
 

 

 

 

Abstract—We propose a wavelet neural network model 

(neuro-wavelet) for the short-term forecast of stock returns 

from high-frequency financial data.  The proposed hybrid 

model combines the inherent capability of wavelets and 

artificial neural networks to capture non-stationary and non-

linear attributes embedded in financial time series. A 

comparison study was performed on the modeling and 

predictive power among two traditional econometric models 

and four different dynamic recurrent neural network 

architectures. Several statistical measures and tests were 

performed on the forecasting estimates and standard errors to 

evaluate the predictive performance of all models.  A Jordan net 

which used as input to the neural network the coefficients 

resulting from a non-decimated Haar wavelet-based 

decomposition of the high and low stock prices showed 

consistently to have a superior modeling and predictive 

performance over the other models.  Reasonable forecasting 

accuracy for one, three, and five step-ahead horizons was 

achieved by the Jordan neuro-wavelet model. 

 
Keywords—dynamic neural networks, neuro-wavelets, 

wavelet decomposition, time series forecasting. 

 

I. INTRODUCTION 

inancial time series, in general, are characterized by a 

nonstationary and nonlinear behavior. These undesired 

characteristics are mainly fashioned by the participation of a 

wide range of agents operating simultaneously in financial 

markets at different time-horizons of investment or scales 

[5]. The aggregate result is a combination of long and short 

memory processes embedded in a single complex signal that 

is not easy to analyze [13]. Additionally, financial time 

series, in particular those generated by high-frequency data, 

rarely depict a regular probability distribution, and involve 

numerous, unobvious, and indiscernible variables. The 

challenge, under this complicated scenario, is to develop 

suitable methods for the process of information extraction 

that needs to be performed in order to build adequate models 

for simulation and forecasting purposes.  

This article presents a methodology that is sui generis in 

that it makes use of the synergy happening between tools 

borrowed from disciplines others than finance and 

economics to develop a resourceful approach to the analysis 

of high-frequency financial data. The methodology is an 

amalgamation of a wavelet transformation and a dynamic 

neural network that leads to the proposed wavelet neural 

network (WNN) or neuro-wavelet net model.  

Discrete wavelet transforms (DWT) offer the capability of 
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capturing key features of a process with a limited number of 

coefficients by using a set of orthogonal basis for the 

transformation of the signal. Particularly, a DWT is able to 

capture features that are localized in time such as the ones 

found in nonstationary signals. Some articles describing 

applications of wavelets to finance are [1], [3], [12], and 

[17]. Neural networks (NN), on the other hand, are data-

driven self-adaptive methods that have the capability to 

extract essential parameters from complex high-dimensional 

data. This capability facilitates the task of fitting arbitrarily 

intricate nonlinear statistical models to data with significant 

precision. Examples of financial applications of NN can be 

found in [2], [14], and [15]. In a WNN, a complex signal is 

first subjected to a wavelet-based decomposition process, so 

that unclear temporal structures can be exposed for further 

and easier evaluation. The enhanced decomposed signal is 

then used as an input element to a NN to discern and capture 

valuable information during the knowledge discovery 

process of the training phase. For articles covering the 

application of WNN, we cite [7], [9], and [16].  

Section I of this article presents a brief introduction. 

Section II covers all aspects of the experiment including a 

description of the procedure for the generation of the results. 

Section III presents the corresponding analysis of results, 

conclusions and recommendations for future research. 

II. EXPERIMENT  

The experiment aimed to demonstrate that short-term 

predictions for future stock returns can be estimated with 

reasonable accuracy based on a dynamic recurrent neural 

network that uses as input current and lagged detail and 

smooth coefficients resulting from a non-decimated Haar 

wavelet-based decomposition of the high and low stock 

prices. The predictive power of the one, three, and five step-

ahead forecasts of the proposed neuro-wavelet net was 

compared against the performance of five other models by 

using a set of predefined criteria. 

A. Source Data 

The raw data consisted of the trade prices for Apple 

ordinary stock (ticker: AAPL). The data was directly 

obtained from the TAQ3 database of the NYSE and included 

the period of September 1
st
 through November 7

th
 of the year 

2008. Only trade transactions that occurred during normal 

hours of trading operation were included (i.e. between 

9:30AM and 4:00PM EST). A total of 49 trading days 

encompassing 14.8 million records made up the original 

high-frequency time series.   

