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Abstract—In this paper, a random field, denoted GT ν
β , is

defined from the linear combination of two independent random
fields, one is a zero mean Gaussian random field and the
second is a student-t random field with ν degrees of freedom
scaled by β. The goal is to give the analytical expression of
the expected Minkowski functionals of the excursion sets of
GT ν

β on a subset S of R2. The motivation comes from the need
to model a 3D rough surface topography, where the height
measurements distribution is assumed to be resulted from the
convolution of both normal and student-t distributions. The
expected and empirical Minkowski functionals are compared
in order to test the approximation of the model to the real
surface measurements.

Index Terms—Gaussian random field, student-t random field,
excursion sets, Minkowski functionals, Euler-Poincaré charac-
teristic.

I. INTRODUCTION

THE motivation of defining and studying GT νβ random
fields comes from the need of modeling 3D rough

and anisotropic engineering surfaces used in biomedical and
material science applications.

Studying the spatial evolution of a surface or the deforma-
tion of its asperities requires combination between different
types of random fields. This combination might increase the
flexibility of the model, since it defines further statistical
parameters such as the higher order moments (skewness,
kurtosis, ...) which could interpret the functionality of such
surfaces during certain phenomenon, that cannot be involved
by only the Gaussian model.

Gaussian and several non-Gaussian random fields, namely
χ2, F , student-t and Hotelling’s T 2 random fields, have
been studied in [1], [2], [3], [4], [5] in order to detect the
local maxima of the random field inside a searching region
which refer to certain activations in the brain or anomalies in
medical imaging applications. The integral geometric char-
acteristics of the excursion sets of such random fields have
been investigated in [6], [3], [2], where the excursion sets
are defined as the upper sets that result from thresholding the
random field at a giving crossing level value. For example,
the excursion set at a height level h of a 3D surface will
result from hitting the surface heights by a cutting plane
at h. Thus, all the points at which the surface heights will
exceed the level h will define this excursion set.
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In this paper, we are interesting on studying the linear
combination between a stationary Gaussian random field, de-
noted G, and a non-Gaussian random field, namely student-t
random field with ν degrees of freedom, denoted T ν , i.e, the
sum G(x) + βT ν(x), where x denotes the spatial location
that belongs to the subset S of R2. These random fields
will be denoted GT νβ . The goal is to present the stationary
GT νβ random field, and to calculate analytically the expected
Minkowski functionals of its excursion sets on R2.

The paper is organized as follows. The GT νβ random
fields are defined in section II. In section III, the expected
Minkowski functionals of the excursion sets of the GT νβ
random field are given on R2. In section IV, an application
to a real rough surface modeled by the GT νβ random field
is investigated. The model test is illustrated by comparing
the empirical Minkowski functionals to the expected ones.
Finally, a conclusion is derived in section V.

II. GT νβ RANDOM FIELDS

A. Preliminaries

We will suppose that Y = Y (x), x ∈ S, is a stationary
real-valued random field defined on a compact subset S
of the Euclidean space Rd, with mean µY and variance
σ2
Y . The N × N covariance matrix of any finite collection
{Yi = Y (xi), i = 1, ..., N, xi ∈ S}, will be denoted as ΩY ,
where ΩY (i, j) = E[(Yi−µYi)(Yj −µYj )], (i, j = 1, ..., N).
The probability density function of Y is denoted as pY and
the cumulative distribution function is denoted as PY . For
simplicity, the term Y (x) will be replaced sometimes by Y .

B. GT νβ distribution function

Definition 2.1 (GT νβ random variable): Let G be a ran-
dom variable of standard normal distribution and T ν be
a zero mean student-t random variable with ν degrees
of freedom independent of G. A random variable Y is
said to have GT νβ distribution if it is given from the sum
Y = G+ βT ν , β ∈ R∗. It will be denoted by Y ∼ GT νβ .
The probability density function of Y , pY , results from the
convolution between the probability density functions of G
and T ν as follows:

pY (h) =
Γ
(
ν+1

2

)
βπΓ

(
ν
2

)√
2ν
×

∫ ∞
−∞

(
1 +

(h− u)2

β2ν

)− ν+1
2

e−
u2

2 du (1)
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where,

φ(h) =
1√
2π
e−h

2/2 (2)

is the normal probability density function, and

tν(h) =
Γ
(
ν+1

2

)
βΓ
(
ν
2

)√
πν

(
1 +

h2

νβ2

)−(ν+1)/2

(3)

is the probability density function of the student-t distribution
with ν degrees of freedom and scaled by β.

