
 

 

Abstract—Reverberation is one of the main causes of speech 

degradation in audio applications. This paper proposes a novel 

multi-microphone approach that estimates impulse responses 

to dereverberate the speech without a priori information about 

the acoustic channel characteristics, statistical properties of 

speech and noise, or locations of source and microphones. The 

impulse responses approximated by a simple first-order 

method are utilized in a reverberant linearly constrained 

minimum variance (LCMV) model. Simulation results show an 

improvement in dereverberation compared to using the multi-

channel least mean square (MCLMS) impulse response 

estimator. 

 
Index Terms—Blind channel identification, dereverberation, 

microphone array, noise reduction 

 

I. INTRODUCTION 

major cause of speech degradation in most practical 

audio recording applications is room reverberation. In 

daily talking conversations, although normal people are not 

affected by such degradation to some degree, audio quality 

suffers a lot in a machine recording system from the 

damaged speech intelligibility.  

Currently, most research is focused on dereverberation 

with a microphone array. Two groups of methods exist 

based on whether or not they try to find coefficients in an 

equalizer to filter received array signals. Among the non-

equalizer approaches, beamforming would be the most 

popular method. The original beamforming method is 

described in [1] and [2]. Although simple and robust, the 

performance is greatly limited by the shape and dimensions 

of the array system.Another class of dereverberation 

methods attempts to equalize the received signal to recover 

the original speech signal. Such methods are divided into 

two categories: one is based on the multiple input output 

inverse theorem (MINT) [3],to estimate the room impulse 

response first, then to find the inverse filter, and another one 

is to directly search for the inverse filter without making any 

identifications on the channel.  

For those methods that require knowing channel 

characteristics, robustly estimating an acoustic impulse 

response in the presence of noise becomes a very important 

but difficult task. The cepstral mean method is based on the 
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assumption that clean speech is uncorrelated with adjacent 

time windows, so averaging over several cepstrums results 

in an impulse response estimation [4]. Adaptive algorithms 

have been used due to their inherent ability to track the 

acoustic impulse response in a slowly varying context. The 

two most popular algorithms are the Multichannel Least-

Mean-Square (MCLMS) [5] and the Normalized 

Multichannel Frequency-Domain LMS (NMCFLMS) [6]. 

In this paper, we proposed the mutual deconvolution 

method to estimate the acoustic impulse response, and 

combined it with the dereverberant linearly constrained 

minimum variance algorithm [7] to achieve blind 

dereverberation. Simulations showed our approach had 

efficiently removed echoes and reflections to a large degree. 

This paper is organized as the following: Section II 

formulates the reverberation problem. Section III presents 

our proposed mutual deconvolution impulse response 

estimation method. Simulations taking the dereverberant 

LCMV algorithm with impulse response estimated by our 

method are presented in Section IV. It also includes 

performance comparison with the multi-channel least mean 

square (MCLMS) algorithm. Finally, conclusions and future 

work are discussed in Section V.  

II. PROBLEM FOMULATION 

Assuming reverberation is made up of a direct path signal 

and many delayed attenuated replicas, the impulse responses 

from the speech source to each microphone are 
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where N  is the number of sensors, 

1 1 1 2, , , , , , , , ,N N N         are attenuated weights in 

signal transmission, 

and 
11 12 13 21 1 2 3, , , , , , , , ,N N Nt t t t t t t    are the 

reflections’ delay time after the direct path signal is 

received. 

In the frequency domain, we have 
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where , 1,2, ,iY i N   and X  are Fourier transforms of 

the received signal at each microphone and the source 

signal, respectively. 

Our goal of impulse response estimation becomes blindly 

finding the attenuating weights and delay times, only from 

the observations of 
iy  without any prior information on x . 

