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Abstract—In multi-core processor systems, processor caches
are generally shared among multiple processor cores. As a
consequence, co-scheduled applications constantly displace each
others data from the shared cache, which is called cache
contention. As cache contention degrades application perfor-
mance, efforts have been made to predict cache contention and
then select application co-schedules that minimize interference.
Several such methods have been proposed in the past. However,
those methods have rarely been compared to one another, as
an appropriate evaluation framework has been missing so far.

In this paper, I present a framework to precisely eval-
uate cache contention prediction techniques and compare
them to one another. An implementation of the frame-
work is licensed under GPLv3 and can be downloaded at
http://www.ldv.ei.tum.de/cachecontention.

Index Terms—cache-contention-prediction, multi-core, evalu-
ation, framework.

I. INTRODUCTION

IN multi-core processor systems, applications are executed
in parallel and simultaneously share resources such as

memory controller, caches and busses (cf. figure 2). Sharing
limited resources, however, applications frequently interfere
with each other and degrade each other’s performance. As
an example, figure 1 shows L2 cache hitrate degradation of
SPEC 2006 benchmark milc when milc is co-scheduled with
other SPEC 2006 benchmark applications: The bold black
line illustrates L2 cache hitrate of milc when milc is executed
stand-alone and does not share any caches with any other
applications. The other lines represent L2 cache hitrate of
milc when milc is co-scheduled with applications astar, gcc,
bzip2, gobmk and lbm respectively. Note that a higher L2
cache hitrate implies better performance. As you can see
from the figure, L2 cache degradation of milc heavily varies
with the selection of the co-scheduled application. While
there are applications that have only little effect on L2 cache
performance of milc, such as astar and gcc, there are co-
schedules that have severe impact such as gobmk and lbm.
Generally speaking, application performance on multi-core
processor systems does not only depend on the amount of
resources provided by the computer system and the amount
of resources the considered application applies for, but also
on co-scheduled applications sharing those resources. As a
consequence, resource-aware co-scheduling of applications
has gained more and more attention the recent years and
new scheduling techniques have been proposed that aim
to optimize overall system performance by predicting and
avoiding cache/resource contention. However, the proposed
techniques have rarely been compared to other state-of-the-
art methods, as an appropriate evaluation framework has
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been missing so far. In fact, such methods have rather been
verified by comparing performance impacts of a state-of-the-
art process scheduler to the impacts achieved by a modified
version that predicts and minimizes resource contention by
an adapted selection of co-schedules.
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Fig. 1. L2 cache hitrate degradation introduced to SPEC 2006 benchmark
milc when co-scheduling milc with each of the SPEC 2006 benchmarks
astar, gcc, bzip2, gobmk, and lbm on a CMP dual-core architecture as
presented in [1].

In the following, I
• present three techniques that have been applied in the

past to evaluate cache contention prediction and discuss
their benefits and limitations (sec. II),

• identify requirements on a new framework to evaluate
cache contention prediction (sec. III),

• propose a new evaluation framework (sec. IV) and
• exemplarily show some evaluation results gained from

the framework (sec. IV).

II. STATE-OF-THE-ART EVALUATION TECHNIQUES

A. Fedorova et al.’s Evaluation Method

In [3], Alexandra Fedorova et al. analyze and evaluate
prediction methods that estimate contention within a set
of |A| = 4 applications A = {a1, a2, a3, a4} that share
resources on an Intel Quad-Core Xeon processor. The applied
processor architecture can be described by two of the proces-
sors shown in figure 2 (greyed boxes) that are interconnected
via the bus system.

For evaluation, the authors first apply the prediction
method to estimate the best co-schedule for each of the
applications in A. As an example, a prediction method might
estimate the best co-schedule set to be [(a1, a2), (a3, a4)],
which means that applications a1 and a2 should be executed
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Fig. 2. Dual-core processor architecture as presented in [2]. While the
L1 caches are private to the processor cores, the L2 cache is shared, which
results in L2 cache contention.

on the one processor entity (greyed box in figure 2) and
applications a3 and a4 should be executed on the other.

Then, the authors compare the degradation introduced
to a1, a2, a3, and a4 on this estimated best application
co-schedule to the degradation introduced to a1, a2, a3,
and a4 when applying the optimal co-schedule set, e.g.
[(a1, a3), (a2, a4)].

This is done in the following steps:

• Run each application a ∈ A stand-alone on the proces-
sor and measure execution time ta, i.e. execution time
of application a when a does not suffer from resource
contention.

