
Minimax MMSE Estimator for Sparse System
Hongqing Liu, Mandar Chitre

Abstract—In this work, we consider a minimum mean square
error (MMSE) estimator utilizing compressed sensing (CS) idea
when the system is underdetermined. First, we attempt to
directly solve the nonconvex problem in an alternating way.
However, this does not guarantee the optimality. Second, in a
more efficient way, we reformulate the problem in the context
of minimax framework using the worst case optimization tech-
nique. And later on, based on duality theory, we transform this
minimax problem into a semidefinite programming problem
(SDP). Numerical results show that utilizing CS idea indeed
improves MMSE estimator when the signal is sparse.

Index Terms—minimum mean square error (MMSE), com-
pressed sensing (CS), minimax optimization, semidefinite pro-
gramming (SDP).

I. I NTRODUCTION

PARAMETER estimation is the most fundamental prob-
lem in variety of engineering applications, such as signal

processing, communication, imaging, etc. Consider a linear
system ofy = Hx+n, whereH is observation matrix,x is
the parameter to be estimated,n is measurement noise andy
is the received data, the objective is to estimate the unknown
parameterx based on the received datay. Generally, methods
of parameter estimation can be categorized into two groups
[1]. One is so-called classic approaches, which mean that es-
timators are derived considering parameterx is deterministic.
A well known estimator in this category is least square (LS),
i.e., x̂ = minimize‖y −Hx‖2. Another one is assuming the
availability of the distribution of noisen maximum likeli-
hood estimator (MLE), which is obtained by maximizing the
likelihood function, i.e.,x̂ = maximizep(y|x). The second
category is so-called Bayesian methods, which assume that
the parameterx is not deterministic, but a random variable
and the prior information on it is available. The famous one
in this category is minimum mean square error (MMSE) by
calculating the posterior mean, i.e.,x̂MMSE =

∫

xp(x|y)dx,
wherep(x|y) is posterior distribution. In most cases, MMSE
is difficult to obtain in closed-form solution due to the
potential multi-dimension integration and dependency on the
unknown parameterx. In case of the linear and Gaussian
system, the closed-form expression is obtainable by so-
called linear MMSE (LMMSE) estimator. Another one is
called maximum a posteriori (MAP) estimator. The MAP
can be calculated by maximizing the posterior distribution,
i.e., x̂MAP = maximize(log p(y|x) + log p(x)), wherep(x)
is prior distribution on parameterx.
The above discussions are based on the fact that the system
we consider is complete. In case of a underdetermined sys-
tem, it is impossible to find the unique solution without any
prior information. In recent years of research development,
compressed sensing (CS) [2], [3] has become a powerful
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technique to reconstruct signal for the underdertimend sys-
tem when the signal is sparse. For a underdetermiend system
of y = HN×Mx + n whereN ≪ M , CS states that it
only needs minimumN = K log(M/K) measurements to
reconstruct the signal correctly by usingℓ1-norm constraint
convex optimization. Sparse signals exit in many research
areas, such in image processing, seismic signal processing
and underwater acoustic communications, etc. This idea will
be utilized in MMSE estimator when the signal is sparse to
handle the underdetermiend system.
After parameter estimation, to measure the estimation perfor-
mance, one usually employs the MSE criterion. Therefore,
MMSE estimator is the optimal one in the MSE sense to
be used to do the estimation. However, like we mentioned
earlier, the problem with MMSE estimator is that it usually
dependents on the unknown parameterx, which prevents us
from using it [1]. In this work, first, we consider the signal
is bounded, i.e.‖x‖22 < L, and then we reformulate the
problem in worst case MSE optimization under minimax
optimization framework. The duality theory is utilized to
transform the minimax optimization into a solvable semidefi-
nite programming (SDP). Second, we consider another prior
information on signal, namely sparsity, is available to us.
By sparse, we mean that the most of entries ofx is zero.
Based on compressed sensing (CS) concept [2], [3],ℓ1-norm
on parameter i.e.,‖x‖1 is utilized to explore the sparsity.
Therefore, we reformulate the problem under the framework
of minimax technique by taking bothℓ2-norm andℓ1-norm
into account. And later on, this problem can be as well
transformed into a SDP by using duality approach.
The rest of paper is organized as follows. The problem
formulation is given in Section II. In Section III, the proposed
methods are presented to solve the problem. Section IV, the
proposed algorithm based on compressed sensing is devel-
oped. In Section V, the simulation and filed trial experiments
are conducted to verify the effectiveness of the proposed
method. In Section IV, the conclusions are drawn.

