
 

  
Abstract—This paper investigates on the problem of 

parameter estimation in statistical model when observations are 
interval assumed to be related to underlying crisp realizations 
of a random sample. The proposed approach relies on the 
extension of likelihood function in interval setting. A maximum 
likelihood estimate (MLE) of the parameter of interest can then 
be defined as a crisp value maximizing the generalized 
likelihood function. Using the Expectation- Maximization (EM) 
to solve such maximizing problem therefore derives the 
so-called interval-valued EM algorithm (IEM), which makes it 
possible to solve a wide range of statistical problems involving 
interval-valued data. As an illustration, the IEM is used to 
estimate the parameters mean and variance of a univariate 
normal distribution from interval-valued samples. 
 

Index Terms—EM algorithm, likelihood function, parameter 
estimation, interval-valued data, univariate normal distribution 
 

I. INTRODUCTION 
n real-life world, there are many kinds of phenomena that 
are better described by using interval bounds than by suing 

precise single-valued variables. In fact, intervals take into 
account the location as well as the variation of the 
phenomena. Therefore, there emerges a surge of interest in 
extending the mathematics and theories on precise 
single-valued variables to imprecise interval-valued variables, 
for instance, among these, the most popular one is the 
statistical interval analysis, including interval regression 
analysis [1]-[8], multidimensional scaling analysis[9], 
clustering [10]-[11], and so on. However, there are few 
literatures on parameter estimation from interval-valued data 
when a parametric statistic model is postulated. Especially, 
there is not an efficient way used to solve a wide range of 
statistical problems involving interval-valued data. 

Recently, a popular approach, called fuzzy EM algorithm 
(FEM) [12] and/or evidential EM algorithm (E2M) [13], is 
proposed to deal with parameter estimation from a postulated 
parametric statistic model when only fuzzy data and/or 
uncertain data can be observed. This approach has been 
successfully applied to a wide range of problems involving 
fuzzy and/or uncertain data [14]-[15]. The derivations of 

 
Manuscript received July 16, 2012, revised August 03, 2012. This work 

was supported in part by the National Natural Science Foundation of China 
(No. 51106025).  

Zhi-gang Su and Pei-hong Wang are both with the Key Laboratory of 
Energy Thermal Conversion and Control of Ministry of Education, School of 
Energy and Environment, Southeast University, Nanjing, 210096, China. 
(e-mail: Zhigangsu@seu.edu.cn, phwang@seu.edu.cn ). 

Yi-fan Wang is with the Information Networking Institute. Carnegie 
Mellon University, Pittsburgh, PA, 15217, USA (e-mail: ivanrex@gmail. 
com  ). 

FEM and E2M implicate that it may be possible to extend the 
EM algorithm to interval-valued data. With such implication, 
in this paper, we propose to introduce the likelihood function 
and EM algorithm to interval-valued data, and then to solve a 
wide range of statistical problems involving interval-valued 
data. The proposed approach relies on the extension of 
likelihood function in interval setting. With the generalized 
likelihood function, a maximum likelihood estimate (MLE) 
of the parameter of interest can then be defined as a crisp 
value maximizing the generalized likelihood functions. 
Using the Expectation-Maximization (EM) to solve such 
maximizing problem therefore derives the interval-valued 
EM algorithm. As will be shown, the interval-valued EM 
algorithm can be used to solve the problem of parameters 
estimation in statistical model when observations are interval, 
through a classical problem. 

The rest of this paper is organized as follows. Section 2 
and 3 respectively generalizes the likelihood function and 
EM algorithm to interval-valued data. Section 4 illustrates a 
classical application of the generalizations in Sections 2 and 
3. The last section 5 concludes the paper. 

II. LIKELIHOOD FUNCTION IN INTERVAL SETTING 
In this section, the generalized likelihood function for 

interval-valued data is presented. The problem addressed in 
this paper may be described as follows. 

Let X, the complete-data vector, be a continuous random 
vector, taking value in sample space ΩX and describing the 
result of a random experiment. The probability density 
function (p.d.f.) of X is denoted by g(x, ψ), where ψ = (ψ1, 
ψ2, …, ψd)' is a column vector of unknown parameters with 
parameter space Ωψ, where symbol “ ' ” denotes vector or 
matrix transposition. Although X will be generally assumed 
to be a continuous random vector, g(x, ψ) can still be viewed 
a probability mass function without confusion in the case 
where X is discrete.  