The raw data was first filtered to verify reliability, 

consistency, and liquidity. Price levels and stamped dates 
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and times were tested to ensure that their values were within 

the expected logical ranges. A stock was defined as liquid if 

it registered an average of at least one trade transaction of 

200 stock units every 5 minutes.  This equated to a daily 

volume requirement of at least 15,600 stock units and a 

minimum average of 12 trade transactions per trading hour. 

The average daily volume and average number of 

transactions per minute for AAPL were 50,510,619 and 776 

respectively. The filtered raw data was then tested for the 

existence of outliers. Only additive outliers
1
 were evaluated 

[4]. Trade-price levels in the filtered raw data did not exhibit 

any unexplainable spikes. 

Three time series were constructed from the depurated 

source data: The high and the low price s were computed for 

the 390 minutes conforming each of the 49 trading days.  

The resulting high and low price series were 19,110 long. 

The log-returns series was computed after converting the 

depurated trade-price series whose inherent nature was the 

irregularity of the time intervals between consecutive trade 

transactions to a time sequence of equally-spaced intervals of 

one minute. The resulting one-minute interval log-return 

series was also 19,110 long.  

B. Pre-processing 

Only the high and low price series were subjected to a 

scale-based decomposition process using a Haar Maximum 

Overlap Discrete Wavelet Transform (MODWT)
2
 with a 

critical resolution level J = 8. The intent was to utilize the 

resulting detail and smooth coefficients as an exogenous 

signal to be input to the Jordan and Elman neuro-wavelet 

nets during training.  

The Haar wavelet is a good differencing filter and as such 

is appropriate for capturing fluctuations in adjacent 

observations similar to the changes occurring on the stock 

returns [8].  The MODWT was the selected wavelet method 

for its ability to cope with the circular shift effect
3
 [11].  In 

this experiment, we were interested on forecasts that fell 

under the domain of intra-day activity. A critical resolution 

level of J =  8 is associated with a time interval, given in 

minutes, that can capture intra-day price changes, [128, 256]  

[5]. Also note that a total of 510 boundary coefficients were 

removed from the high price, low price, and log-return time 

series to account for the circularity effect
4
 affecting those 

                                                           
1 Additive outliers are those data points that show unusual characteristic 

only at one particular point in time. This means that any adverse effect 

caused by the outlier is not carried over through time. 

2 The MODWT is a modified version of the DWT that sacrifices 

orthogonality for the ability to remain unaffected by the circular shift effect. 

As a consequence, a time series decomposed using the MODWT is always 

aligned with respect to time. 

3 A DWT is orthogonal and depends critically on the starting point of 

the signal being analyzed. A shift in the starting point will yield to different 

results that are reflected on dissimilar sets of wavelet coefficient values. 

4 The MODWT is an operation that assumes circularity which could be a 

questionable assumption in some instances leading to unreliable values for 

those wavelet coefficients affected by the circularity assumption. 

wavelet coefficients associated with locations at the 

beginning and end of the high and low price series [11]. 

The result of the multi-resolution decomposition of the 

high and low price series was a collection of 18 sets of 

coefficients corresponding to eight levels of detail       and 

a single level of smooth       coefficients for each of the two 

series [10]. The 18 sets of coefficients were grouped as a 

sequence of feature vectors and at each time step t, the high 

and low price level were given by: 

 

𝑃𝑟𝑖𝑐𝑒( ) =    𝑗    + 
𝐽

𝑗 =1
 𝐽     

 (3) 

The resulting time series for the high prices, low prices, 

and log-returns were all arrays of dimension 1x18,600. The 

vector sequence containing the exogenous signal conformed 

of the detail and smooth coefficients resulted in an array of 

dimension 18x18,600. All time series as well as the vector 

sequence were split into two parts.  The first 16,000 elements 

of the series and vector sequence made up the in-sample data 

which was used for modeling while the last 2,600 elements 

constituted the out-of-sample data used for the evaluation of 

the one, three, and five step-ahead forecasting. 

C. Processing 

The experiment consisted of two phases: modeling and 

forecasting. 

