
 

  
Abstract—Metallic plume is an important phenomenon 

during high power disk laser deep-penetration welding, which 
can reflect the welding quality. To study this laser-induced 
plume characteristics and its relation to welding quality, an 
extraviolet and visible sensitive high speed color camera was 
used to capture the metallic plumes in a high-power disk laser 
bead on plate deep-penetration welding of Type 304 austenitic 
stainless steel plates at a continuous laser power of 10 kW. 
These captured digital images were transfered to the HSI 
(Hue-Saturation-Intensity) color spaces from the RGB color 
spaces. The area of metallic plume was segmented and defined 
as the plume eigenvalue. The fluctuation of weld bead width 
was used to evaluate the welding stability. To monitor the 
plume behavior, a short-time Fourier transform was applied to 
obtain the time-frequency characteristics of plume images. Also, 
the hierarchical clustering was analyzed for the time-frequency 
characteristics of plume images. Welding experimental results 
showed there existed relationship between the metallic plume 
and welding quality, and the fitting curve of clustering could 
reflect the fluctuation trend of the weld bead width effectively. 
 

Index Terms—Disk laser welding; Metallic plume; 
Short-time Fourier transform; Time-frequency analysis; 
Hierarchical clustering 
 

I. INTRODUCTION 

igh power disk laser welding is a competitive welding 
method and is well known for its high welding speed, 
good welding quality and deep penetration. In recent 

years, the disk laser welding has been widely used in 
automotive production and electronic industry. During a  
high power disk laser welding, a metallic plume mixture is 
generated quickly from the surface of the welded material. 
This plume mainly consists of the metal vapor and is one of 
the most important phenomenon which can be used to 
monitor the laser welding quality. Research works have 
shown that the metallic plume has negative effects on the 
energy transference efficiency of the laser beam and the 
welding quality [1],[2]. There exists an internal relationship 
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between the plume characteristics and the welding status. To 
monitor and control the welding quality in real-time, it is 
necessary to investigate the metallic plume characteristics. 

In recent years, some researches such as spectroscopy, 
photoelectric signal processing, acoustic signal processing, 
vision methods, and so on were performed to study the 
dynamic behaviors of the metallic plume [3-6]. The 
holographic interferometry was applied to study the 
laser-induced plume [7]. The Fourier transform was used to 
analyze the acoustic signal of metal vapor and the 
time-frequency was applied to study the plasma 
characteristics [8],[9]. These study results showed that the 
density and the size of the plasma were related to the laser 
power and beam focus position. There was a certain relations 
between the metallic plume and the weld quality. However, it 
is still difficult to find the exact relationship between the 
characteristics of metallic plume and the weld quality. 

In order to obtain more detailed dynamic information 
about metallic plume, we used the high-speed photography to 
record the color images of metallic plume in a high power 
disk laser welding process. High-speed photography is an 
effective method and is widely used in welding measurement, 
it can accurately capture and monitor the metallic plume 
information. The important characteristic features of plumes 
could be extracted from these color images [10,11]. Usually, 
the more energy a weldment absorbs, the bigger the metallic 
plume is. Here, the area of metallic plume was used as the 
characteristic parameter and the short-time Fourier transform 
was applied to obtain the time-frequency characteristics of 
plume. Also, the hierarchical clustering was used to analyze 
the plume characteristics and finally a clustering curve was 
plotted. Welding experimental results showed that in a 
definite parameter combination, the 6th fitting curve of the 
metallic plume frequency characteristic clustering could 
effectively reflect the fluctuation trend of the weld bead 
width. 

II. EXPERIMENTAL APPARATUS AND CHARACTERISTIC 
EXTRACTION 

A. Experimental Apparatus 
The schematic of a disk laser welding experimental 

apparatus is shown in Fig. 1. The experimental system 
consisted of a TruDisk-10003 disk laser welding equipment 
(laser power 10kW), a Motoman 6-axis robot and a welding 
experimental platform equipped with shielding gas (argon), 
servo motors and fixing devices. An extraviolet and visible 
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sensitive high speed color camera was used to capture the 
metallic plume dynamic color images during a 10kW 
high-power bead-on-plate disk laser welding. The welding 
conditions are listed in Table I. 