Let Ca be the set of applications that are co-scheduled
with application a on the same processor and share
the L2 cache1, and let tCa be the execution time of
application a when application a is co-scheduled with
the applications in Ca, then

• for each a ∈ A and each Ca ∈ A\{a}, measure
execution time tCa .

• For each a ∈ A and each Ca ∈ A\{a}, calculate the
degradation Ca introduces to a, i.e. dCa = (tCa−ta)/ta.

• Calculate average degradation of the predicted best co-
schedule dpred =

∑
a∈A dCa/|A|, where, for each a ∈

A, co-schedule Ca is the predicted best co-schedule.
• Calculate average degradation of the actual best co-

schedule dact =
∑
a∈A dCa/|A|, where co-schedules

Ca is chosen such that dCa is minimized.
• Determine evaluation metric E as percentaged perfor-

mance degradation of a when applying the predicted
best co-schedule instead of the actual best co-schedule

E = ((dpred − dact)/dact) · 100 %.

1If there are only two processor cores sharing a cache, then Ca consists
of only one application. Given a co-schedule set (a1, a2) and let a = a1,
then Ca = {a2}.

E is the metric Fedorova et al. apply in [3] to evaluate
methods that predict contention for shared resources on
multi-core processors.

The authors limit their evaluation to prediction accuracy.
An evaluation of the amount of time necessary to create or
apply the predictors is not performed.

Fedorova et al. are one of only a few authors that evaluate
accuracy of contention prediction methods in the context of
state-of-the-art prediction techniques. As evaluation method,
they compare program execution times of predicted best
co-schedules to program execution times of actual best co-
schedules, measured on a physically available processor, not
a simulator.

Generally, Fedorova et al.’s method to evaluate the predic-
tion of resource contention is a highly accepted approach, as
it relies on real applications executed on a physical machine.
And as long as this approach is applied to evaluate methods
to predict contention in general, everything is fine.

But it comes to problems when you try to use this
technique to soleley evaluate methods to predict cache con-
tention, as execution time in general depends on more factors
than just cache misses, and the ground-truth reference then
would incorporate effects that do not origin from cache con-
tention – and are not modeled in the prediction techniques. In
[3], Fedorova et al. address this effect when they explain the
surprisingly good performance of stand-alone cache misses
to predict cache misses of application co-schedule sets, as it
has been proposed by Knauerhase et al. [4].

As a consequence, a cache simulator would be more suited
to evaluate the prediction accuracy of cache contention pre-
diction methods, as results obtained from a cache simulator
would more precisely reflect the characteristics addressed
by cache contention prediction methods. However, when
it comes to an evaluation of prediction accuracy regarding
contention in general, i.e. when overall system performance
is the measure to optimize, real hardware would definitely
be the best choice.

B. Chandra et al.’s evaluation method

In [5], Dhruba Chandra et al. propose and evaluate three
methods to predict L2 cache contention. Just like Fedorova
et al., Chandra et al. focus on prediction accuracy and
do not evaluate the amount of time required to perform a
prediction. Contrary to most other methods, their methods
directly predict additional L2 cache misses introduced from
sharing the L2 cache.

To evaluate their methods, the authors compare the pre-
dicted amount of additional cache misses to the actual
amount of of additional cache misses obtained from a pro-
cessor simulator (2 cores, private L1 cache for each core,
shared L2 cache, as shown in figure 2) as follows. They

• apply the simulator to determine stand-alone L2 cache
misses µa of |A| = 9 different applications a ∈ A =
{a1, a2, . . . a9},

• select 14 out of (9 − 1)! = 40320 possible application
pairs (a,Ca), a ∈ A, Ca ∈ A\{a}, and apply the
simulator to determine the amount of L2 cache misses
µCa of application a when a is co-scheduled with
application Ca,
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• calculate the actual amount of additional cache misses
introduced to application a when co-scheduling a with
Ca as µsimCa = µCa − µa,

• apply the prediction method to calculate a prediction of
the amount of additional cache misses µpredCa

introduced
to a by co-scheduling a with Ca,

• determine the prediction error regarding co-schedule set
(a,Ca) by |µpredCa

−µsimCa | for all mentioned co-schedule
sets and

• take the arithmetic mean of the error

Ea =

∑
(a,Ca)∈A |µ

pred
Ca
− µactCa |

|A| · (|A| − 1)

and the geometric mean of the error

Eg = (Π(a,Ca)∈A(1 + |µpredCa
− µsimCa |))