Before introducing our proposed estimation method, we 

assume that the channel can be identified. According to [8], 

two inductive conditions must be satisfied to ensure system 

identifiability for all second order statistics-based blind 

channel identification methods: 

(1) The polynomials formed from , 1,2,ig i N   are 

co-prime, i.e. the channel transfer functions 
iG  do 

not share any common zeros; 

(2) The autocorrelation matrix [ ( ) ( )]T

xxR E x n x n  of 

the source signal is of full rank, where [ ]E   

denotes expectation. 

 

III. IMPULSE RESPONSE ESTIMATION 

Different from any second-order statistical channel 

estimator, our proposed approach attempts to directly 

calculate impulse responses from the fact that the 

microphone array receives the direct-path signal first 

followed by the other attenuated and delayed copies from 

reflection paths. The delay-and-sum beamformer result is 

utilized to roughly estimate the source signal, then every 

channel’s received signal is deconvolved with this estimate 

to acquire mutual information among channels, and finally 

room impulse responses from source to each microphone are 

reconstructed. 

To take the delay-and-sum beamformer result as a rough 

source estimation, we must synchronize signals from the 

direct-path, based on knowledge of the direct sound wave’s 

direction of arrival (DOA). A method for DOA estimation 

for broadband coherent waves is the frequency-smoothing 

MUSIC algorithm, presented in [9]. In the following 

context, we assume signals from direct-path have already 

been aligned, and we also assume signals are pre-amplified 

to compensate for the sampling system impulse response 

and for the signal energy loss in direct-path transmission. 

Thus,  

11 21 1Nt t t T    , (3)  

and 
1 2 N       . (4) 

The transfer functions then become 
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which can be written as 
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We remove the factor 
j Te  

 from (6). However, for 

simplicity, we still use the symbol iG  as a transfer function 

but it now has a new definition, 
1 21 ,  1,2, ,i ij j

i i iG a e be i N
  

      , (7) 

where 
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and 

1 2 2 3 1 2,  ,  ,  i i i i i it T t T          . 

By introducing 
jz e  , (7) can be further written as 
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      . (8) 

Signals received by an N-microphone array are 

i iY XG , (9) 

and their average is 

1

1 N

i

i
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  . (10) 

We seek relations among impulse responses by 

deconvolving each 
iY with Y . Let us recall the channel 

identifiability conditions in section II if condition (2) about 

source signal X  is satisfied, all channel characteristics iG  

are contained in received signal iY . Thus we have 

1 2

1 2

1 1

1 1

1 1

1

1 1
1

i i

k k

i i i
i N N

i i

i i

i i

N N

k k

k k

Y XG G
D

Y
X G G

N N

a z b z

a z b z
N N

 

 

 

 

 

 

  

  


  

 

 





. (11) 

In order to simplify the process of finding ,  ,  i ia b   

and 
1 2,  ,  i i  from 

iD , we make a slightly stronger 

assumption than the channel identifiability requirement (1): 

no reflections are received by any microphone at the same 

time, 

,  for any ( , ) ( , )ik mn i k m n   . (12) 

Then (11) can be expanded to an infinite polynomial by 

the use of polynomial division deconvolution, 

1 1
1 1

1 i k

i i k

k i

N
D a z a z

N N

  




    . (13) 

In (13), because 1
1

i

i

N
a z

N


 is dominant to any of 

1
1

k

ka z
N


  when N is large, it is possible to find 

1
i

N
a

N


 

by comparing to a threshold  , and locate the delay 1iz


. 