 

 
Fig. 1.  Experimental apparatus of high power disk laser welding 

 
TABLE I 

WELDING EXPERIMENTAL CONDITIONS 

Welding apparatus TruDisk-10003 
Laser power 10kW 

Spot diameter 480μm 
Laser wavelength 1030nm 

Welding speed 4.5m/min 
Camera speed 2000 frame/second 

Image resolution 512×512 pixel 
Size of weldment 150×100×10 mm 

Weldment Type 304 austenitic stainless steel 

 

B. Extraction of Plume Characteristics 
The high-speed camera collected 2400 frames RGB image 

of the metallic plume within 1.2 seconds, and each frame 
image corresponded to a welding status. The surface of a 
welded specimen is shown in Fig. 2. It can be seen that the 
middle part of the weld seam is narrow and has poor quality. 
This region corresponded to 1066-1333 frame images. The 
captured plume images from 481 to 2400 frames were 
processed to study their characteristics. 

 
 

 

 
 

Fig. 2.  Surface of a welded specimen of high-power disk laser welding 
 

When the disk laser beam focused on a weldment, the laser 
energy was transfered to the surface of weldment, the 
weldment melted immediately and the metallic plume 
emerged. The area of metallic plume could reflect the 
absorptivity of laser energy which reflected the welding 
quality. Thus, the metallic plume area could be used as a 
characteristic parameter. In order to extract the plume 
characteristics accurately, the captured RGB images were 
converted to the HSI images. Using the image processing 
methods,  the spatters were removed and the plume area was 
segmented. The image processing procedure of metallic 
plume is shown in Fig. 3. All plume images were processed 

and the area of plume was calculated, as shown in Fig. 4. It is 
difficult to find there exists the obvious fluctuations  of 
plume area. Therefore, we considered applying the methods 
of short-time Fourier transform and hierarchical clustering to 
investigate the plume characteristics.  

 

                                       
 

Fig. 3.  Schematic diagram of metallic plume image processing 
 

 
 

Fig. 4. Curve of Metallic Plume Area with Image Sequences 
 

III. SHORT-TIME FOURIER TRANSFORM 

A. Concept of Short-time Fourier Transform 
Short-time Fourier transform(STFT) can not only reflect 

the time-domain feature of signals, but also present the 
spectrum of signals clearly. Its basic idea is that the signal to 
be transformed is multiplied by a limited window function 
before the Fourier transform is applied, and this window 
function is nonzero for only a short period of time. This 
window slides along the time axis, resulting in a 
two-dimensional representation of the signal. This can be 
mathematically written as [12] 

* 2STFT ( , ) ( ) ( ) j ft
Z t f z t t t e dtπη

∞ −

−∞
′= −∫          (1) 

where ( )z t  is the signal to be transformed and *( )t tη ′−  is 

the window function around t′ . Through *( ) ( )z t t tη ′− , 

the signal around t′  is obtained and the short-time Fourier 

transform is just the Fourier transform of *( ) ( )z t t tη ′− . 
 

B. Window Function 
The frequently-used window functions are Rectangular 

window, Gauss window, Hanning window, Hamming 
window, Blackman window, Triangle window, Cosine slope 
window, Index window and Bartlett-Hanning window. In 
welding experiment, Gauss window, Hanning window, 
Hamming window and Bartlett-Hanning window were 
applied to the short-time Fourier transform.  
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    Suppose ( )x n  is the signal sequence and ( )w n  is a 
window function whose length is N. The expression of the 
Gauss window is 

21 ( 1)/2( )
2 ( 1)/2( )

n N
Nw n e σ

− −
−

−=                    (2) 

where σ ≤ 0.5. 
The expression of the Hanning window is 

2( ) 0.5 1 cos
1

nw n
N

π⎛ ⎞⎛ ⎞= − − ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
           (3) 

The expression of the Hamming window is 
2( ) 0.53 0.46cos

1
nw n

N
π⎛ ⎞= − ⎜ ⎟−⎝ ⎠

           (4) 

The expression of the Bartlett-Hanning window is 
2 4( ) 0.42 0.5cos 0.08cos

1 1
n nw n

N N
π π⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

   (5) 

In order to improve the temporal resolution of short-time 
Fourier transform, the length of window function should be 
as short as possible. At the same time, in order to get a higher 
frequency resolution, the length of the window should be as 
long as possible. In practical application, the length of the 
window function should be adapted to the length of signal 
local smooth length [13]. In laser welding experiment, the 
numerical values of length were set to be 64, 128, 256, 
respectively. 
 