1. Modeling Phase 

The in-sample data was used to fit two econometric 

models and to train four neural network topologies. The 

models under consideration were: an ARIMA(p,d,q), an 

ARIMAX(p,d,q)
5
, a Jordan and Elman NN that used the high 

and low stock price series as an exogenous signal presented 

to the NN as an input source, and a Jordan and Elman WNN 

that used the wavelet coefficients contained in a feature 

vector sequence fed as an input to the WNN.  

The in-sample portion of the log-returns produced an 

ARIMA(3,1,1) and ARIMAX(3,1,1) as the best fitted 

econometric models. The resulting closed formulas were, 

following the same order:  

 

(𝑟 − 𝑟 −1) − 𝜙1(𝑟 −1 − 𝑟 −2) =  𝑒 + 𝜃1𝑒 −1

+ 𝜃2𝑒 −2  (5) 

(𝑟 − 𝑟 −1) − 𝜙1(𝑟 −1 − 𝑟 −2)

=  𝑒 + 𝜃1𝑒 −1 + 𝜃2𝑒 −2

+ 𝛽1 𝐻 − 𝐻 −1 + 𝛽2 𝐿 − 𝐿 −1   (7) 

Where, the innovation series  𝑒   is a white noise, and 

 𝑟  ,  𝐻  , and  𝐿   correspond to the one-minute time series 

of the log-returns, high and low prices respectively. The 

selection of the best ARIMA and ARIMAX models was based on 

the lowest AIC criteria. 

                                                           
5 The ARIMAX is an ARIMA model which allows for external regressors to 

account for the effect of outer signals on the model.   
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Similarly, the Jordan and Elman NN as well as the Jordan 

and Elman WNN made use of the in-sample portion of the 

log-return series as the target for training the networks on the 

forecasting of the t + 1, t + 3, and t + 5 log-returns. 

The architectures associated with the Jordan and Elman 

networks were as follows: Each of the two network 

topologies was conformed of one input source, one hidden 

layer, and one output layer. The input accommodated the 

corresponding exogenous signal accordingly; this is the high 

and low prices for the case of the Jordan and Elman NN, and 

the detail and smooth coefficients for the case of the Jordan 

and Elman WNN. The synapse between the input and the 

hidden layer had attached a tapped delay line to account for 

seven time delays. The single hidden layer was comprised of 

20 neurons using a tan-sigmoid function as the activation 

function for each of the neurons. The tan-sigmoid function 

was chosen because of its recognized ability to address 

pattern recognition and forecasting problems. The number of 

neurons in the hidden layer was selected based on two 

considerations: the number of total inputs feeding the hidden 

layer and the performance error of the network. The output 

layer was made up of one neuron which used a linear 

function as the activation function. The single output layer 

aggregated the results of the hidden layer and generated a 

time series corresponding to the forecasted one, three, and 

five step-ahead log-return values.  

In a Jordan architecture, the output of the output layer is 

connected back to the network as an additional input 

element. In an Elman architecture, the feedback is from the 

output of a hidden layer to the same layer (see Fig. 1).  

 

In both cases and for the purpose of this experiment, the 

feedback connections had attached a tapped delay line to 

account for two time delays corresponding to lags 1 and 2.  

The Elman networks were trained using the Scaled 

Conjugate Gradient algorithm and the Jordan networks using 

the Levenberg-Marquardt algorithm. The first algorithm is a 

gradient-descent-based method while the second algorithm is 

a Jacobian-based method. The difference in training 

algorithm is justified by the additional computational 

demand that the topology of an Elman network imposed.  

2. Forecasting Phase 

All resulting models were tested for accuracy of the one, 

three, and five step-ahead forecasts using the corresponding 

out-of-sample data 

The out-of-sample portion of the data was conformed of 

the last 2,600 elements of the one-minute interval log-

returns, high and low price series, and the wavelet feature 

vector sequence.  Log-returns estimates for the one, three, 

and five step-ahead forecasts were produced for the two 

econometric models, the Jordan and Elman neural networks, 

and the Jordan and Elman neuro-wavelet nets.  

