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Dynamic Modeling of Nuclear Fusion As a New
Tool to Identify Subgroups in Multiple Sclerosis
Magnetic Resonance Imaging Data

Heiko Neeb

Abstract—A key problem in the MR-based diagnosis of mul-
tiple sclerosis (MS) is the observed mismatch between clinical
and imaging findings. One of the most promising approaches
to overcome those problems is based on quantitative magnetic
resonance imaging (qMRI), where physiological parameters
such as proton diffusion or absolute myelin water content are
directly measured. Consequently, combining the quantitative
image measures with antomated analysis schemes might result
in the definition of new biomarkers which better correlate
with the clinical disability. The current work describes a new
approach for the unsupervised grouping of individual patients,
where each subject is considered as a point in an N-dimensional
feature space. The points are dynamically modeled as nu-
cleons (protons or neutrons) which experience an attractive
force at short distances while repelling each other at longer
distances, Therefore, clusters of nearby points form larger
objects (’nuclei’) while outliers are pushed further away. In the
current paper, initial results from a group of 43 MS subjects
are presented along with a description of the underlying
modeling algorithm and its validation on artificial test data.
In the patient study, have observed that subjects with mild
disease without neurological symptoms formed a homogeneous
cluster, In conirast, patients with significant disease burden
and heterogenous treatment histories were classified as outliers.
The results demonstrate the potential of the new approach
for an unsupervised classification of MS patients into clinically
relevant subgroups using quantitative MRI data.

Index Terms—{Juantitative magnetic resonance imaging, dy-
namic modeling, cluster analysis, outlier removal, multiple
sclerosis.

I. INTRODUCTION

ULTIPLE sclerosis is the most common neurode-

generative disorder in the first decades of live. The
underlying pathogenesis is largely governed by demylination,
axonal/neuronal damage and inflammation [1]. Magnetic
resonance imaging is one of the comerstones for the ultimate
diagnosis of the disease, in addition to the neurological
appearance of patients [2]. However, it is only of very
limited use for an objective disease follow-up and for therapy
monitoring [3], [4]. Therefore, new MR metrics have been
extensively investigated in the literature in order to overcome
the mismatch between clinical and imaging findings.

In the recent past, quantitative magnetic resonance imaging
(gMRI) has emerged as a promising tool for the more
objective characterisation and follow-up of multiple sclerosis.
Several authors have quantified changes in tissue relaxation
times, diffusion, proton density or magnetisation transfer
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ratio in various stages of the disease, during therapy or
between different clinical subgroups [5]-[12]. Furthermore,
the amount of water bound between the myelin bilayers is
one of the parameters which is supposed to be much more
specific to the underlying MS pathology. Originally initiated
by the seminal work of MacKay et al. [13], myelin water
content mapping has gained a lot of attention in the recent
past, where many new approaches for its quantification have
been published [14]-[21]. However, most of the new methods
either suffer from prolonged measurement times or limited
spatial coverage. Moreover, only myelin water content is
quantified while other parameters, which reflect different
aspects of the disease, often cannot be reconstructed from
the same image data.

In order to overcome those problems, a new approach
for the simultaneous quantification of tissue 73 and T3
relaxation times as well as total and myelin bound water
content has recently been published by our group [22]-[24].
The method is fast and allows for a high resolution full brain
mapping in approx. 10 minutes. The simultaneous acquisition
of multiple parameters naturally leads to the application of
multivariate analysis strategies. Such approaches are based
on the combination of different parameters such as 77 and
T3 to form a high dimensional vector, defined in the so
called feamre space. These methods offer the possibility to
include higher dimensional correlations between parameters,
thereby increasing their classfication performance. It can thus
be speculated that an improved prediction of disease grade
or therapy response might be feasible based on a proper
multidimensional combination of 74,75 as well as total and
myelin water content.

However, one has to be carefull with the naive application
of multivariate tools as MR parameters are biophysically
correlated. This results in a none-spherical distribution of
points in feature space which severly restricts the use of
standard unsupervised methods such as cluster analysis. The
latter refers to a class of different powerfull tools which
are sucessfully emploved for the identification of groups or
“clusters” of similar points in many applications (see e.g.
[25]). Most of the standard approaches such as hierarchical
or k-means clustering require the definition of a distance
between points in the N-dimensional feature space. However,
the often emploved Euclidean distance favours the generation
of spherical clusters due to the isotropic nature of this
measure [25]. Therefore, the above cited methods are not
appropriate for the identification of clusters in correlated
datasets where none-spherical clusters are typically observed.