C. Analysis of Short-time Fourier Transform 
In short-time Fourier transform, the different window 

types, different window length and different step length were 
chosen. The detailed combination parameters are listed in 
TableⅡ. 

  
TABLE Ⅱ  

COMBINATION PARAMETERS OF SHORT-TIME FOURIER 
TRANSFORM 

Window types 
Gauss, Hanning, Hamming, 

Bartlett-Hanning 
Length 64, 128, 256 

Step length 1, 5, 10 
 
 

 
Fig. 5.  3-D Map of time-frequency of plume area 

 
Using the short-time Fourier transform, 4×3×3 = 36 groups 

of data were obtained, in which the numbers of window types, 

length, step length were 4, 3, 3, respectively. Taking a group 
of data for example, the parameters were Gauss, 64, 10. The 
window length was 64 and it slid along the time axis 186 
times during the short-time Fourier transform, so this group 
of data was a matrix whose size was 64×186. Fig. 5 is a 3-D 
map of time-frequency information and Fig. 6 is the contour 
map of time-frequency. 
 

 
 

Fig. 6. Contour map of time-frequency of plume area 
 

As mentioned above, the image sequence 1066-1333 
frames corresponded to the middle part of the weld bead. 
This region of weld bead was narrow and had poor quality. 
Observing Fig. 5 and Fig. 6, there were not obvious 
characteristics of 1066-1333 frames. For further study, the 
50th,70th,110th frequency curves were extracted to analyze 
their characteristics. These three groups of data corresponded 
to three vertical lines, shown in Fig. 6. Fig. 7 shows these 
three frequency curves. 
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Fig. 7.  Curves of the 50th, 70th, 110th frequency of plume area signals 
 

To distinguish these three frequency curves more 
effectively, their numerical values of average, maximum, 
minimum, range, interquartile range(IQR), standard 
deviation and sum were calculated. The range was what the 
biggest number minus the smallest number. The IQR is the 
distance between the 75th percentile and the 25th percentile. 
The expression of standard deviation is 

1
2

2

1

1 ( )
1

n

i
i

s x x
n =

⎛ ⎞
= −⎜ ⎟−⎝ ⎠

∑   i=1,2,3…n        (6) 

where x  is the average value. All these eigenvalues are 
listed in Table  Ⅲ. 
 

TABLE Ⅲ   
EIGENVALUES OF DIFFERENT CURVES AMONG Fig.7 (Unit: a.u) 

 Fig.7 (a) Fig.7 (b) Fig.7 (c)
Max value 39922 47275 42242 
Min value 573 815 107 
Average 4199 4840 3787 

IQR 1893 2318 2825 
Range 39348 46459 42134 

Standard deviation 6435 7702 6743 
Sum 268750 309800 242410 

 
It was found from Fig.7 that three frequency curves had 

similar shapes. These three curves could be distinguished 
from Table Ⅲ effectively by seven eigenvalues. Thus, these 
seven eigenvalues could represent different spectrum curves 
at any time. Also, we used the statistical method to calculate 
all frequency curve eigenvalues and analyze them by the 
Hierarchical clustering. 
 

IV. HIERARCHICAL CLUSTERING 
With the development of multivariate statistic analysis, the 

clustering analysis method has been mature gradually and 
widely used in Biology, Economics, Sociology, Demography 
and so on. The hierarchical clustering is the most important 
method in clustering analysis. Its basic principle is that the 
two closest observations are joined to create a node by 
calculating the distance or similar coefficient between two 
observations. Subsequent nodes are created by pairwise 
joining of observations or nodes based on the distance 
between them, until all the nodes merge into a desired 
number of clusters. At the end, a tree structure can be created 
by retracing which items and nodes are merged [14]. 

In order to decide which clusters should be combined or 
where a cluster should be split, a measurement of 
dissimilarity between sets of observations is required. In 
most methods of hierarchical clustering, this can be achieved 
by using an appropriate metric (a measure of 
distance between pairs of observations) and a linkage 
criterion which specifies the dissimilarity of sets as a function 
of the pairwise distances of observations. 