Based on this, we arrive at an impulse response 

reconstruction algorithm that is shown in TABLE I. We use 

,rec iG  to stand for reconstructed transfer function of the ith 

channel, 
recG  to be an average of 

,rec iG , and 
iR  to represent 

residues of removing the deconvolution results based on 

knowledge of 
,rec iG , from expected deconvolution results 

iD . 
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TABLE I 

THE MUTUAL DECONVOLUTION ALGORITHM FOR BLIND IDENTIFICATION 

OF A REVERBERANT SYSTEM 

Parameters: 

,rec iG ,   

Initialization: 

1
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i
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  , 

,  1,2, ,i
i

Y
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Y
    

, 1,  1,2, ,rec iG i N    

,
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1 N

rec rec i

i

G G
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,rec i

i i

rec

G
R D

G
   

Computation: 

(a) If max( )iR  , terminate computing. Otherwise, 

(b) for 1,2, ,i N  , find the first z  
 that    from 

left side of polynomial iR . If z  
 exists, update 

,rec iG  with 

, ,
1

rec i rec i

N
G G z

N

  


, 

(c) 
,

1

1 N

rec rec i

i

G G
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  , 

(d) 
,rec i

i i

rec

G
R D

G
  , go to (a). 

 

 

IV. SIMULATION 

We implement this algorithm in a discrete-time system 

with a sample rate of 11025 Hz, and use the Fast Fourier 

Transform (FFT) and the Inverse Fast Fourier Transform 

(IFFT) to complete deconvolution. We simulate our mutual 

deconvolution algorithm for a simple reverberation model 

considering only the strongest 4 reflections. An 8-

microphone array receives the speech signal from the far 

end. 

The reconstructed impulse response from our algorithm, 

and the results from the MCLMS algorithm are illustrated 

together in Fig. 1. 

 
Fig. 1 Reconstructed impulse response 

 

Next, dereverberation using the dereverberant LCMV 

algorithm is implemented with both impulse responses 

estimated by our approach and the MCLMS method for 

comparison. After the signals are recovered, they are 

deconvolved with the original source signal to show the 

dereverberation performance. In this evaluation method, a 

complete dereverberation has a result like a single pulse, 

representing the direct-path signal. Any other non-zero part 

in the result indicates the partially dereverberated signal 

remaining in the output. The less the residual part is, the 

better the algorithm performs. Fig. 2 shows the evaluation 

results. We find for simplified acoustic impulse responses, 

both our proposed mutual deconvolution method and the 

MCLMS algorithm achieved high-quality dereverberation. 

 

 
(a) 

  
(b) 
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(c) 

Fig. 2 Impulse responses: (a) at array input, (b) at the output of 

dereverberant LCMV with impulse response from our proposed method, (c) 

at the output of dereverberant LCMV using the  impulse response from the 

MCLMS filter 

 

In a simulation where the impulse response is closer to 

the actual situation, the mutual deconvolution algorithm also 

achieves a reasonably good result. Fig. 3 illustrates a more 

reverberant impulse response and its estimate from our 

proposed method with a threshold of 0.2. Delay times of 

most early reflections are obtained accurately, although 

errors in their values exist. 

 
Fig. 3 A more reverberant impulse response and its estimate from mutual 

deconvolution method 

 

If we take the estimate in Fig. 3 into the dereverberant 

LCMV algorithm, and deconvolve the output with the 

original source signal, we can get a graphic view for the 

output shown in Fig. 4. Although noise exists, it is still a 

huge improvement from the input. In this case, however, the 

MCLMS algorithm consumes impractical computing 

resources because of its long filter settings. The result is far 

from convergence after 6 hours running of the MCLMS 

algorithm on a four-core computer. 

 
(a) 

 
 (b) 

Fig. 4 Impulse responses: (a) at array input, (b) at the output of 

dereverberant LCMV with impulse response from our proposed method 

 

V. CONCLUSION 

From simulations above, our proposed mutual 

deconvolution method achieved reasonably high-quality 

acoustic impulse response estimation. It also shows great 

advantage in computing efficiency compared to second-

order statistical channel identification algorithms. By 

combining the mutual deconvolution method with 

dereverberant LCMV algorithm, blind dereverberation is 

accomplished. 

Future work includes eliminating errors from FFT/IFFT 

deconvolution which generates a finite length series that 

differs from an infinite length polynomial deconvolution 

result. 
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