Moreover, cluster analysis is designed to find dense re-
gions in feature space. The corresponding regions are then
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interpreted as homogeneous groups where all member behave
similar. However, the identification of a “group” of patients,
responding heterogenously to a given therapy, could be of
relevance for a proper classification of the success or failure
of a clinical intervention. From the pattern classification
perspective, such points have to be treated as outliers which
carmot be assigned to a common cluster. However, such an
outlier subgroup cannot be detected using standard methods
which are designed to find dense clusters only.

The current work presents a new approach for the identi-
fication of clusters which can be arbitrarily distributed in N-
dimensional feature space. Moreover, the method inherently
allows for the simultaneous detection of outliers. It is based
on a simplified dynamic modeling of nuclear fusion, where
larger nuclei are successively beeing build up from individual
nucleons. Each datapoint is therefore modeled as a proton.
The protons are initially placed in an N-dimensional space
at a location given by their corresponding feature vectors.
The formation of clusters is then govermnd by the strong
interaction at short distances, which binds protons by ex-
changing charged or neutral virtual pions [26]. On the other
hand, outliers are more or less randomly distributed in space.
Therefore, they experience only the repulsive electromag-
netic force resulting from the exchange of virtual photons
[27]. This results in an attraction of nearby points which
dynamically form high density clusters whereas all outliers
are pushed away from the corresponding dense regions as
t — co,

The whole approach, named Nuclear Potential Clustering
(NPC), was tested on synthetic datasets to demonstrate
the general performance of the algorithm. Furthermore, 43
MS patients with different disease grade and heterogeneous
treatment histories where investigated using features dervied
from quantitative 73, T3, total and myelin water content
maps.

II. METHODS
A. MR Data acquisiton and processing

43 MS patients with an age of 40.5 == 11.1 vears (18
male and 25 female) were scanned on a 3T Trio MR
scanner (Siemens, Erlangen/Germany). The disease grade
was evaluated by the EDSS score [2] and ranged between
0 and 6.5 in the cohort studied here. For each patient,
quantitative maps of 73, 75 and total water content were
reconstructed from two multiecho gradient echo sequences
and 3 EPI scans [22]. Furthermore, the absolute myelin water
content was obtained from the same data as described in [24].
In total, 50 transverse slices with a thickness of 2 and
an in-plane resclution of 1 % 1nwm? were reconstructed. The
total measurement time was =~ 10min.

All maps were warped to the common MNI152 space
using FSL (www.fmrib.ox.ac.uk/fsl, [28]) and subsequently
segmented into white matter (WM), grey matter (GM) and
cerebrospinal fluid (CSF) using 7 maps [29]. For each slice,
each segment (WM and GM) and each map, features such as
the average of each parameter, higher order moments or the
spatial correlation distance were calculated [29]. In total, 450
features (1, T2,...7450) were determined for each subject.
The corresponding feature vector 7= (x1,T2,...x450) de-
fines the inital position of the corresponding point (nucleon)
in a 450-dimensional space.
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B. Nuclear Potential Clustering

1) Potential function: Bach nucleon! with initial coordi-
nates given by # = (¢t = 0) = (21, 20,...z,,) experiences
an effective potential from all other nucleons, given by
the superposition of a short range strong interaction and a
long range Coulomb term. The effective interaction within a
nucleus is defined by a Woods-Saxon ansatz [30]

Az
= (L
whereas the repulsive term outside the nuclei is given

by the well known expression for the Coulomb potential,
#°(r) = r~ 1. Here, the electic charge was normalised to
4dmey. In Equation (1), = defines the distances (e.g. Euclidean)
between two points in feature space, B is the typical radius
where the strong interaction is effective and « defines the
slope of the potential at the border where it starts to increase
from —V4 to 0 [30]. The strength of the interaction is given
by Vp > 0. As (1) defines the resulting potential within a
distance R from the origin, the Coulomb term is effective
only for distances larger than the typical radius of a nucleus,
R.

In order to assign numbers to the free parameters Vg, R
and a, the data were first normalised by replacing z; — (z;—
z;)/0.,.. Here, T; (0,,) is the average (standard deviation)
of the ** feature, calculated from all points to be clustered.
The following values were empirically chosen based on
the observed perfomance of the algorithm on different test
datasets where number, shape and density of clusters as well
as the dimension of feature space were varied: V, = 3500,
R = 10% quantile of the initial (¢ = 0) distance distribution
between all points and a = R/50. The radius £ is thus
adpoted to each dataset based on the measured distribution of
mutual distances between all points. Using these parameters,
a similar performances of the algorithm was observed for all
datasets, as long as the data were properly normalised.