III. RESULTS 

A comparative analysis of the predictive power of all six 

models was carried out based on a set of performance 

parameters defined as follows:  The mean square error 

(MSE), self-explanatory, is the average of the squared errors 

resulting from the difference between the estimated and 

actual log-return values. The directional accuracy (DA), 

expressed as a percentile, is just the success ratio of the sign 

predictions. Thus, the DA is indicative of the number of 

times that the forecasted values have matched the direction 

specified by the sign followed by the actual log-returns. The 

directional change accuracy (DCA), expressed also as a 

percentile, measures the correctness of the predicted 

variation on log-return direction. The missed confidence 

interval (MCI), expressed as a percentile, is indicative of the 

number of times that a target log-return value failed to fall 

within the 95% confidence interval defined by standard 

errors produced by the corresponding predicted log-returns. 

For an expanded explanation of the performance criteria use 

in this experiment see [6].  

A. Comparative Forecasting Analysis 

The comparative forecasting analysis was performed using 

the results from the five, three, and one step-ahead forecasts 

of the ARIMA (3,1,1), ARIMAX (3,1,1), and the Elman and 

Jordan topologies with and without the use of wavelet 

coefficients as an input source to the networks. All 

performance measures were computed using the results 

generated by the corresponding out-of-sample data. Tables I, 

II, and III present the results for the one, three, and five step-

ahead forecasts for all models under evaluation.  

We can observe that the mse, DA, and DCA values for the 

different scenarios pointed in the direction of a consistent 

superior prediction performance of the Jordan network that 

used wavelet coefficients as an input source. Only in the 

scenario of the one step-ahead forecast, the Jordan neuro-

wavelet was not able to achieve superiority in the DCA 

measure. However, the resulting 58.80713% was not 

extremely far from the highest DCA value of 65.01669%. 

All models achieved approximately the same performance 

for the MCI measure; this value was around 5.0%.
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TABLE I 
1 STEP-AHEAD FORCASTING 

 mse DA DCA MCI 

Arima(3,1,1) 0.03919277 69.44979 % 65.01669 % 5.00000 % 

Arimax(3,1,1) 0.03933833 68.60331 % 63.7931 % 5.038462 % 

Elman neural network 0.03950338 58.23029 % 41.51786 % 5.059869 % 

Elman neuro-wavelet net 0.02799383 67.9289 % 40.34598 % 4.943994 % 

Jordan neural network 0.03999068 53.80162 % 37.79264 % 5.285494 % 

Jordan neuro-wavelet net 0.01780613 75.49209 % 58.80713 % 5.169753 % 

 

TABLE II 
  3 STEP-AHEAD FORCASTING 

 mse DA DCA MCI 

Arima(3,1,1) 0.0395666 50.71236 % 36.67223 % 5.04234 % 

Arimax(3,1,1) 0.0397037 49.17212 % 35.72621 % 5.119323 % 

Elman neural network 0.03959135 51.97216 % 19.03964 % 5.2184 % 

Elman neuro-wavelet net 0.03123017 58.46868 % 22.38973 % 5.06378 % 

Jordan neural network 0.04007157 50.28969 % 28.57143 % 5.135135 % 

Jordan neuro-wavelet net 0.02119616 70.76091 % 48.3817 % 5.135135 % 

 

TABLE III 
5 STEP-AHEAD FORCASTING 

 mse DA DCA MCI 

Arima(3,1,1) 0.03953439 50.63584 % 37.02673 % 5.046225 % 

Arimax(3,1,1) 0.03966897 49.90366 % 32.85078 % 5.046225 % 

Elman neural network 0.03952317 51.78019 % 21.62011 % 4.990329 % 

Elman neuro-wavelet net 0.03472186 54.06347 % 21.56425 % 4.951644 % 

Jordan neural network 0.04020202 50.9857 % 37.40927 % 5.448223 % 

Jordan neuro-wavelet net 0.02000625 72.01392 % 50.08375 % 5.061824 % 

 

The measures presented in tables I, II, and III also made 

obvious the superiority of those neural networks that used 

wavelet coefficients as an input source over those that did 

not. This superiority surfaced during the modeling phase as 

illustrated in Fig. 2 and Fig. 3. Fig. 2 presents the modeling 

results for the Elman and Jordan neural networks which 

utilized the high and low price series as an input source. 