1
|A|2−|A| − 1

as evaluation metric.
As you can see from Ea and Eg , the methods applied

by Chandra et al. are well suited for their evaluation, as
all their prediction methods provide an amount of additional
L2 cache misses as outcome. However, applying Chandra
et al.’s method as a general technique to evaluate cache
contention prediction methods, you would run into trouble:
What would you do if the methods you want to evaluate
do not predict cache contention in terms of additional cache
misses, as it is exemplarily the case with the Pain method
proposed by Fedorova et al. [3]? As shown in [6], many
prediction methods provide values without any technical
meaning, enforcing an evaluation of prediction method only
in relation to one another. To such methods, Chandra et al.’s
evaluation technique cannot be applied.

C. Settle et al.’s Evaluation Method

In [7], Alex Settle et al. propose a cache contention
prediction method based on so-called activity vectors. Ac-
tivity vectors are bit vectors that represent accesses to and
misses in groups of cache sets. The authors do not compare
their method to state-of-the-art techniques, but show the
effectiveness of their approach by applying the following
steps: They
• define a set of applications as processor workload, then
• execute the workload on a hyperthreading enabled In-

tel Pentium Xeon microprocessor applying a standard
Linux scheduler and measure IPCact (instructions per
cycle) and ITKOact (inter thread kick outs, i.e. the
amount of an application’s cache lines that are displaced
by a co-scheduled application) values,

• adapt the standard Linux scheduler to incorporate the
prediction method in the scheduling decision process,

• calculate the prediction from the workload and
• execute the workload with the adapted scheduler en-

abled, measure IPCpred and ITKOpred and
• take

EIPC = (IPCpred − IPCact)/IPCact and

EITKO = (ITKOpred − ITKOact)/ITKOact

as evaluation metric.
At first sight, the evaluation technique applied by Settle et

al. looks applicable to evaluate cache contention prediction
methods in general, as it

• adapts the scheduler, as it is proposed for scenarios that
exploit cache contention,

• evalutes the prediction technique by means of IPC, that
is correlated to execution time and, besides that,

• evaluates the prediction technique by means of ITKO, a
metric that directly reflects the measure of interest, and

• compares to be improved values to actual values.
In contrast to the evaluation method applied by Chandra
et al., this evaluation method

• does not rely on a specific format of prediction outcome
(e.g. additional cache misses), what makes it applicable
to a broad range of prediction techniques.

However, there are some limitations using this evaluation
technique:

• First, the evaluation technique only works on larger sets
of applications; that means that you are not able to
evaluate a predictor regarding cache interference on a
specified pair of applications, but only on a larger set.
Although this might not seem to be a crucial point at
first sight, it makes a systematic analysis of predictors
impossible, as you are not able to correlate application
characteristics (number of memory references, number
of misses, shape of the stack distance histogram) to
prediction accuracy. As a consequence, you are not able
to experiment with selected application characteristics
in order to analyse and improve predictor accuracy.

• Secondly, scheduler internals have a significant impact
on choosing the applications to be co-scheduled. This
means that scheduling decisions are not only based
on the predictors, but of course also on priorities etc.
As a consequence, you evaluate prediction techniques
by means of scheduler decisions; but those scheduler
decisions do not 100% originate from the prediction
method, but also from many side effects. As an example,
two applications that perfectly minimize cache con-
tention might never be co-scheduled if their priorities
tell the scheduler not to do so. And the priorities
might be someting you cannot control as they change
at runtime. This introduces errors and might overlay
evaluation results such that an actually better application
co-schedule might be evaluated worse.

• Thirdly, as scheduling decisions also rely on priorities,
they also rely on the past, as priorities rely on sched-
uler activities performed in previous steps. Then, as a
consequence, not only cache contention relies on the
past due to the memory characteristic of the cache’s
LRU stack, but then also the evaluation system does,
while prediction methods do not. This introduces a
huge amount of complexity in the evaluation process
and renders an in-depth analysis of cache contention
prediction techniques nearly impossible.

As a consequence, Settle et al.’s evaluation technique
might be a good choice to show the effectiveness of a specific
cache contention prediction method in general, as it has been
intended by the authors, but it does not seem to be suited
for an in-depth analysis and comparison of multiple cache
contention prediction techniques.
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III. IDEAS AND REQUIREMENTS ON A FRAMEWORK TO
EVALUATE CACHE CONTENTION PREDICTION

Given some insights gained from the analysis of state-of-
the-art evaluation methods — how should a framework to
evaluate cache contention prediction methods look like?
• As I showed in the discussion of Fedorova et al.’s eval-

uation method in the previous section, execution time
on a real hardware system is not a valid ground-truth
reference if it comes to separate the effects of cache
contention from the effects of contention in general.
Therefore, a new framework to evaluate cache con-
tention prediction methods should calculate a ground-
truth measure applying an appropriate cache simulation
framework.

