:  

     ∑∑      ‖     ‖
 

 

   

 

   

 

where      is an indicator function specifying whether    

belongs to k
th

 cluster. 

 

The K-means Clustering Algorithm 
1) Initialization: Start the algorithm with given K p-

dimensional centroids,    
 

2) Expectation: Assign each data point to the cluster 

which has closest center point. 

 

     {
              

  *      +

 ‖     ‖
 

       

      

3) Maximization: Calculate each cluster’s center point 

as the mean (center of gravity) of all the data 

points. 

   
∑  (     )   

∑  (     ) 

               

4) Termination: If WSS value does not converge then 

go to Step 2, else stop. 

 

The Proposed Algorithm (SO) 

1) Initialization: Run K-means algorithm with 

randomly assigned K p-dimensional means, or with 

an initialization algorithm to obtain updated  . 

2) Finding Superfluous Cluster: For all      extract 

r
th

 center point and assign members of cluster    to 

the clusters which have nearest centers to them. 

    
  {

              
   

 ‖     ‖
 

       

       

 

      ∑∑    
  ‖     ‖
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Calculate new WSS values for each of these 

solutions as     , and select the one which has 

minimum value as 

                    
    

     

3) Finding Oversized Cluster: Calculate the WSS 

values of each cluster separately, and select the one 

which has the greatest value. 

      ∑     ‖     ‖
 

 

   

 

                  
    

     

4) Moving the Centroid: Randomly select a member 

of the oversized cluster, and make it the center 

point of the superfluous cluster. 

                  (             ) 
5) Update: Run K-means algorithm to update the 

centroids  . 

6) Termination: If WSS value does not converge then 

go to Step 2, else stop.  

 

 

The most probable superfluous and oversized clusters are 

determined during the maximization phase. This process 

increases the complexity of the K-means algorithm by a 

constant factor. The proposed algorithm uses K-means to 

converge the centers after each center movement. When a 

movement does not decreases the WSS value, the algorithm 

stops. So the complexity of the algorithm is the complexity 

of the K-means multiplied by the number of center 

movements. Additionally, apart from the first K-means run, 

other runs which are used after each center movement 

terminates much faster than the standard K-means 

algorithm, because most of the cluster centers and their 

members do not changed during the process. 

 

III. EXPERIMENTS 

It is possible to use many real-world datasets to compare 

the performance of the K-means refinement algorithms. 

However it is not easy to analyze the performance of the 

algorithms on these datasets, since their inner structure is 

not known [7]. Some datasets are biased towards some 

algorithms. CARP dataset generator is proposed to 

overcome this deficiency and to be a new testing 

environment for the machine learning algorithms.  

CARP generator offers generalized overlap criterion for 

the hardness of the datasets. For experimental evaluation, 

datasets with various complexities are generated using this 

criterion. The generated datasets have 2 dimensions; 5, 10, 

20, 50, 100 clusters; 500, 1000, 2000, 5000, 10000 samples 

(each cluster has 100 sample on its own) and 0.001, 0.05, 

0.01 generalized overlap values. They are homogenous and 

spherically distributed. 

 Experiments on real-world datasets are performed as 

well. Cloud [10] and Spam [11] datasets are selected from 

the UC-Irvine Machine Learning Repository since they are 

also used in [1] and [9] for performance analysis. The Cloud 

dataset includes 1024 points in 10 dimensions. It is Philippe 

Collard’s cloud cover database. The Spam dataset on the 

other hand includes 4601 points in 58 dimensions. It 

represents features available to an e-mail spam detection 

system. For each dataset, experiments for 10, 25, and 50 

clusters are performed similar to [1] and [9]. 

 In the experiments, all algorithms are allowed to take the 

same amount of computer time on the average. Faster 

 
Fig. 2 (a).  Synthetic Datasets ARI results  

 
Fig. 2 (b).  Synthetic Datasets WSS results  

 
Fig. 3 (a).  Cloud Dataset WSS results  

 
Fig. 3 (b).  Spam Dataset WSS results  
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algorithms repeated several times and the best solutions 

which have smallest WSS are selected. 

 To have more accurate results, 10 datasets for each type 

of combination are generated and 10 repetitions are 

performed for each dataset. 

The performances of the algorithms are compared using 

adjusted rand index (ARI), and WSS values.  