II. PROBLEM FORMULATION

Suppose we have a linear estimatorG to estimate the
unknown parameterx to the following linear system

y = Hx+ n (1)

that means the estimate can be obtained by a linear transfor-
mation, i.e.x̂ = Gy. The most common measure to evaluate
estimation performance is to calculate mean square error
(MSE) [4], [5]. In our case, the MSE can be computed as

E
{

‖x− x̂‖2
}

= E
{

[(I−GH)x+Gn]H [(I−GH)x+Gn]
}

= xH(I−GH)H(I−GH)x+E
{

nHGHGn
}

= xH(I−GH)H(I−GH)x+Tr(GCwG
H)

(2)
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whereE(·) Tr(·) are the expectation operation and the trace
operator, respectively. The derivation in(2) has used the fact
of sHs = Tr(ssH). To computeG, the MMSE estimator can
be written as follows

minimize Tr(GCwG
H) + xH(I−GH)H(I−GH)x

(3)

The solution of this direct optimization is usually not at-
tainable since it involves the unknown parameterx. In the
following section, we will detail the procedures on how to
minimize (3) by using worst case optimization technique.

III. PROPOSEDAPPROACHES

A. Compressed Sensing

Prior to going to how solve problem(3), we would
like to present a brief introduction on compressed sensing
(CS) whose idea will be utilized later. CS explores the
signal sparsity to estimate the signal when the system is
underdetermined. Denote the received signaly, an N × 1
vector, and a measurement matrixHN×M , such that

y = Hx+ n (4)

where xM×1 is the signal we want to estimate and we
assume the system is underdetermined, namelyN ≪M . The
signalx is calledK-sparse if coefficients ofx only haveK
nonzeros andM − K zeros. The goal is to reconstruct the
x based on received datay given that the signal is sparse.
The traditional methods would fail because we have less
measurements than the number of variables we would like
to estimate. However, CS exploits the sparsity to obtain the
solution though the following optimization problem [3], [6]

minimize
x

‖x‖1

subject to ‖y −Hx‖2 < ǫ
(5)

where ‖ · ‖1 and ‖ · ‖2 represent theℓ1-norm and ℓ2-
norm, respectively. This is a convex optimization problem
and studies have shown that we only need minimumN =
K log(M/K) measurements to estimate the signal correctly.
Sometimes, one rewrites(5) as form of‖y−Hx‖2+ε‖x‖1.
If we replace the second norm by aℓ2-norm, it becomes
‖y−Hx‖2+ ε‖x‖2, the solution of which is the least norm
solution. Studies have shown that the latter one will not work
well for this underdetermined system, but the former one
will. The core concept behind CS is thatℓ1-norm is utilized
to exploit the sparsity to make the estimation possible. Other
’norm’, like ℓp-norm (p < 1) can be used as well. This core
concept will be utilized to develop a new MMSE estimator
to improve the performance when signal is sparse and the
system is underdetermined.

B. Alternating Convex Optimization

One obvious way to exploit the sparsity in MMSE esti-
mator is that we simply add theℓ1-norm regularization term
into (3) as follows

minimize
G,x

{

Tr(GCwG
H) + xH(I−GH)H(I−GH)x+ ‖x‖1

}

(6)

Solving this problem(6) is a challenge since it is a non-
convex optimization. However, we can see that the problem
is convex inx whenG is fixed and vice versa. Therefore,
in an intuitive way, we can minimize(6) in an alternative
way, which works as follows: First, we optimize(6) overx
fixing G at the current value, and we optimize(6) overG
fixing x at the current value, and then we iterate the same
procedure. The alternating convex optimization [7] to solve
(6) proceeds in an iterative fashion as follows:
• Step 1:xk ←− argmim(6)|Gk−1

,
• Step 2:Gk ←− argmim(6)|xk

,
• Step 3: iterate Steps 1 and 2.
At each iteration, we solve a convex optimization. Therefore,
we can say that objective function will go down at each step,
and then solution will be bounded. This approach is named
MMSE AL in this work.