2) Dynamic modeling: Based on the initial distribution
of features, svi(t = 0);i = 1...n, the total potential ¢ at the
location of each of the n points is calculated. As nucleons
are modeled as classical particles moving in a superposition
of strong and electromagnetic force fields, they obey the
Newtonian equation of motion,

¢*(r)

d? = d - = i
P + T %= —V(ZE5). (2)
It is important to notice that the force, Fy = fvgb(a::;), isa
function of time because the positions of each point in feature
space, #4(t), change with time according to Eq. (2). The
damping term sz:;-/ dt was introduced to model the capture
of one nucleon in the field of another. If the kinetic energy of
a nucleon is larger than the depth of the strong potential well
(Eq. (1)), the nucleon will be scattered rather than beeing
bound in the case of 7 = 0. However, the damping term
avoids this effect and results in a quicker transition to an
equalibrium state, making the algorithm significantly faster.
In all our examples, the damping constant was set to 7 =
200[a.w.], although the algorithm was largely immue agains
variations of 7.

IThe words “point” and “nucleon” as well as “cluster” and “nucleous”
are used synonymously throughout the text.
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Results from the application of Nuciear Pofential Clustering on an artificial dataset, consisting of a horseshoe and two blops, overlaid by random

noise. (a) Initial distribution of points in 3D feature space. The three clusters are shown in cyan, blue and brown, whereas the group of outliers is indicated
by the yellow points. (b) Distribution of points in space at the end of the dynamic modeling. Three dense “spherical nuclei” were formed from nucleons
which were initially spread out in space. (c) Automated classification of three clusters. (d) Histogram of the final potential energy of all points. Outliers are
identified by E#°% - 0 whereas the other three clusters, named Cy, Co and Cg, respectively, are identified by the corresponding peaks in the distribution.

Equation (2) was numerically integrated using a Runge-
Cutta 4*® order solver. At each time step, the system
temperature 7'(t) was determined, defined as the average
kinetic energy of all points. The time dependence of the
temperature was subsequently used to define an objective
stopping criterion for the algorithm. As points attract each
other to form clusters, they gain velocity by decreasing
their potential energy. In consequence, the average distance
between points decreases along with ¢. Later, the kinetic
energy will again decrease by increasing the distance be-
tween points. This interchange between both forms of energy
continues until the systems reaches its equalibrivm state of
zero velocity for all particles, where larger nuclei have been
formed. Therefore, T'(%) strongly resembles the curve of an
anharmonic damped oscillation with different frequencies.
The dynamic modeling automatically stops when the system
temperature is less than 1% of the value it takes at the
corresponding maximum. Finally, the potential energy of
each particle is determined which will be required for the
definition of cluster memberships (see below).

3) Repetition for different velocities: The steps described
in section [1-B2 were repeated 5 times with different initial
velocities for each particle. During the first run, the particles
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start at rest, i.e. day/di(t = D) = 0. For the %" repetition
{1 > 1), the initial velocities were randomly sampled from a
zero mean Gaussian distribution where the standard deviation
is given by the maximum kinetic energy of the particles
during the ¢ — 1%° step. Random initial velocities were
chosen to ensure that nearby particles have a finite chance to
overcome the Coulomb barrier and fuse with other particles,
even if their distance is larger than the range of the strong
potential. Furthermore, it supresses the spurious assignment
of outlier points to clusters.

4) Cluster identification: Finally, the mean potential en-
ergy, EP? of each point was determined by averaging
the corresponing values from all five repetitions. Points
belonging to larger clusters possess a negative potential
energy as they experience the nuclear force field from other
nucleons. In contrast, a positive potential energy is observed
for outliers as they only see the long ranging positive part of
the total potential. Furthermore, points located in the same
cluster are easily identifiable as they have, on average, the
same number of neighbours and therefore the same potential
energy. Therefore, different clusters were identifying by
searching for peaks in the distribution of £7°°,

WCECS 2012



C. Synthetic data

To validate the approach on correlated datasets, synthetic
data consisting of three clusters with different shapes were
created. Here, a “horseshoe and blop” configuration was
chosen as shown in Fig. 1(a). The horseshoe consists of
228 points (63.4%) whereas the two blops contained 25
{6.9%) and 35 (9.8%) points, respectively. Moreover, 70
{19.5%) points were randomly placed in feature space to
study the performance of the Nuclear Porential Clustering
approach for outlier detection. In the current work, a three
dimensional feature space was chosen in order to allow for
a direct visualisation of the clusters formed. Corresponding
tests of the algorithm on higher dimensional data vielded a
similar performance as in the 3D case. Given the linearity
of the equations of motion (Eq. 2), the isotropic nature of
the Buclidean distance and the adaptive determination of
the strong interaction range, one would indeed not expect
a significant perfomances drop in higher dimensional data.