 The mean and standard deviation of the ARI and WSS 

values of the algorithms are graphically shown for different 

number of clusters in Fig. 2 (a) and 2 (b). ARI values gets 

close to 1 as the correct clusters are found. For each dataset, 

the first bar is for the K-means algorithm initialized with 

real center points. The second bar shows the K-means 

algorithm with random initialization. As we see from the 

figure the performance of standard K-means algorithm 

decreases dramatically as the number of clusters increases. 

The 4
th

 bar is for the Refining k-means [2] algorithm. It has 

similar performance decrease as well. The 6
th

 bar is for K-

means++ [1]. Although, there is a decrease in the ARI value 

while number of clusters increases, it is not as severe as the 

first two algorithms. The 3
rd

, 5
th

 and 7
th

 bars shows the 

performance of the proposed algorithm (SO) with 

initialization of random centers, refining K-means and K-

 
TABLE II 

AVERAGE REPETITION OF ALGORITHMS FOR EACH DATASET 

Cluster 

Number 

Data Size Generalized 

Overlap 

K-means 

Random 

SO- 

Random 

Ref SO- 

Ref 

K-means++ SO- 

K-means++ 

5 500 0.01 6.01 1.40 1.98 1.00 6.62 1.49 

10 1000 0.01 4.93 1.13 2.15 1.00 5.46 1.36 

20 2000 0.01 5.11 1.04 2.53 1.02 5.72 1.41 

50 5000 0.01 5.83 1.02 3.66 1.01 6.28 1.21 

100 10000 0.01 5.34 1.01 3.89 1.04 5.78 1.22 

5 500 0.005 6.30 1.40 1.88 1.00 6.93 1.56 

10 1000 0.005 5.38 1.14 2.15 1.00 6.03 1.45 

20 2000 0.005 5.49 1.06 2.53 1.01 6.17 1.54 

50 5000 0.005 7.17 1.01 3.78 1.02 8.23 1.68 

100 10000 0.005 8.29 1.03 5.15 1.05 9.09 1.34 

5 500 0.001 6.69 1.41 2.01 1.00 7.49 1.62 

10 1000 0.001 5.74 1.17 2.26 1.00 6.96 1.66 

20 2000 0.001 5.82 1.09 2.58 1.01 7.19 1.83 

50 5000 0.001 7.41 1.00 3.69 1.03 8.69 2.23 

100 10000 0.001 10.59 1.01 5.43 1.04 12.04 2.46 

The average numbers of repetitions of each algorithm for each dataset. 

 

 
TABLE I 

ARI AND WSS VALUES OF ALGORITHMS WITH MEAN AND STD VALUES FOR EACH DATASET 

Cluster 

Number 

Data 

Size 

Generalized 

Overlap 

K-means 

Real 

K-means 

Random 

SO-

Random 

Ref 

 

SO- 

Ref 

K-means++ 

 