Under this setting, better fittings of the in-sample data were 

achieved in all cases by the Jordan net. The actual data was 

represented in black color and the fittings in gray. Similarly, 

Fig. 3 presents the modeling results for the Elman and 

Jordan networks that utilized the coefficients of a wavelet-

based decomposition of the high and low price series as an 

input source. Under this setting, again, the Jordan net 

achieved better fittings of the in-sample data in all cases.  

A quick look at both figures also exposed a better 

modeling performance of the neuro-wavelet networks over 

the plain neural networks as their modeling behavior is 

depicted by larger gray areas in the corresponding plots. 

Larger gray areas imply better fittings of the in-sample data 

given that the distances between the actual and estimated 

log-return values decreased. 
 

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012



 

 

 

 
The next four figures corresponding to the first 60 

estimates of the one, three, and five step-ahead log-return 

forecasts are presented to assist with a comparative 

visualization of the predictive performance between those 

neural networks that used wavelet coefficients as an input 

source and those that did not.  

Fig. 4 shows the scenario where the Elman and Jordan 

nets used the high and low price series as an input source to 

the network while Fig. 5 illustrates the scenario where the 

input source was a feature vector sequence containing 

coefficients resulting from a wavelet-based decomposition of 

the high and low price series. The first 60 elements of the 

out-of-sample data are portrayed in black color and their 

corresponding forecasted values in gray.  

 

 
Better forecasting results were generated by the Jordan 

and Elman WNN. In particular, the Jordan neuro-wavelet 

networks achieved the best forecasting performance overall. 

The superior forecasting performance of the Jordan neuro-

wavelet nets is better noted in Fig. 5 which illustrates how 

the paths depicted by the forecasts (gray lines) produced by 

the Jordan neuro-wavelet nets mirrored with relative 

accuracy the log-returns changes in direction observed in the 

paths portrayed by the actual values (black lines); this 

superiority was reflected in higher DA and DCA values.  

Likewise, Fig. 6 and Fig. 7 illustrate the number of times 

that a target log-return value (black points) failed to fall 

within the 95% confidence interval defined by the 

corresponding forecast standard errors (gray band).  
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The plots in Fig 6 and Fig. 7 corroborated the MCI values 

presented in tables I, II, and, III (i.e., approximately 5.0% for 

all cases). The errors generated by all forecasting models 

were regularly distributed and the distributions were 

stationary. These attributes facilitated the definition of the 

95% confidence interval boundaries needed to generate the 

MCI measure. 

IV. CONCLUSIONS 

A hybrid model based on a Jordan network topology that 

used the coefficients resulting from a non-decimated Haar 

wavelet-based multi-resolution decomposition as an external 

input source to the network showed a consistent superior 

performance for the modeling and forecasting of high-

frequency stock returns. 

An external signal decomposed via a Haar MODWT as 

opposed to a non-decomposed version of the same signal 

appears to offer richer information that can be used for 

modeling and forecasting. The better quality of the 

decomposed data can be attributed to the wavelet ability to 

capture structural nonstationary characteristics at different 

time scales. The relevant contribution of the wavelet 

coefficients was authenticated when two neuro-wavelet 

network topologies were compared against equivalent neural 

network topologies that did not use wavelet coefficients. 

The proposed Jordan neuro-wavelet net achieved 

reasonable accurate results, even though it did not need to 

have a predefined specific parametric model to initiate a 

simulation process. In particular, the proposed neuro-wavelet 

net showed superior modeling and forecasting performance 

when compared against two parametric methods. 

The proposed wavelet-based procedure proposed in this 

article can be applied to any exogenous signal to evaluate its 

structural relation with the target signal that is used during 

the training phase of a neural network. Ideally, strong cross-

correlation relations between the exogenous and target 

signals are desired at all scales. 

A possibility for future research could be the study of the 

predictive power, short and long-term, of each level of 

wavelet resolution as a function of its contribution to the 

time series generated by the forecasts. In finance, this is 

equivalent to modeling a financial instrument behavior on a 

scaled-based basis and testing each scale independently. 

Another possibility for research could be the utilization of a 

different exogenous signal or a combination of several 

exogenous signals as a function of the impact exerted over 

the model performance results.  
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