If x, a realization of X, is as known exactly, the MLE ofψ 
as any value maximizing the complete-data likelihood 
function can be computed 
 

( ) ( ); ;x xL g=ψ ψ                  (1) 
 

However, the observations x can be usually imprecise. 
When x is not precisely observed but it is known for sure that 
x ∈ A for some (crisp) set A ⊆ΩX, we have the following 
likelihood form [16]: 
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L A g
∈
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In a deductive way, when x is only imprecise and 

represented as interval-valued data Ix, the likelihood function 
(2) can be directly generalized by replacing sigma summation 
with integral as follow: 
 

( ) ( ); ;
x

x x x
I

L I g d= ∫ψ ψ                (3) 

 
To better understand (3), we may firstly understand the 

interval observation in the following way. The interval 
observation Ix can be understood as encoding the observer’s 
imperfect knowledge about the realization x of a random 
vector X. In this setting, the interval containing x, Ix, can be 
interpreted as an interval constraint on the unknown quality x. 
Therefore, the interval Ix can be considered to be generated 
by a two step process: 
 
1) A realization x is drawn from X; 
2) The observer encodes his/her imperfect knowledge of x 

in the form of a boxcar function, a special form of 
possibility distribution, defined in Fig. 1. 

 

 
Fig. 1 Boxcar function I(x) for interval [a, b] containing x 
 

It must be stressed that, in the above model, only the first 
step is considered to be a random experiment. The second 
step implies gathering information about x and modeling this 
information as a constraint on x in the form of a special 
possibility distribution, and therefore it is not considered as a 
random experiment.  

With above viewpoints, the likelihood function in interval 
setting can be rewritten as: 
 

( ) ( ) ( ) ( ); ;x x xx x x xL I I g d I⎡ ⎤= = ⎣ ⎦∫ Eψψ ψ          (4) 

 
Assume that the random vector X can be written as X= (X1, 

X2, …, Xn)', where each Xi is a p-dimensional random vector 
taking values in ΩX, and that its realization can be written as x 
= (x1, x2, …, xn)', where each realization xi is imprecisely 
observed with a interval Ii, obtained by marginalizing the 
joint interval Ix on Xi. The following two different 
assumptions can then be made: 
 
1) Under the stochastic independence of random variables 

X1, …, Xn, the probability density function g(x, ψ) can 

be decomposed as: 

( ) ( )
1

; ,x
n

i
i

g g x
=

=∏ Zψ ψ                (5) 

2) Under the decomposable assumption of joint interval Ix 
containing x = (x1, x2, …, xn)', we have: 

( ) ( )
1

x x
n

i
i

I I x
=

=∏                  (6) 

 
If both assumptions hold, the likelihood criterion (21) can 

be written as a product of n items: 
 

( ) ( )
1

; x

n

i i
i

L I I X
=

⎡ ⎤= ⎣ ⎦∏Eψψ               (7) 

 
As can be seen from (4) or (7), the likelihood function in 

interval setting can be viewed as probability of a special 
fuzzy event Ix. In such viewpoint, the likelihood function (4) 
or (7) is a special case of fuzzy setting. 

III. INTERVAL-VALUED EM ALGORITHM 
With the same notation in Section 2, the EM algorithm [16] 

approaches the problem of maximizing the observed-data log 
likelihood logL(ψ, A) by proceeding iteratively with the 
complete-data log likelihood logL(ψ, x) = logg(x; ψ). Each 
iteration of the algorithm involves two steps called the 
expectation step (E-step) and the maximization step (M-step). 
The E-step requires the calculation of 
 

( )
( ) ( )( ), log ;xq

q
EMQ L A⎛ ⎞ ⎡ ⎤=⎜ ⎟ ⎣ ⎦⎝ ⎠

E
ψ

ψ ψ ψ           (8) 

 
where ψ(q) denotes the current fit of ψ at the qth iteration and 
Eψ

(q)(.|A) denotes expectation with respect to the conditional 
distribution of X given A, using the parameter vector ψ(q). 

The M-steps requires the maximization of Q(ψ, ψ(q)) with 
respect to ψ. EM algorithm alternatively repeats the E- and 
M-steps until the increase of observed data likelihood 
becomes smaller than some threshold. 

The expression (8) can be straightforward extended to 
interval setting by conditioning on a different probability 
density. More precisely, the conditional probability density 
in expectation (8) of logL(ψ, x) is now replaced by the 
following probability density function g(•|Ix;ψ(q)), defined as: 
 

( )
( ) ( )

( ) ( )

( ) ( )
( )

; ;
;

; ;

x x
x

x x

x x x x
x

x x x

q q
q

q q

g I g I
g I

I g d L I

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠= =⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫

ψ ψ
ψ

ψ ψ
    (9) 

 
The conditional density (9) can be intuitively viewed as the 

conditional probability of X given special fuzzy event Ix. At 
the qth iteration, we therefore have the following computation 
when only interval Ix can be observed: 
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ψ ψ

ψ

                      (10) 

 
We call the EM algorithm using the computation (10) as 

the E-step interval EM algorithm. Finally, the interval EM 
algorithm also inherits the monotonicity property of the EM 
algorithm, as shown by the following theorem. 
 