SO- 

K-means++ 

5 500 0.01 0.96:0.00 

1.07:0.00 

0.91:0.09 

1.21:0.29 

0.96:0.00 

1.07:0.00 

0.94:0.05 

1.15:0.24 

0.96:0.00 

1.07:0.00 

0.96:0.00 

1.07:0.00 

0.96:0.00 

1.07:0.00 

10 1000 0.01 0.85:0.00 

3.56:0.00 

0.80:0.04 

3.14:0.82 

0.84:0.00 

2.11:0.00 

0.83:0.03 

2.53:0.64 

0.83:0.03 

2.24:0.21 

0.85:0.00 

2.11:0.00 

0.83:0.04 

2.36:0.73 

20 2000 0.01 0.91:0.00 

1.47:0.00 

0.80:0.02 

2.80:0.56 

0.89:0.06 

1.72:0.74 

0.84:0.02 

2.02:0.30 

0.90:0.03 

1.62:0.45 

0.87:0.03 

1.71:0.20 

0.90:0.03 

1.55:0.21 

50 5000 0.01 0.71:0.00 

5.35:0.00 

0.67:0.01 

6.26:0.19 

0.71:0.02 

5.37:0.21 

0.67:0.01 

5.94:0.24 

0.72:0.00 

5.30:0.00 

0.69:0.01 

5.59:0.07 

0.72:0.00 

5.30:0.00 

100 10000 0.01 0.53:0.00 

9.27:0.00 

0.52:0.00 

9.23:0.24 

0.52:0.00 

8.60:0.06 

0.52:0.01 

9.04:0.08 

0.52:0.00 

8.58:0.02 

0.52:0.00 

8.89:0.06 

0.52:0.01 

8.63:0.09 

5 500 0.005 0.88:0.00 

9.84:0.00 

0.86:0.04 

2.91:3.55 

0.76:0.04 

1.55:2.77 

0.74:0.01 

1.29:2.00 

0.74:0.00 

0.63:0.00 

0.74:0.00 

0.63:0.00 

0.74:0.00 

0.63:0.00 

10 1000 0.005 0.98:0.00 

0.92:0.00 

0.88:0.04 

2.45:1.29 

0.98:0.00 

0.92:0.00 

0.92:0.05 

1.05:0.11 

0.97:0.03 

0.94:0.06 

0.97:0.03 

0.94:0.06 

0.97:0.03 

0.94:0.06 

20 2000 0.005 0.97:0.00 

0.06:0.00 

0.81:0.03 

2.38:1.05 

0.96:0.05 

0.27:0.60 

0.89:0.04 

0.76:0.41 

0.97:0.00 

0.06:0.00 

0.96:0.02 

0.07:0.00 

0.97:0.01 

0.06:0.00 

50 5000 0.005 0.97:0.00 

0.32:0.00 

0.79:0.02 

2.32:0.35 

0.96:0.00 

0.31:0.00 

0.83:0.02 

1.79:0.39 

0.96:0.01 

0.31:0.00 

0.93:0.01 

0.34:0.01 

0.96:0.02 

0.32:0.01 

100 10000 0.005 0.71:0.00 

6.33:0.00 

0.65:0.01 

7.07:0.22 

0.70:0.00 

6.04:0.02 

0.66:0.01 

6.83:0.12 

0.70:0.00 

6.03:0.02 

0.67:0.01 

6.47:0.10 

0.69:0.01 

6.05:0.03 

5 500 0.001 0.86:0.00 

5.03:0.00 

0.84:0.05 

2.10:0.44 

0.75:0.07 

1.92:0.10 

0.85:0.00 

2.08:0.16 

0.71:0.00 

1.89:0.00 

0.85:0.01 

1.89:0.00 

0.75:0.07 

1.95:0.13 

10 1000 0.001 0.98:0.00 

0.83:0.00 

0.89:0.07 

0.89:0.36 

0.90:0.00 

0.28:0.00 

0.86:0.05 

0.55:0.32 

0.88:0.04 

0.36:0.12 

0.92:0.04 

0.28:0.00 

0.90:0.00 

0.28:0.00 

20 2000 0.001 0.99:0.00 

0.73:0.00 

0.81:0.05 

1.85:1.00 

0.94:0.00 

0.22:0.00 

0.85:0.04 

0.82:0.32 

0.94:0.00 

0.22:0.00 

0.94:0.02 

0.23:0.02 

0.94:0.00 

0.22:0.00 

50 5000 0.001 0.97:0.00 

0.76:0.00 

0.78:0.02 

3.63:0.92 

0.96:0.00 

0.59:0.00 

0.81:0.03 

2.36:0.52 

0.96:0.00 

0.59:0.00 

0.92:0.02 

0.75:0.08 

0.96:0.02 

0.60:0.05 

100 10000 0.001 0.99:0.00 

0.41:0.00 

0.80:0.02 

2.51:0.43 

0.99:0.00 

0.41:0.00 

0.81:0.01 

1.92:0.21 

0.99:0.00 

0.41:0.00 

0.94:0.01 

0.51:0.03 

0.99:0.00 

0.41:0.00 

ARI mean : ARI standard deviation 

WSS mean : WSS standard deviation values for each algorithm for each dataset given the same amount of time 

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012



 

means++, respectively. Given the same amount of time, it is 

clear that the proposed clustering algorithm outperforms 

other algorithms and the best performance is achieved when 

it is used with K-means++ algorithm. Similar observations 

are possible in Fig. 2 (b). Note that smaller WSS value 

means that the algorithm produces better result.  

The detailed list of results is presented in Table I. For 

different number of clusters and different generalized 

overlap values, given the same amount of time, the table 

shows the mean and standard deviation values of the ARI 

and WSS results. The best performers are indicated using 

the bold font. In Table II, the average numbers of repetitions 

of each algorithm in these experiments are presented. It can 

be seen from the table that the run time of the SO algorithm 

compare to the K-means does not change much as the 

cluster number increases and it is just 4-7 times slower. So, 

in order to achieve better results, the proposed algorithm is 

advised instead of running the K-means algorithm for a 

constant number of times. 