III. RESULTS

Fig. 1 shows the results obtained from the investigation
of the artificial dataset. The initial horseshoe and blop
configuration in 3D space is shown in Fig. 1{(a). At the end
of the dynamic modeling, all three clusters were shrunken
to nearly spherical regions, filling a much smaller part of
feature space (Fig. 1(b)). The final unsupervised assignment
of points to clusters and outliers is shown in Fig. 1(c), where
a high degree of similarity with the known configuration is
observed. The identification of clusters was based on the
average potential energy of each point as described above.
Fig. 1(d) shows the corresponding distribution of £7°¢. All
groups can easily be identified by four distinct peaks in the
histogram.

Results from the automated clustering of MS patient data
is shown in Fig. 2. The temperature initially shows a steep
increase due to the strong attraction of nearby nucleons. At
later times, an oszillating behaviour with different frequen-
cies is observed, before the curve declines to zero due to the
strong damping factor (see Fig. 2(a)). Our algorithm identi-
fied two distinet groups in the MS datasets (Fig. 2(b)). The
first larger group consists of a dense homogeneous cluster.
Furthermore, a smaller “outlier” group with EP°? > 0 was
discovered. In order to investigate the possible pathological
and phenotypic correlates of this observation, the average
EDSS score as well as the age and gender distribution of
both groups were determined (see Table I and Fig. 2(c)).
The outlier group is on average 8.3 years older and exhibits a
higher disease grade as evaluated by the EDSS score. In con-
trast, the homogeneous cluster is dominated by patients with
the lowest possible disease grade, EDSS=0 (Fig. 2(c)). This
observation can be interpreted as a heterogeneous spreading
of points in feature space as a result of either (1) discase
progression and/or (2) increasing age. However, the results
are very preliminary and need to be interpreted with care. The
group size investigated is rather small and other phenotypes
such as the disease subtype of were not controlled for.
Nevertheless, the results clearly demonstrate the potential
of our new approach to reveal underlying structures in high
dimensional quantitative MRI datasets.
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TABLE I
MS DATA CLUSTERING RESULTS

Cluster N EDSS Age [Years] Gender
Eype 20 14 | 25+22 | 461 +12.4 8 Male, 6 Female
FEpot < 0 29 | 09+16 37.8+9.7 9 Male, 20 Female

IV. DISCUSSION AND CONCLUSION

In the current work, a new method for the unsupervised
grouping of points in multidimensional feature space was
presented. The method is based on a simplified classical
model for the formation of larger nuclei from the fusion of
single nucleons or smaller nuclei. Its performance has been
tested in correlated artificial datasets and in multidimensional
quantitative MR image features defined for a group of 43
multiple sclerosis patients.

A. Perfortnance of the algorithm

As demonstated in the results section, the algorithm pre-
sented in the current work offers the possibility to automat-
ically determine the number of clusters. This is achieved by
stopping the iterative approach at the point of lowest average
kinetic energy. Here, the system has reached its equalibrium
state where larger nuclei have been formed. As can be seen
from Fig. 1, the corresponding clusters are neatrly spherical.
This is not unexpected as the Huclidean distance between
nuclei was emploved in the corresponding potential function.
In contrast, clustering approaches such as k-means result in
the formation of spherical clusters when using the Euclidean
distance measure as no dynamic rearrangement of points in
space is performed [25]. This limits their applicability to
none correlated dataset where isotropic groups are expected.

In our model, the total depth of the potential in the
fused nuclei decreases with increasing size. Furthermore, it
is approximately constant for all constitutents as the Woods-
Saxon function is almost flat for distances » < R (Eq. 1).
The latter point is important as it provides the basis for
the indentification of points belonging to the same cluster.
On the other hand, outliers do not experience the attractive
strong force as their average distance to other nuclei or
nucleons is large. Therefore, their final potential energy is
always positive. This allows for a simple identification of
both clusters and outliers based on the EP°* histogram for
all particles. As such, Nuclear Potential Clustering might
also be used as a tool to detect and remove outliers from
multidimensional datasets.