• There are many cache contention prediction techniques
that provide values that can only be used for an evalua-
tion of prediction methods in relation to each another,
as I pointed out in the previous section. To support
evaluation of such methods, a new evaluation framework
should be able to evaluate cache contention prediction
techniques by means of a ranking list.

• State-of-the-art evaluations of cache contention pre-
diction methods have generally focused on prediction
accuracy. A comparative evaluation of the amount of
time required to perform a prediction has – to the best of
my knowledge – never been performed. Remedial action
has to be taken here and a new evaluation framework
should support a timing analysis of cache contention
prediction techniques.

• In order to be able to perform a fair evaluation of
prediction time, it is necessary to determine which pre-
diction steps have to be performed at runtime, and which
steps can be performed prior to runtime. Therefore, it
seems to be useful to distinguish between prediction and
predictors as follows:

– Prediction is the process of combining a set of pre-
dictors of candidate co-schedules in order to predict
cache contention. This process adds to prediction
time, as it cannot be calculated before runtime, i.e.
before the set of candidate co-schedules is known.

– Predictors are the basic blocks to store application
characteristics. In order to support arbitrary co-
schedule setups, predictors hold information of solo
applications only, i.e. they do not hold informa-
tion of multiple applications. As a consequence,
all information required to calculate predictors is
available prior to runtime, when no information
of candidate co-schedules is available. Therefore,
predictors can be calculated prior to runtime and
their calculation does not add to prediction time.

• As prediction time has not been evaluated in the past, a
comparative cost vs. gain analysis of prediction tech-
niques is also missing. Therefore, a new evaluation
framework should support such an analysis.

• State-of-the-art analysis of cache contention prediction
techniques has generally been performed in the context
of a given processor architecture, a given set of ap-
plications and a fixed amount of instructions. What has
been missing so far is a sensitivity analysis of prediction
accuracy regarding

– the amount of applications sharing a cache in
parallel (e.g. a comparative analysis of prediction
accuracy in case a cache is shared by 2, 4 or 8
processor cores) and

– the amount of instructions applied for a prediction
(interval size).

To overcome this problem, an evaluation framework
should not focus on a specific architecture or a specific
amount of processor cores sharing a cache, but be
indifferent with respect to those characteristics. Further,
the amount of instructions to be incorporated in the
prediction process should be parameterizable.

• Further, the framework should be made up from build-
ing blocks, rendering it possible to add evaluation
methods as plug-ins.

• In order to make evaluation results reproducible and
errors easy to find, a notation should be applied that
makes it easy to determine the application, interval size,
co-schedules etc. applied within a prediction process.

IV. A NEW CACHE CONTENTION PREDICTION
EVALUATION FRAMEWORK

In this section, I present a new cache contention evaluation
framework that implements all the requirements proposed in
the last section. See figure 3 for an overview of the evaluation
framework. As the framework has to support techniques that
predict cache contention of application co-schedules only
in relation to one another, the framework evaluates these
techniques by comparing ranking lists of actual vs. predicted
cache contention as follows:

Part (A) extracts memory references from applications and
stores them to tracefiles; part (B) calculates predictors; part
(C) applies those predictors to estimate cache contention; part
(D) calculates a ground truth reference; part (E) compares the
predictions to the ground truth reference and evaluates the
prediction methods accordingly.
In the following I present those five steps in more detail.

A. Extracting Memory References

Part (A) of the evaluation framework addresses the pro-
posed requirements that
• ground-truth values should be generated by an appro-

priate cache simulator and
• prediction is solely based on predictors of solo applica-

tions,
as it provides memory references as input to the ground-
truth simulator and the process of predictor calculation.
As indicated in figure 3, the evaluation framework ap-
plies the Pin toolkit [8] to extract memory references
M = {Ma1 ,Ma2 , . . . } from a set of applications A =
{a1, a2, . . . } and stores them to tracefiles: Given an appli-
cation a ∈ A, Pin interrupts program execution on each
memory reference of a and stores the referenced address to
a buffer. Whenever the buffer represents memory references
of 220 instructions, the buffer is written to disk. Then,
the buffer is reset and memory references of the next 220

instructions are recorded. This procedure repeats iteratively
until a specified number of instructions has been processed.
This step results in a tuple of memory references Ma.
In order to allow the evaluation to be performed on a
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Fig. 3. Evaluation framework made up of five parts: (A) Extraction of memory references; (B) predictor calculation; (C) prediction of cache contention;
(D) calculation of ground-truth reference; (E) evaluation. See section IV for a definition of the various symbols.