C. Worst Case Optimization

In alternating optimization, we cannot always guarantee
the global convergence since it directly deals with noncovex
problem. The worst case optimization has been widely used
in robust optimization problem. In this section, we reformu-
late the problem in the context of minimax optimization and
show how to transform it into a solvable problem, namely
SDP, by using duality theory.

1) Worst case overℓ2-norm constraint:
First we consider thatx is bounded, namely,‖x‖22 < L. With
this constraint, the original problem of(3) can be reexpressed
as

minimize
G

{

max
‖x‖2

2
<L

Tr(GCwG
H) + xH(I−GH)H(I−GH)x

}

.

(7)

Focusing on inner problem of(7), we have the following
Lagrangian

L(x, λ) = −xH(I−GH)H(I−GH)x+ λH(xHx− L).
(8)

Lemma 1 (Minimal point of a quadratic function): The opti-
mal value of the following quadratic optimization problem

minimize xHAx+ 2qHx+ r

is

x∗ =

{

r − qHA−1q, A � 0,
−∞, otherwise

The dual function of(8) can be expressed as

g(λ) = inf
x

L(x, λ)

= inf
x

{

−xH(I−GH)H(I−GH)x+ λH(xHx− L)
}

=

{

−λL, λI−W � 0

−∞, otherwise
(9)

whereW = (I−GH)H(I−GH) and′ �′ means the matrix
is positive semidefinite. The solution of(9) is obtained based
on Lemma 1.
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Lemma 2 (Schur Complement): Let

M =

[

A BH

B C

]

be a Hermitian matrix withC � 0. Then,M � 0 if only
if the Schur complement is positive semidefinite, i.e.,A −
BHC−1B � 0.
Based on Lemma 2, the dual optimization can be formulated
as

maximize g(λ) = minimize λL

subject toλ ≥ 0,
[

λI (I−GH)H

(I−GH) I

]

� 0.

(10)

Based on(10), the original minimax problem in(7) now can
be cast into the following SDP

minimize λL + gHg

subject toλ ≥ 0,
[

λI (I−GH)H

(I−GH) I

]

� 0.

(11)

with variablesG, λ, and whereg = vec(GC1/2), andvec(·)
means vectorization operation. This result is the simialr to
that reported in [4]. This SDP reformulation is easy to solve
in polynomial time using interior point method [7]. In the
end, the estimate can be obtained byx̂ = Gy. This approach
is named MMSE with 2-norm constraint (MMSE-2).

2) Worst case over bothℓ1 and ℓ2-norms constraint:
We would also like to take advantage of the fact that the
signal is sparse. That meansℓ1-norm constraint needs to be
considered. In that regard, we have the following worst case
optimization problem

minimize
G

max
‖x‖1<β,‖x‖2

2
<L

{

Tr(GCwG
H) + xH(I−GH)H(I−GH)x

}

(12)

First let us consider the inner optimization in(12), which is
equivalent to the following problem

maximize
‖x‖2

2
<L

xH(I−GH)H(I−GH)x− ‖x‖1. (13)

By introducing a new variablet, we have the equivalent
problem to(13) as follows

maximize
x,t

xH(I−GH)H(I−GH)x− 1Ht

subject to− t � x � t,xHx < L.
(14)

The Lagrangian of(14) can be written as

L(x, t,λ1,λ2, λ3) = −x
H(I−GH)H(I−GH)x+ 1Ht

+λ
H
1 (x− t)− λ

H
2 (x+ t) + λH

3 (x
Hx− L).

(15)

Lemma 3 (Minimal point of an affine function): The optimal
value of the following affine optimization problem

minimize aHx+ b

is

x∗ =

{

b, a = 0,
−∞, otherwise

Therefore the dual function is

g(λ1,λ2, λ3)

= inf
x,t

L(x, t,λ1,λ2, λ3)

= inf
x,t
{−xH(I−GH)H(I−GH)x+ 1Ht+ λ

H
1 (x− t)

− λ
H
2 (x+ t) + λH

3 (x
Hx− L)}

=















−λ3L−
1

4
(λ1 − λ2)

H(λ3I−W)−1(λ1 − λ2),
1− λ1 − λ2 = 0, λ3I−W � 0

−∞,
otherwise

(16)

whereW = (I −GH)H(I−GH). The solution of(16) is
obtained by both Lemmas 1& 3. Finally, the dual problem
can be expressed as

maximize g(λ1,λ2, λ3) = maximize γ

subject to

1− λ1 − λ2 = 0,

λ3I−W � 0,

− λ3L− (λ1 − λ2)
H(λ3I−W)−1(λ1 − λ2) ≥ γ,

λ1 � 0,λ2 � 0, λ3 ≥ 0.