In the general case, Y could be expressed such that

Y = µ+ σG+ βT ν (4)

where σ is the scale parameter of the Gaussian distribution,
and µ is a location parameter.
This yields applying the transformation h → h−µ

σ in order
to obtain the GT νβ

σ

probability density function.

C. Multivariate GT νβ distribution function

Let Y be a random vector of N random variables, Y =
(Y1, ..., YN )t, (N > 1). Let Yi be a GT νβi random variable

such that Yi = µi+σi

(
Gi + βi

σi
T νi

)
, i = 1, ..., N , then Y is

said to has N -dimensional GT ν
β̃

(Ω) distribution with N×N
covariance matrix ΩY , and it is expressed as follows:

pY (h) = φ(h; Σ1) ∗ tν(h; β̃; Σ2) (5)

where φ(h; Σ1) is the multivariate Gaussian distribution
function with the covariance matrix Σ1, and tν(h; β̃; Σ2) is
the multivariate student-t distribution function with ν degrees
of freedom, and covariance matrix Σ2 scaled by the vector
β̃. The covariance matrix ΩY is a function of Σ1,Σ2 and β̃.

D. GT νβ random field

On a subset S in R2, if any arbitrary N random variables,
Y (x1), ..., Y (xN has a multivariate GT νβ distribution, then
for any x ∈ S, Y (x) will define GT νβ random field, which
yields to the following definition:

Definition 2.2 (GT νβ random field): Let G be a station-
ary, not necessarily isotropic, centered Gaussian random
field, defined on a compact subset S ⊂ R2, with variance
σ2 = 1. Let T ν be a homogeneous student-t random field
with ν degrees of freedom, independent of G. Then, the sum
given by:

Y (x) = G(x) + βT ν(x), β ∈ R∗ (6)

defines a stationary GT νβ real-valued random field with ν
degrees of freedom.

III. THE EXPECTED MINKOWSKI FUNCTIONALS OF THE
GT νβ EXCURSION SETS

The expected Minkowski functionals of both Gaussian and
student-t random excursion sets have been investigated in [7],
[5], [8] on Rd, for d = 1, 2, 3. This paper focus in giving
the analytical expressions of Minkowski functionals for the
random field GT νβ in R2.

A. Notifications

1) Let Y (x), x ∈ R2, be a zero mean real-valued GT νβ
random field given by the sum G(x) + βT ν(x) and
defined on S = [a, b]2 ⊂ R2. G is supposed to be
a stationary and centered Gaussian random field with
unit variance, σ2 = 1, and T ν is a homogeneous
student-t random field with ν ≥ 2. T ν is defined by
[8] from a homogeneous, independent and identically
distributed Gaussian random fields as follows:

T ν =

√
νG0

[
∑ν
k=1G

2
k]

1/2
(7)

where Gk, k = 0, ..., ν are ν+1 independent Gaussian
random fields with zero means and unite variances.
Let Eh(Y, S) be the excursion set, [4], [8], of Y
inside S, above a threshold h, and it is defined as
follows:

Eh(Y, S) = {x ∈ S : Y (x) ≥ h} (8)

2) Let ΛG be the 2 × 2 variance-covariance matrix of
G (i.e., the covariance of all the first order partial
derivatives ∂G/∂xi [4]) such that:

λGij = E
(
∂G

∂xi
,
∂G

∂xj

)
(9)

For the student-t random field, the Gaussian compo-
nents are identically distributed and they all have the
same variance-covariance matrix denoted Λ such that:

λij = E
(
∂G0

∂xi
,
∂G0

∂xj

)
= E

(
∂G1

∂xi
,
∂G1

∂xj

)
= ...

(10)
(i=1,2;j=1,2)
The matrix ΛG and Λ are called roughness matrix since
their parameters determine the wavelength or the distance
between the dependent points of the Gaussian random fields
in all the spatial directions. In the Gaussian case, they are
expressed by ΛG =

Σ−1
1

2 , Λ =
Σ−1

2

2 , and in general case,
they are given from the covariance between the first order
partial derivatives of the random field.