broad range of interval sizes as claimed in section III, I
partition Ma into tuples of memory references that refer
to interval sizes of z ∈ zz = { 220, 221, 222, 223, 224,
225, 226, 227, 228, 229} instructions, i.e. ∀z ∈ zz : Ma 7→
Ma,ιz = (Ma,ιz1

, . . .Ma,ιz|Ma,ιz |
). In this definition, ι

means “instruction interval”, ιz is the set of “instruction
intervals each referring to z instructions”, and ιzi means
“instruction interval no. i in the set of instruction intervals
each referring to z instructions”; |Ma,ιz | is the total number
of instructions related to memory references Ma, divided by
interval size z. Applying this partitioning scheme and the
corresponding notation allows for a unique identification of
the instruction intervals the memory references have been
extracted from. When it comes to prediction, this identifica-
tion scheme makes it possible to unambiguously relate the
value of a prediction pCa,ιzi to the application a, the co-
scheduled applications Ca, and the instructions the predictor
has been obtained from, as instruction interval ιzi refers to
instructions i·z . . . (i+1)·z−1. This transparency allows the
whole research community to easily review and reproduce
the results — or easily identify or locate errors if there are
any, as it has been claimed in section III.

B. Calculating Predictors

Part (B) of the evaluation framework calculates the predic-
tors as basic building blocks for the predictions, as claimed
in section III. For this purpose, the evaluation framework
applies the tuples of memory references Ma,ιzi to calculate
predictors for the various cache contention prediction meth-
ods to be evaluated. As an example for a prediction method,
take one of the methods referenced by Fedorova et al. [3] or
Chandra et al. [5]. As an example for a predictor, take solo

application miss rate [4] or an application’s stack distance
histogram [9] [5].

As it is the key point for the introduction of predictors to
distinguish between calculations performed at runtime and
prior to runtime (cf. section III), a rule has to be defined to
decide which calculations have to be merged to a predictor,
and which calculations have to be calculated during the pre-
diction phase. Without such a rule to unambiguously identify
the parts that have to be calculated prior to prediction and
which have to be calculated during the prediction process,
prediction time of the various prediction methods would not
be comparable and the evaluation results would be unreliable.

In this framework, I apply the rule that predictors should
incorporate as much information as possible.

What does that mean? Generally, cache contention predic-
tion techniques merge information of co-scheduled applica-
tions to calculate their predictions. This means that there
is a point in time within the prediction process you can
only pass if you know the candidate co-schedules. As this
information is definitely not available before runtime, this is
a good point to distinguish between calculations that have to
be included in the predictors and therefore do not account
for prediction time, and those calculations that have to be
performed during the prediction process and therefore do
account for prediction time. As a consequence, predictors
exclusively rely on characteristics of solo applications, i.e.
there is a predictor for each a ∈ A and this predictor is
not allowed to contain information of any other application
Ca ∈ A\{a}.

C. Prediction
Part (C) of the evaluation framework applies the predic-

tors calculated in part (B) to predict the amount of cache
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contention introduced to an application a by each application
candidate co-schedule. As you can see from figure 3, predic-
tions are referenced as pCa,ιzi . This means that their value
is a measure of cache contention introduced to application a
when co-scheduling instructions i ·z . . . (i+ 1) ·z− 1 of a
with instructions i ·z . . . (i+1) ·z−1 of each application in
the set of candidate co-schedules Ca. As an example, a might
be application astar and Ca might be {bzip2, gcc, h264ref},
if applications are chosen from the SPEC 2006 benchmark
set.

As you can see from figure 3, the output of part (C) is
a ranking of candidate co-schedules based on the predicted
amount of cache contention the candidate co-schedules in-
troduce to application a. There is a separate ranking list
calculated for each application a, each interval size z ∈ zz
and each interval i as follows:
• For each candidate co-schedule of application a in inter-

val ιzi, apply the prediction method to estimate cache
contention introduced to application a as presented in
algorithm 1.

• Measure user time τ user
Ca

, system time τ syst
Ca

, and elapsed
time τ elap

Ca
as presented in algorithm 1.