For real world datasets (see Fig. 3 (a) and 3 (b)), the 

performance results are similar. Running K-means++ 

algorithm several times produces quite good results, 

however given the same amount of time the proposed 

algorithm outperforms it when it uses the results of a K-

means++ run as initial solution.  

Additionally, in Fig. 4 (a) and 4 (b), we present the results 

of synthetic datasets which are obtained by running the 

algorithms until they converge without any time limitation. 

The figures show the incremental effect of the proposed 

(“SO”) method on the clusters obtained by 3 K-means 

initialization algorithms.  

 

IV. CONCLUSION 

 In this paper, a novel method is proposed to increase the 

effectiveness of K-means clustering algorithm. The 

proposed algorithm given the same amount of time produces 

promising results compared to state of art refining 

algorithms. It can also be used after K-means algorithms to 

improve their results.  

We define the notion superfluous and oversized clusters, 

and propose new metrics to locate such clusters. In the 

future we would like to investigate other metrics to improve 

the effectiveness of the proposed algorithm.  

The method can also be improved by using metaheuristic 

approaches and/or by moving more cluster centers each 

time. Even though metaheuristics have time disadvantage, 

they are effective methods to escape from local optimum. 

 

REFERENCES 

[1] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of 
careful seeding,” ACM-SIAM Symposium on Discrete Algorithms 

(SODA 2007) Astor Crowne Plaza, New Orleans, Louisiana, pp. 1–

11, 2007. 
[2] P. S. Bradley and U. M. Fayyad, “Refining initial points for K-Means 

clustering,” in Proc. 15th International Conf. on Machine 

Learning.Morgan Kaufmann, San Francisco, CA, 1998, pp. 91–99. 
[3] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa,E. Ozcan, and J. R. 

Woodward. A classifcation ofhyper-heuristic approaches. In M. 

Gendreau and J. Potvin, editors, Handbook of Meta-Heuristics 2nd 
Edition, pages 449{468. Springer, 2010  

[4] P. Hansen and N. Mladenoviæ, “J-means: A new local search 
heuristic for minimum sum of squares clustering,” Pattern Recognit., 

vol. 34, pp. 405–413, 2001 

[5] Kharrousheh, A., S. Abdullah and M.Z.A. Nazri, A modified tabu 
search approach for the clustering problem. J. Applied Sci., 11: 3447-

3453 2011. 

[6] K. Krishna and M. Murty, “Genetic K-means algorithm,” IEEE Trans. 
Syst., Man, Cybern. B, Cybern., vol. 29, no. 3, pp. 433–439, Jun. 

1999 

[7] Melnykov and Maitra, V. Melnykov, R. Maitra CARP: Software for 
fishing out good clustering algorithms Journal of Machine Learning 

Research, 12 (2011), pp. 69–73 2011 

[8] B. Mirkin, Clustering for data mining: A data recovery 
approach.London: Chapman and Hall, 2005 

[9] A. D. Peterson, A. P. Ghosh, and R. Maitra. A systematic evaluation 

of different methods for initializing the k-means clustering algorithm. 
Technical Report 07, Iowa State University, Department of Statistics, 

Ames, A, 2010. 

[10] Philippe Collard’s cloud cover database. ftp://ftp. 
ics.uci.edu/pub/machine-learning-databases/ 

undocumented/taylor/cloud.data. 

[11] Spam e-mail database. 
http://www.ics.uci.edu/mlearn/databases/spambase/. 

[12] Rui Xu; Wunsch, D., II; , "Survey of clustering algorithms," Neural 

Networks, IEEE Transactions on , vol.16, no.3, pp.645-678, May 
2005 doi: 10.1109/TNN.2005.845141 

[13] U. von Luxburg. Clustering stability: An overview. Foundations and 

Trends in Machine Learning, 2(3):235{274, 2010. 
[14] U. von Luxburg, R. C. Williamson, and I. Guyon. Clustering: Science 

or art? In ICML 2011 Unsupervised and Transfer Learning 

Workshop. JMLR W&CP, this volume, 2012 

 

 

 

 
Fig. 4 (a).  ARI results for one run of each algorithm  

 
Fig. 4 (b).  WSS results for one run of each algorithm  
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