 Some commonly used distance metrics for hierarchical 
clustering are the Euclid distance, Minkowski distance, City 
Block distance, Chebyshev distance, Mahal distance, Lance 
distance and Cosine similarity. The linkage criteria 
determines the distance between sets of observations as a 
function of the pairwise distances between observations. 
There are a variety of linkage criteria between clusters. 
Among them, three most popular ones are maximum or 
complete linkage, minimum or single linkage, mean or 
average linkage [15]. In our welding experiments, we defined 
the Euclid distance and the City Block distance as the 
distance metrics and took minimum linkage for hierarchical 
clustering. The expression of Euclid distance is 

1
22(2)

1

p

ij it jt
t

d x x
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑                   (7) 

The expression of City Block distance is 

1

p

ij it jt
t

d x x
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑                     (8) 

     
Mathematically, the minimum linkage is written as 

min( )pq ijD d=   i px G∈ 、 j qx G∈              (9) 

After the short-time Fourier transform, there were 36 
groups of time frequency test data. The statistics method was 
used to extract the seven defined eigenvalues, then these 
eigenvalues were studied by clustering. The procedure of 
hierarchical clustering is as follows. First, the Euclid distance 
and the City Block distance were defined as the distance 
metrics, and the distance between observations were 
calculated. Second, the minimum linkage was used to create a 
tree structure. Finally, the discontinuous coefficients was set 
and the clustering tree was output. In this experiment, the 
discontinuous coefficients were 0.5, 0.7 and 0.9, 
respectively. 

 

 
Fig. 8. Fitting curve of time-frequency clustering of metallic plume area 
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obtained after calculation. The characteristics of clustering 
data was analyzed by drawing the clustering curves and 
curve-fittings. Using Bartlett-Hanning window whose length 
was 256 and step value was 5 for the short-time Fourier 
transform, and the Euclid distance, minimum linkage and 
discontinuous coefficient 0.9 for hierarchical cluster, it was 
found that the fluctuation trend of 6th fitting of clustering 
curve was similar to the 6th fitting curve of weld seam bead 
width. That means the 6th fitting of the clustering curve could 
reflect the weld bead width changing trend effectively. Fig. 8 
is the clustering curve based on the combination parameters 
mentioned above, the dotted line is the 6th fitting curve of 
clustering curve. 

Fig. 9 shows a 6th fitting curve of the clustering curve 
contrasting to the 6th fitting curve of  weld seam bead. In Fig. 
9, the dotted line is the weld bead width, the dot and dash line 
is the 6th fitting curve of weld bead width and the solid line is 
the 6th fitting curve of the clustering curve. It can be seen that 
the solid line and the dot and dash line have the consistent 
fluctuations. The 6th fitting curve of the clustering curve 
could reflect the weld bead width change trend effectively. 
Experimental results have shown that the weld bead width 
can be evaluated by using the time-frequency clustering of 
metallic plume area. It has provided a method to monitor and 
evaluate the welding quality in real time during disk laser 
welding by analyzing the time-frequency clustering of 
metallic plume area. 

 
 

Fig. 9.  Description of time-frequency clustering of metallic 
plume area and weld bead width 

 

V. CONCLUSIONS 
In a high power disk laser welding process, there exists a 

relation between the metallic plume area and the weld bead 
width. The metallic plume area could be calculated by using 
image processing techniques. It was found that the accurate 
plume area could be obtained by processing the plume 
images in the HSI color space. 

The short-time Fourier transform could be applied to 
analyze the characteristics of plume area and extract the 
eigenvalues for the hierarchical clustering. Using the 
Bartlett-Hanning window whose length was 256 and step 
value was 5 for the short-time Fourier transform, and the 
Euclid distance, minimum linkage and discontinuous 
coefficient 0.9 for the hierarchical clustering, the 6th fitting 
curve of the clustering curve and the 6th fitting curve of weld 
bead width had the similar fluctuations. The 6th fitting of the 

clustering curve could reflect the weld bead width changing 
trend effectively. Experimental results showed that the 
time-frequency clustering of metallic plume area could be 
used to monitor and evaluate the welding quality during high 
power disk laser welding. 
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