• Sort all the predictions and assign each candidate co-
schedule Ca,j its predicted ranking position ρpredCa,j ,ιzi ,
for example “1” if this candidate co-schedule is pre-
dicted to introduce the least amount of cache contention
to application a.

Algorithm 1 Measuring user time, system time, and elapsed
time.

1: Extract parameters a, Ca and ιz
2: Begin timing by calling gettimeofday(...) and
getrusage(...)

3: for all ιzi in ιz do
4: Read predictors of interval ιzi for the selected method
5: Calculate pCa,ιzi
6: Store pCa,ιzi to buffer in RAM (random access mem-

ory)
7: end for
8: End timing by calling operating system functions
gettimeofday(...) and getrusage(...)

9: Calculate τ user
Ca

, τ syst
Ca

and τ elap,
Ca

from timeval and
rusage structs

10: Write τ user
Ca

, τ syst
Ca

and τ elap
Ca

to disk
11: Write pCa,ιzi for all ιzi ∈ ιz to disk

Compared to many state-of-the-art cache contention pre-
diction evaluation techniques such as the one of Chandra
et al. [5], the ranking of candidate co-schedules allows
for a broad range of prediction methods to be evaluated
with this framework: It is not necessary that a prediction
technique estimates contention in terms of additional cache
misses — the evaluation can also be applied on prediction
techniques that only go for a relative evaluation of candidate
co-schedules, where the absolute value of a predictor might
not have any technical meaning, as it is claimed in section III.

D. Ground Truth Reference

Part (D) of the evaluation framework applies a cache
simulator to calculate the actual amount of cache contention

for each candidate application co-schedule and creates a
ranking list (cf. figure 3). In order to support a broad range
of processor architectures, as claimed in section III, I apply
the Multi-Core Cache Contention Simulator MCCCSim [2]
for this task. As you can see from figure 3, the MCCCSim
simulator takes as input the tuples of memory references
Ma,ιzi that have been generated by part (A). Given the
memory references, the framework performs the following
steps:
• Simulate stand-alone execution for each application a ∈
A for each interval size z ∈ zz and each interval ιzi
and determine memory accesstime ta,ιzi as described
in [2].

• For each possible candidate-coschedule Ca ∈ A\{a} of
application a and each application a ∈ A, simulate co-
scheduled execution of applications a and Ca for each
interval size z ∈ zz and each interval ιzi, and determine
memory accesstime tCa,ιzi of application a in case a
is co-scheduled with Ca, as described in [2].

• For each application a ∈ A, calculate penalty πCa,ιzi =
tCa,ιzi − ta,ιz that co-schedule Ca introduces to a for
each interval size z ∈ zz and each interval ιzi.

• For each application a, each z ∈ zz and each interval
ιzi, sort the penalties by value and determine ranking
position ρsim

Ca,j ,ιzi for the corresponding candidate co-
schedules.

For each application a, each interval size z and each
interval ιzi, these rankings ρsim

Ca,j ,ιzi determine the candidate
co-schedule that best/second best/third best/... minimizes the
amount of cache contention introduced to application a.

E. Evaluation Functions

Part (E) of the evaluation framework analyzes and com-
bines
• the amount of time to perform a prediction,
• the predicted ranking positions ρpredCa,ιzi , and
• the simulated ranking positions ρsimCa,ιzi
to generate an overall evaluation measure. As claimed in

section III and as you can see from figure 3, evaluation func-
tions can easily be integrated in the evaluation framework,
as the framework provides a kind of plug-in mechanism.

In the following, I present some of the evaluation functions
integrated in the evaluation framework.
• NMRD (Normalized Mean Ranking Difference) is an

evaluation function that determines the average number
of positions the predicted ranking is off the simulated
ranking.
Let

– ψ be the amount of parallelism of the processor
architecture, i.e. the number of processor cores that
share the same cache (e.g. ψ = 2), and let

– Cψ
a be the set of all possible co-schedules of

application a that can be obtained from A\{a} in
case of a processor with ψ processor cores, and let

– |Cψ
a | be the numbers of entries in set Cψ

a , i.e. the
number of all possible co-schedules to an applica-
tion a that can be obtained from A\{a} in case of
a processor with ψ processor cores, and let

∆ρCa,ιzi =
∣∣∣ρpred
Ca,ιzi − ρ

sim
Ca,ιzi

∣∣∣
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be the distance between the predicted and the actual ranking
position of co-schedule Ca in interval ιzi, then I calculate
so-called mean ranking difference MRD by