Theorem 1 Any sequence ( )( ; )x

qL Iψ for q = 0, 1, 2, … of 
likelihood values obtained using the interval EM algorithm is 
nondecreasing, i.e., it verifies 

( ) ( )1 ; ;x x
q qL I L I+⎛ ⎞ ⎛ ⎞≥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
ψ ψ  

for all q. 
 

Proof  
According to (9), we have 
 

( ) ( ) ( )
( )

( ) ( )
( )

;
;

; ;
x x

x
x x

x x ,x x
x

g I L I
g I

L I L I
= =

ψ ψ
ψ

ψ ψ
            (11) 

 
Therefore we can define the following expression for x ∈ Ix: 
 

( ) ( )
( )
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( )
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;

;
x

x
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x

x
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ψ
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              (12) 

 
Taking the log of the leftmost expression of (12), we have 

 
( ) ( ) ( )log ; log log ;x x,x xL I L p I= −ψ ψ ψ              (13) 

 
Taking the expectation of both sides with respect 

to ( );xxg I ψ , we get 

 
( )

( ) ( ) ( ) ( ) ( ) ( )
log ;

log ; log ; ;

x

x x x,x x x xq q

L I

L g I p I g I⎡ ⎤⎡ ⎤= − ⎢ ⎥⎣ ⎦ ⎣ ⎦
E E

ψ ψ

ψ

ψ ψ ψ ψ
(14) 

 
By considering the fact that ( );xxg I ψ only depends on xI , 

we rewrite expression (14) as follows: 
 

( ) ( ) ( ) ( ) ( )log ; log log ;x x x x,x xq qL I L I p I I⎡ ⎤⎡ ⎤= − ⎢ ⎥⎣ ⎦ ⎣ ⎦
E E

ψ ψ
ψ ψ ψ   (15) 

 

( ) ( ) ( )log ; x , ,q qL I Q H⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ψ ψ ψ ψ ψ              (16) 

 

with ( )
( ) ( )log ;x x, xq

qH p I I⎛ ⎞ ⎡ ⎤=⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
E

ψ
ψ ψ ψ . 

 
We thus have: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1

log ; log ;x x ,

, , ,

q q q q

q q q q q q
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+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ
   (17) 

 
The first difference on the right-hand side of (17) is 

nonnegative as ψ(q+1) has been chosen to maximize Q(ψ,ψ(q)) 
with respect to parameters ψ. It thus remains to check that the 
second difference on the right-hand side of (17) is 
non-positive. In other words, we need to verify the following 
inequality:  
 

( ) ( ) ( ) ( )1 0, ,q q q qH H+⎛ ⎞ ⎛ ⎞− ≤⎜ ⎟ ⎜ ⎟
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ψ ψ ψ ψ           (18) 

 
Now for any ψ, we have 
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According to Jensen’s inequality, we get 
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because of the following equality: 
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The proof is thus completed. ■ 

IV. APPLICATION: ESTIMATION FOR UNIVARIATE NORMAO 
DISTRIBUTION FROM INTERVA-VALUED DATA 

Assuming that the complete data x is a realization of an 
independent identical distribution random sample from a 
normal distribution with mean m and standard deviation σ. 
The observed data are supposed to be interval Ix. The 
complete-data p.d.f. can therefore be defined as 
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where ( ) ( )2 21; = exp 2
2i ig x x m σ

σ π
⎛ ⎞− −⎜ ⎟
⎝ ⎠

ψ . 

 
With (21), the complete-data log likelihood is thus: 
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Taking the expectation of logL(ψ, x) conditionally on the 

observed interval Ix and using the fitψ (q) of ψ to perform the 
E-step, it can get 
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                       (22) 
 
where ( )

( ) 2( ( ))q
q

i i ii X I xα = Eψ and ( )
( ) ( ( ))q
q

i i ii X I xβ = Eψ  can be 

computed using  (25)~(28) in Appendix A.  
The M-step requires maximizing Q(ψ, ψ(q)) with respect to 

ψ. This can be achieved by differentiating Q(ψ, ψ(q)) with 
respect to b and σ, which results in: 
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Equating these derivatives to zero and solving for b and σ, 

we get the following unique solution: 
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Example 1 
 

In this example, we aim to estimate the parameters (i.e., the 
mean and standard deviation) of univariate normal 
distribution when only interval observations can be obtained. 
The interval observations are generated as follows. Suppose 

n realizations xi (i = 1, 2, …, n) are drawn from the normal 
univariate distribution with mean m  and variance σ, and 
therefore the number of n interval observations Ix = {I1(x) 
I2(x), …, In(x)} are constructed as: Ii(x) = 1 when x ∈ [xi - ri, xi 
+ ri], otherwise Ii(x) = 0, where the half bandwidth ri is 
randomly generated from the interval [0, r]. In addition, we 
aim to  
 
1) see the way how the half bandwidth r influence on the 

estimation, given the number n, mean m and variance σ; 
2) see the whether the observation number n affect the 

estimation or not; given the half bandwidth r, mean m, 
and variance σ. 