B. Expectations

The expected Minkowski functionals including Euler-
Poincaré characteristic of the excursion sets, Eh(Y, S), for
random fields Rd, are given as follows, [7]:

E[Li(Eh(Y, S))] =
d−i∑
j=0

Li+j(S)ρj(h) (11)

where Lj(S) is called is called the ’j-th dimensional size’,
[9], of S (j-th dimensional Minkowski functionals of S), and
Li(Eh(Y, S)) is the i-th dimensional Minkowski functionals
of the excursion sets Eh(Y, S). In this paper, S is a rect-
angular subset [a, b]2 ∈ R2, then the expected Minkowski
functionals of Eh(Y, S) are:

E[χ(Eh(Y, S))] = L2(S)ρ2(h) + L1(S)ρ1(h)

+ L0(S)ρ0(h) (12)
E[P (Eh(Y, S))] = L1(S)ρ1(h) + L0(S)ρ0(h) (13)
E[A(Eh(Y, S))] = L0(S)ρ0(h) (14)
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where
χ(Eh(Y, S)) = L0(Eh(Y, S)) is Euler-Poincaré
characteristic of Eh(Y, S).
P (Eh(Y, S)) = L1(Eh(Y, S)) is the half boundary length
of Eh(Y, S).
A(Eh(Y, S)) = L2(Eh(Y, S)) is the area of Eh(Y, S).

and L0(S) = 1 is the Euler-Poincaré characteristic of S,
L1 = a+ b is the half boundary length of S, and L2 = a× b
is the two dimensional area of S.
The coefficients, ρj(h), (j = 0, 1, 2), are called the j-th
dimensional Minkowski coefficients of the random excursion
set, Eh(Y, S), for a given threshold h.

In the following, the expected Minkowski functionals
are expressed analytically in the general case when Y is
expressed as follows:

Y (x) = µ+ σG(x) + βT ν(x) (15)

where µ, σ, β are constants for all x ∈ S.

Theorem 3.1: The j-th dimensional Minkowski coeffi-
cients, ρj(.), j = 0, 1, 2 for a random field Y expressed by
the linear combination of isotropic Gaussian random field
and a homogeneous student-t random field with ν degrees of
freedom, ν > 2, on R2, are defined at a given h by:

ρ0(h) = P [Y ≥ h]

=
σΓ
(
ν+1

2

)
(2π)β

√
ν/2Γ

(
ν
2

) ∫ ∞
h

∫ ∞
−∞

(
1 +

(u− µ− σy)2

β2ν

)− ν+1
2

× e−y
2/2dudy

(16)

ρ1(h) =
λ1/2

(2π)3/2

∫ ∞
−∞

(
1 +

(h− µ− σy)2

β2ν

)− ν−1
2

e−y
2/2dy

+
σλ

1/2
G Γ

(
ν+1

2

)
(2π)3/2Γ

(
ν
2

)
β
√
ν

∫ ∞
−∞

e−y
2/2

×
(

1 +
(h− µ− σy)2

β2ν

)− ν+1
2

dy

(17)

ρ2(h) =
2

1
2λΓ

(
ν+1

2

)
(2π)2Γ

(
ν
2

) ∫ ∞
−∞

(h− µ− σy)

β
√
ν

e−y
2/2

×
(

1 +
(h− µ− σy)2

β2ν

)− ν−1
2

dy +
σλGΓ

(
ν+1

2

)
(2π)2Γ

(
ν
2

)
β
√
ν/2

×
∫ ∞
−∞

y

(
1 +

(h− µ− σy)2

β2ν

)− ν+1
2

e−y
2/2dy

(18)

where λ1/2
G I2×2 = ΛG, and λ1/2I2×2 = Λ.

IV. APPLICATION

The stochastic model has been tested on a real 3D rough
and anisotropic microstructure surface of a UHMWPE com-
ponent (Ultra High Molecular Weight Polyethylene),[10].
The surface has been measured by a non-contact white light
interferometry, (Bruker nanoscope Wyko R© NT 9100), on a

lattice of 480× 640 points with spatial sampling steps equal
to 1.8µm in both X and Y directions, see figure 1(a).

(a)

(b)

Fig. 1. (a) A real 3D surface roughness topography digitized on a lattice
of 480 points with a spatial sampling steps equal to 1.8µm in X and Y
directions. (b) Fitting the expected and the empirical Minkowski functionals,
A(h), P (h) and χ(h), respectively, between the model and the real surface.