(17)

Based on Lemma 2, the dual problem(17) can be trans-
formed into the following SDP problem

minimize − γ

subject to

1− λ1 − λ2 = 0,

λ1 � 0,λ2 � 0, λ3 ≥ 0,




λ3L− γ (λ1 − λ2)
H 0

(λ1 − λ2) λ3I (I−GH)H

0 (I−GH) I



 � 0.

(18)

Therefore, the original minimax problem of(12) can be now
expressed as

minimize − γ + gHg

subject to

1− λ1 − λ2 = 0,

λ1 � 0,λ2 � 0, λ3 ≥ 0,




λ3L− γ (λ1 − λ2)
H 0

(λ1 − λ2) λ3I (I−GH)H

0 (I−GH) I



 � 0.

(19)

with variables G,λ1,λ2, λ3. Compared to the formula-
tion (11), the dual variablesλ1,λ2 will be exploring
the sparsity to make estimation possible when the sys-
tem is underdetermined. In the end, the estimate can be
obtained again byx̂ = Gy. This approach is named
MMSE with 1&2-norm constraint (MMSE-1-2).

IV. N UMERICAL STUDIES

In this section, we conduct studies on simulated and
recorded data to demonstrate the performance of the pro-
posed methods.

A. Simulated example

We simulate data from system model of(4), whereH is
generated by Gaussian random matrix withN = 10,M = 20
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Fig. 1: Estimates

to indicate that the system is underdetermined. The signal
x is generated randomly with sparsityK = 5 shown in
Figure1. The noise is Gaussian distributed. From Figure1,
it is observed that MMSE-1-2 and MMSE AL have almost
the same performance, which is confirmed later by MSE
in Figure 2. The MSEs are obtained on average of 100
independent runs. However, the problem with alternating
optimization is that first there is no optimality guaranteed
and in this case, the initialization ofG is smartly chosen,
which is the general inverse of the measurement matrix. If
G is randomly selected, it will not converge in our test. It is
also observed that MMSE with 2-norm dose not work due
to the underdeterminability.

B. Experimental data

For this test, we perform the algorithms on channel
estimation, which can be stated as follows. Lets(n), n =
1, 2, · · · , N be the training sequence, that is transmitted
through a sparse channel. The received signal samples can
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Fig. 2: MSEs versus SNR (dB).

be modeled as

y(t) =

L
∑

i=1

s∗(t− i)h(i) + n(t), t = 1, 2, · · · , N (20)
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whereh(i), i = 1, 2, · · · , L represents the channel response.
The n(t) is the observation Gaussian noise with zero mean
and varianceσ2

n.
Rewrite (20) in a matrix form as

y(t) = SHh+ n(t) (21)

where S = [st, · · · , st−L+1]
T is training symbols vector

formed by the training signal acting like measurement matrix,
y is the observation vector andh = [h1 h2 · · · hL]

T is
the channel vector of interest. In this test, the channel
response was recorded by a single transmitter and receiver
communication link. The data were collected in Singapore
water on April 21st, 2010, shown in Figure3, in which the
sparsity of channel is present. The transmitted signal was
a BPSK signal. The sampling frequency was20kHz and
bandwidth was5kHz. The length of channel in this test is
chosen to beL = 20 and only 6 symbols are used as training
symbols to indicate that the system is underdetermined. As
we can see that CS cannot reconstruct the signal well, but
on contrary MMSE-1-2 and MMSE AL estimate the channel
response pretty well.
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Fig. 3: Recorded channel response.
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V. CONCLUSION

In this work, we reformulate the minimum mean square
error (MMSE) estimator under minimax framework consider-
ing ℓ1 and ℓ2-norm constraints. By using duality approach,
we then transform the problem into semidefinite program-
ming (SDP), which can be solved efficiently. Numerical
studies on both simulated and experimental data demonstrate
the promising results from proposed approaches when signal
sparsity is utilized.
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Fig. 4: Estimates on recorded channel.
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