 
For convenience, we consider the following four cases for 

r: r = {0.1, 0.5, 1, 1.5} and three cases for n: n = {10, 20, 40}, 
in the condition mean m = 10 and variance σ = 1 (Note that, 
one can consider other mean and variance as the parameters 
to be estimated.). In each experiment, the sample mean and 
variance computed over the centers of interval observations 
are taken as the initial estimate of m and σ.  
 
• Case 1) study 
 

In this case study, we suppose n = 40. (AS will be shown, 
the bigger n is, the smaller estimation error is). For each case 
r ∈ {0.1, 0.5, 1, 1.5}, the experiment is implemented 100 
times and one of which is randomly selected to be illustrated. 
Therefore, total four of the four groups of 100 trials can be 
obtained, shown in Fig. 2. Correspondingly, Fig. 3 presents 
the box plot of estimations of the mean and deviation over the 
four groups of 100 trials.  
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Fig. 2 Estimated distributions of univiate normal with mean m = 10 and 
deviation σ= 1 in different cases: (a) r = 0.1, (b) r = 0.5, (c) r = 1, (d) r = 1.5. 
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Fig. 3 The estimated mean m and variance σ in the cases r = 0.1, 0.5, 1 and 1.5 
when n =40 
 

As can be seen from Figs. 2 and 3, the estimated mean and 
deviation approach to the true ones when different length of 
interval observations can be obtained, and the estimated 
parameters  becomes more accurate with decreasing of the 
width of the interval observations. 
 
• Case 2) study 
 

In this case study, we suppose r = 0.1. (AS can be seen 
from case 1) study, when r takes small value, the estimation 
result is more accurate.). For each case n ∈ {10, 20, 40}, the 
experiment is implemented 100 times. The estimation results 

for mean and variance are presented in Fig. 4. From Fig. 4, 
we can see that, the larger the observation number n is, the 
estimation accurate is much higher. 
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Fig. 4 The estimated mean m and variance σ in the cases n = 10, 20 and 40 
when r = 0.1 
 

From both the cases 1) and 2) studies, we can see that our 
proposed method can be used to estimate parameters 
involving interval-valued data, and we obtain the similar 
results as those done in the classical maximum likelihood 
estimation by using EM algorithm: the larger the observation 
number is, the the smaller the estimation error is, and the 
more precise the observations are, the smaller the estimation 
error is (i.e., the smaller the half bandwidth r is, the smaller 
the estimation accurate is). 

V. CONCLUSIONS 
This paper proposes an approach to solve the problem of 

parameters estimation in statistical model involving 
interval-valued data. In this approach, the interval-valued 
data is understood as the observer encoding his/her imperfect 
knowledge in the form of boxcar function on a realization of 
a random vector. With such understanding, the likelihood 
function is extended to interval setting, and then a maximum 
likelihood estimate of the parameter of interest is defined as a 
crisp value maximizing the generalized likelihood function. 
Such maximizing problem is achieved by using the 
interval-valued EM algorithm, which is an extension of the 
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classical EM algorithm.  
As an illustration, the proposed approach is used to 

estimate the mean and variance of univariate normal 
distribution. From the illustration result, we have reason to 
believe that it is possible to apply interval-valued EM 
algorithm to solve a wide range of statistical problems 
involving interval-valued data. 

In further, it is interesting to apply the interval-valued EM 
algorithm to solve different problems involving interval- 
valued data, for instance, to estimate the regression 
coefficients of linear and nonlinear regression model 
involving interval-valued data, so as to establish regression 
model with crisp inputs and interval output, which is useful in 
engineering application where only interval values can be 
obtained for predicting a process parameter. 

APPENDIX 
Suppose the interval observation Ii(x) = [ai, bi] and the 

p.d.f. g(x) with parameters ψ  = (m, σ)', we have: 
 

( )( )
( ) ( )

( ) ( )

( ) ( )

( )( ),

i i
i i

ii

xg x I x dx xg x I x dx
X I x

L I xg x I x dx
= =∫ ∫

∫
Eψ

ψ
                    (25) 

 
where the denominator is given by (4). The numerator is 
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∫ ∫
       (26) 

 
where Φ(.) denotes the c.d.f. of the standard normal 
distribution, and x* denotes ( ) /x m σ− for all x. 

We finally compute 
 

( )
( ) ( )

( ) ( )

( ) ( )

( )( )

2 2
2

,

i i
i i

ii

x g x I x dx x g x I x dx
X I x

L I xg x I x dx

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

∫ ∫
∫

Eψ
ψ

                 (27) 

 
with 
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