The surface is composed of a large-scale features, which
could be characterized by the covariance function and mod-
eled by a Gaussian random field, and the small-scale features
including the noise which are modeled by the student-t
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random field. Since the surface tends to be one directional
anisotropy, so Minkowski coefficients ρ1(h) and ρ2(h) has
been modified to be:

ρ1(h) =
σλ1/2

(2π)3/2

∫ ∞
−∞

(
1 +

(h− µ− σy)2

β2ν

)− ν−1
2

e−y
2/2dy

+
λ

1/2
G11

+ λ
1/2
G22

2

Γ
(
ν+1

2

)
(2π)3/2Γ

(
ν
2

)
β
√
ν

∫ ∞
−∞

e−y
2/2

×
(

1 +
(h− µ− σy)2

β2ν

)− ν+1
2

dy

(19)

ρ2(h) =
2

1
2λΓ

(
ν+1

2

)
(2π)2Γ

(
ν
2

) ∫ ∞
−∞

(h− µ− σy)

β
√
ν

e−y
2/2

×
(

1 +
(h− µ− σy)2

β2ν

)− ν−1
2

dy +
σλ

1/2
G11

λ
1/2
G22

Γ
(
ν+1

2

)
(2π)2Γ

(
ν
2

)
β
√
ν/2

×
∫ ∞
−∞

g

(
1 +

(h− µ− σy)2

β2ν

)− ν+1
2

e−y
2/2dy

(20)

where ΛG =

(
λG11

0

0 λG22

)
The model parameters have been estimated from mini-

mizing the error between the empirical and the expected
Minkowski functionals, which yields to λG11

= 117, λG22
=

15, ν = 5, β = 0.2, σ = 2 and λ = 190.3. Figure 1(b) shows
the fitting result between the expected and the empirical
characteristic functions of the excursion sets of the GT νβ
random field and the real surface.

The results show that the model approximates the
real measurements especially at high thresholds when
h ≥ 2.5µm. So, one can obtain an approximation of the
number of peaks over the significant threshold which will
be equal to Euler-Poincaré characteristics, or the number of
valleys when getting the complement of the Excursion sets.
The aim is to study the changes of the surface roughness
during certain mechanical phenomenon such as friction and
wear. The model defined in this paper is symmetric, (no
skewness). However, most of real surfaces tend to have
asymmetric heights, and so the skewness parameter becomes
a significant statistical parameter that can not be neglected.
Our future work is to adapt the model in order to include
the skewness parameter besides the kurtosis.

V. CONCLUSION

A random field model is defined from the linear combi-
nation of a stationary Gaussian random field and a homo-
geneous student-t random field with ν degrees of freedom.
The Gaussian random field is uniquely characterized by its
covariance matrix, whereas the student-t is characterized by
the covariance matrix and the degree of freedom. The ana-
lytical expressions of Minkowski functionals of this random
field are given on R2. The characteristic functionals, on R2,
are the area function, the half boundary length function and
Euler-Poincaré characteristic. The stochastic model, in this
paper, can be extended to higher dimensions. An application
is reported on modeling the topography of a real 3D rough
surface of a finished polyethylene component, [10], measured

by a 3D non-contact white light interferometry. The expected
Minkowski functionals enabled to fit the model with the real
measurements with good approximation.

APPENDIX
PROOF OF THEOREME 3.1

The proof of the theorem is based on a previous proofs
and Lemmas given in [3], [8], [2], [1], [11].
The expected j-th dimensional Minkowski coefficient, ρj(h),
of the excursion set, Eh(Y, S), of an isotropic random field
Y , is represented in [3] as follows:

ρj(h) = (−1)j−1E
[
(Ẏj > 0)det(Ÿ|j−1)|Ẏ|j−1 = 0, Y = h

]
× pẎ|j−1

(0, h)pY (h)

(21)

where the term |j−1 represent the sub-matrix of the first j−1
rows and columns of Y , and j refers to the j-th component
of the matrix Y . pẎ|j−1

(0, h) is the probability density of
Ẏ at zero conditional on Y = h. pY (h) is the probability
density of Y .
We will use this representation for calculating ρj(h) of
Eh(Y, S) where Y is the defined GT νβ random field.
Basing on the conditional expectations and the last represen-
tation in 21, ρj(h) becomes in our case:

ρj(h) = (−1)j−1EG
{
EW

{
E
[
(Ẏj > 0)det(Ÿ|j−1)|

Ẏ|j−1 = 0, Y = h
]
pẎ|j−1

(0,W,G, h)
}
pY (h,G)

}
φ(h)

(22)

where pẎ|j−1
(0,W,G, h) is the joint probability density of

Ẏ at zero conditional on Y = h, W and G. pY (h,G) is the
probability density of Y = h conditional on G, and φ is the
probability density function of G.