MRDCψa ,ιzi
=

1

|Cψ
a |

∑
Ca∈Cψa

∆ρCa,ιzi ,

as presented in [1].
Figure 4 shows an example of an MRD mean ranking dis-

tance value for the set of SPEC2006 benchmark applications
A = {astar, bzip2, gcc, gobmk, h264ref, hmmer, lbm, mcf,
milc, povray}, a = astar, ψ = 2. In interval ιzi, the actual
best co-schedule to astar is hmmer, the worst co-schedule is
lbm. For hmmer, there is a difference between actual and pre-
dicted ranking positions of ∆ρastar@{hmmer},ιzi = |1−5| = 4.

As the range of MRD values depends on the number of
candidate co-schedules, MRD values for different ψ have to
be normalized to the total number of candidate co-schedules
in order to make them comparable to one another. To
determine the maximum MRD value, I present figure 5. It is
obvious that figure 5 a) represents a ranking with maximum
MRD value for an even number of co-schedules and figure 5
b) represents a ranking with maximum MRD value for an
odd number of co-schedules. Therefore, maximum MRD
calculates by

MRDmax
Cψa

=

⌈ |Cψ
a |

2

⌉
·
⌊ |Cψ

a |
2

⌋
· 2

|Cψ
a |

.

Given MRDmax
Cψa

, I normalize MRD by

NMRDCψa ,ιzi
=

MRDCψa

MRDmax
Cψa

=

∑
Ca∈Cψa

∆ρCa,ιzi⌈ |Cψ
a |

2

⌉
·
⌊ |Cψ

a |
2

⌋
· 2

to obtain the so-called Normalized Mean Ranking Differ-
ence NMRDCψa ,ιzi

that allows relative comparison of cache
contention prediction methods even for different values of ψ.

In order to get an overall NMRD value for a given ψ and
a given z, NMRDCψa ,ιzi

has to be averaged over all a ∈ A
and all ιzi ∈ ιz:

NMRD(ψ,z) =
1

|A| ·
∑
a∈A

1

|ιz|
·
∑

ιzi∈ιz

∑
Ca∈Cψa

∆ρCa,ιzi⌈ |Cψ
a |

2

⌉
·
⌊ |Cψ

a |
2

⌋
· 2
.

Figure 6 shows an example output of the evaluation
framework applying the NMRD(ψ, z) evaluation function as
presented in [6]: Column 1 shows the name of the prediction
method, while columns 2, 3, and 4 show NMRD performance
in case ψ = 2, ψ = 4, and ψ = 8 processor cores
sharing the L2 cache. Lower NMRD values indicate better
performance. You can see that there is no great performance
difference of the prediction methods regarding a variation in
the number of processor cores. Further, variations in the size
z of execution intervals have only limited effect on general
ranking performance. Further, you can see that the “Miss

rate” method shows good prediction performance, as already
discussed regarding Fedorova et al.’s method [3].

Besides NMRD, the evaluation framework supports many
other evaluation functions:
• MP (Mean Penalty) enhances NMRD by evaluating

execution time instead of ranking positions.
• PPBAB (Penalty Predicted Best vs. Actual Best) does

not evaluate general ranking performance, but the ability
of a cache contention prediction method to determine
the best co-schedule for a given application.

• PPBRS (Penalty Predicted Best vs. Random Selection)
evalutes the gain in memory access time the best pre-
dicted co-schedule achieves compared to the average
memory accesstime of all candidate co-schedules.

• The timing performance module calculates average user,
system and elapsed time for a prediction.

• Gain vs. Cost is an evaluation function that combines
PPBRS values with the time required to perform a
prediction in order to determine if a prediction method
takes more time for prediction as it will gain from
proper co-scheduling. In combination with an evaluation
of different interval sizes z, this method can be used to
determine the minimal interval size to make a prediction
method become beneficial.

V. CONCLUSION

In this paper, I analyzed three state-of-the-art methods to
evaluate cache contention prediction techniques. I showed
that a hardware based evaluation, as it has been performed
by Fedorova et al., might be a good technique to evaluate
prediction accuracy of methods that do not only evaluate a
prediction of cache contention, but a prediction of contention
regarding the whole processor system. However, when it
comes to an evaluation of cache contention prediction tech-
niques only, a simulator based approach seems to be a
better choice, as it makes ground-truth values rely on the
same criteria as the predictors – although they might be
less accurate predicting contention introduced from other
components than caches.