It was demonstrated that the algorithm works very effi-
cient even on hard cluster problems such as a horseshoe
surrounded by blops (Fig. 1). However, we have observed
a sensitivity of our algorithm to changes in K. A small
value of K resulted in the splitting of larger groups whereas
larger clusters were fused if R was too large. The splitting
of clusters exclusively happens at regions where the point
density decreases due to statistical fluctuations. It is therefore
an finite sampling effect which does not occur in larger
groups with approximate constant feature space density.
However, it might even be be advantageous to differentiate
and identify such “touching” clusters in some applications.
A similar problem occurs for points located at the border
of larger clusters where the density decreases (see e.g. Fig.
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Fig. 2. Results from the unsupervised clustering of MS data. (a) Temperature as a function of time. (b) Final distribution of the potential energy for all
points. The Nuclear Potential Clustering approach has identified one cluster with EP°* < 0 and one outlier group. (c) Distribution of the EDSS score for
the two groups identified. The outlier group has a significantly higher average EDSS score.

1(c)). Both cases might be handled by increasing the nuclear
force range, R, in Eq. 1 during later stages of the algorithm.
We do not expect that this poses significant problems in
that distinct clusters are subsequently fused. As can be seen
from Fig. 1, clusters are significantly shrunken to highly
dense regions in feature space at later times. Therefore,
a reasonable increase of R should not result in a fusion
of otherwise distinct clusters. The optimisation of the best
choice for R(t) is currently investigated in our lab.

Even though Nuclear Potential Clustering has proven
a good performance on correlated multidimensional test
datasets, several further improvements are possible. Most
importantly, the final identification of clusters might be
enhanced by adding additional features such as the cluster
shape or position in feature space. Currently, the average
potential energy of each point is used as single criterion to
identify the number of clusters and to define the membership
of each point to a cluster. This is because the average poten-
tial energy of a nucleon is given by the attractive potential
of the N — 1 other nucleons of the same nuclei. Therefore,
all points in a common cluster experience approximately the
same average F2P°'. However, if two groups with the same
number of members are present, the current criterion does
not allow for a differentiation of the corresponding clusters.
Therefore, additional measures such as the centre of mass or
shape parameters have to be included to better differentiate
distinct clusters which contain the same number of points.

B. Quantitative MRI data

As discussed above, the method presented in the current
work allows for a simulatanous identification of clusters and
outliers. Applying the Nuclear Potential Clustering approach
to image features derived from quantitative MRI maps re-
vealed an interesting relationship. We have observed that
younger patients with low grade disease without significant
neurological symptoms form a homogeneous group (cluster).
In contrast, older patients with higher grade were identified
as outliers, i.e. they did not show a consistent behaviour
with respect to the image features defined. This can be
interpreted as a diffuse evolution of different disease courses
of individual patients which start from a common region of
feature space. It might be interesting for future studies to
follow the time dependence of the path for an indidual patient
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in feature space in order to investigate and better characterise
the underlying dynamic behaviour.

It is important to notice that this observation implies by no
means that the dispersion of points is only due to differences
in the individual disease courses. It might have been influ-
enced by other factors, i.e. the different ages or treatment
histories of the individual subjects. However, this article
focusses on the feasibility of Nuclear Potential Clustering to
detect meaningfull structures in MR image data. Therefore,
a further clinical investigation and interpretation is outside
the scope of this study.

The image features used for the classification of MS
patients were all based on quantitative MRI acquisitions.
Therefore, any feature calculated from a quantitative map is
quantitative itself. Even though such parameters are highly
correlated, their quantitative nature significantly simplifies
the study of chronic diseases such as multiple sclerosis. This
is because all parameters are solely influenced by physical
and/or physiological changes within an image voxel. They
do not depend on environmental factors such as scanner
manufacturer, software, magnetic field strength or room tem-
perature, which typically change between scans performed
at different timepoints or different institutions. However, MS
patients have to be scanned regulary resulting in up to 100
MR scans for an individual subject, performed over the pe-
riod of several decades. Therefore, it is extremely important
to define quantitative biomarkers which are independent of
the changing environmental conditions. This might be one
of the reasons why quantitative MR methods are extensively
investigated in the MS-related literature [3], [7]. However, the
emergence of new acquistion schemes, which allow for the
simultaneous measurement of quantitative parameters within
short measurement times [22]-[24], require the use of proper
tools for the analysis of the corresponding multidimensional
distributions. It was therefore the ultimate goal of the cur-
rent work to present a new approach for the extraction of
quantitative image based biomarkers. Such methods should
provide a basis for future research efforts on markers for
the objective assessment and therapy evaluation of multiple
sclerosis.
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