Let G be isotropic Gaussian random field with zero mean
and unit variance σ2

G = 1 defined on S ⊂ Rd. Let the first
and second order spatial derivatives of G be denoted as
Ġ, G̈ respectively. Then the following two results have been
proven [2]:

• the first derivative Ġ of the Gaussian random field
is Gaussian such that Ġ ∼ Normald(0,ΛG) which is
independent of both G and G̈.

• conditioning on G, the second derivative G̈ of G is a
Gaussian random field which satisfies that

G̈|G ∼ Normald×d(−GΛG,M(ΛG))

where M(ΛG) is symmetric and it satisfies that

M(ΛG) = E
[
G̈ij , G̈kl|G

]
= cov(G̈ij , G̈kl|G)

(i, j, k, l = 1, .., d). Hence, the second order spatial
derivative of G could be expressed conditioning
on G such that G̈|G = −GΛG + V , where
V ∼ Normald(0,M(ΛG)).

The first and second order spatial derivatives of Y , condi-
tional on Y = h,G,W and Ẏ = 0, can be expressed as
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follows:

Ẏ = Ġ+ βν1/2

(
1 +

(h−G)2

β2ν

)
W−1/2Z1

Ÿ = −GΛG + V + βν1/2

(
1 +

(Y −G)2

β2ν

)
W−1

×
{
− (Y −G)

β
√
ν

Q+W 1/2H

} (23)

where, Z1, Z2, H are independent Gaussian random fields
such that Z1 ∼ Normald(0,Λ), Z2 ∼ Normald(0,Λ), H ∼
Normald(0,M(Λ)), W is the Chi-squared random field with
ν + 1 degrees of freedom, W ∼ χ2

ν+1, and Q is the Wishart
random field, [11], Q ∼Wishart(Λ, ν − 1).
Then,

E
[
det(−Ÿ|j−1)|Ẏj−1 = 0, Y = h,G,W

]
= (2π)−1/2λ

1/2
Gj

+ (2π)−1/2λ1/2βν1/2

(
1 +

(Y −G)2

β2ν

)
W−1/2K(h)

(24)

where K(h) is a polynomial function of j − 1 degrees :

K(h) = detj−1(Λ)

b(j−1)/2c∑
i=0

j−1−2i∑
k=0

b(j−1−2i−k)/2c∑
m=0

(
j − 1

k

)
× (−1)i

2ii!
c2irk

(ν − 1)!

(ν − 1− k)!
(2i+ k)!detj−1−2i−k(ΛGΛ−1)

× (−1)j−1−2i−k−m(2m)!

2mm!
Gj−1−2i−k−2m

(25)

The joint probability density function of the j−1 first deriva-
tives of Ẏ , pẎ|j−1

(0, G,W, h), conditioning on G,W, Y = h,
is a Gaussian probability density function and it is given by:

pẎ|j−1
(0, G,W, h) = (2π)−

j−1
2

{
detj−1(ΛG)1/2+

detj−1(Λ)1/2

[
βν1/2

(
1 +

(h−G)2

β2ν

)
W−1/2

]j−1

+

j−2∑
k=1

(
j − 2

k

)
detj−2−k(ΛG)1/2detk(Λ)1/2

×
[
βν1/2

(
1 +

(h−G)2

β2ν

)
W−1/2

]k}−1

(26)

The joint probability density function of Y = h and G
conditioning on G, pY (h,G), is the student-t probability
density function with ν degrees of freedom. Furthermore,
E[W j ] = 2j Γ((ν+1)/2+j)

Γ((ν+1)/2) . Putting these results together
in equation 22, the coefficients ρj(h), (j = 1, 2) of the
excursion set Eh(Y, S) could be obtained.
For j = 0, ρ0(h) becomes the cumulative distribution
function, P[Y (x) ≥ h], of Y at each point x.
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