Based on the discussion of state-of-the-art methods, I
identified and discussed several requirements for a new cache
contention evaluation framework. A key point has been eval-
uating the difference between predicted vs. simulated ranking
positions, as there are cache contention prediction techniques
that allow for a relative evaluation only. A further key aspect
has been the proper definition of predictors to distinguish
between prediction steps that are performed at runtime and
prediction steps to be performed prior to runtime.

Driven by the insights gained from the previous steps, I
presented a new evaluation framework that extracts memory
references from a set of computer applications, applies those
memory references to calculate predictors and exploits those
predictors to predict rankings of application co-schedules that
minimize cache contention. To evaluate prediction accuracy,
the rankings are compared to ground truth reference data
obtained by the Pin framework and analyzed by a set of
evaluation functions.

As a last step, I presented a typical output of the evaluation
framework. The output compared prediction accuracy of sev-
eral cache contention prediction methods regarding general
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{hmmer}{povray}{h264ref} {gcc} {bzip2} {mcf} {gobmk} {milc} {lbm}

2.3 2.4 2.7 23.0 33.9 65.3 95.2 101.6 134.7
astar

1 2 3 4 5 6 7 8 9

{bzip2} {milc} {gcc} {gobmk}{hmmer}{h264ref} {lbm} {mcf} {povray}

202 252 300 623 652 662 808 1054 1071
astar

|1 - 5| =
 4

|2 - 9| =
 7

|3 - 6| =
 3

...

4 + 7 + 3 + ...

9
...

Actual  
penalty:

Prediction:

Ranking:

⇢sim
astar@{hmmer},◆zi

⇢pred
astar@{hmmer},◆zi

�⇢astar@{hmmer},◆zi

MRDastar,◆zi =
37

9
⇡ 4.11

Fig. 4. MRD mean ranking distance value as presented in [1].

1 2 3 4 5 6 7 8

a

a

1 2 3 4 5 6 7 8 9

a

a

a)

b)

⇢pred
Ca,�zi

⇢sim
Ca,◆zi

⇢pred
Ca,�zi

⇢sim
Ca,◆zi

Fig. 5. Determination of the maximum MRD mean ranking distance value for a) an even number of candidate co-schedules, and b) an odd number of
candidate co-schedules. Identical co-schedules in both simulated and predicted rankings are indicated by connecting lines.

ranking performance. As presented in [3] by Fedorova et
al., miss based prediction methods showed good predic-
tion accuracy. Further, no significant variance in prediction
accuracy has been observed varying either the number of
instruction applied for prediction or the amount of applica-
tions accessing the shared cache in parallel. The evaluation
framework is licensed under GPLv3 and can be downloaded
from http://www.ldv.ei.tum.de/cachecontention.
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Fig. 6. NMRD performance evaluation of several cache contention prediction techniques (left column) for ψ ∈ ψψψ = {2, 4, 8} processor cores and interval
sizes z ∈ zz = {220, 221, 222, 223, 224, 225, 226, 227, 228, 229} instructions, averaged over intervals ιzi ∈ ιz referring to the first 512 million
instructions of every SPEC 2006 benchmark application a ∈ A = {astar, bzip2, gcc, gobmk, h264ref, hmmer, lbm, mcf, milc and povray}.
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APPENDIX
FREQUENTLY USED SYMBOLS

Symbol Meaning
a Application
A = {a1, a2, ...} Set of applications
|A| Number of applications in set A
act Actual
Ca Set of applications ∈ A{a} that are

co-scheduled to application a
dCa Degradation that the set of co-schedules Ca

introduces to application a
z Interval size; amount of instructions on which

the simulations are performed
zz Set of interval sizes, e.g.

zz = {220, 221, ..., 229}
E Evaluation metric
IPC Instructions per cycle
ITKO Inter-Thread-Kick-Outs
µa Amount of cache misses of application a on

stand-alone execution
µCa Amount of cache misses of application a when

a is co-scheduled with Ca
NMRD(ψ, z) Normalized Mean Ranking Difference

evaluation function to evaluate general ranking
performance

πCa,ιzi Penalty (amount of cache contention)
introduced to application a in execution
interval ιzi when co-scheduling a with
candidate co-schedule Ca

pred Predicted
ρpredCa,j ,ιzi Predicted ranking position of candidate

co-schedule Ca,j
ρsimCa,j ,ιzi Simulated (i.e. actual) ranking position of

candidate co-schedule Ca,j
ta Memory access time or program execution

time of application a on stand-alone execution
tCa Memory access time or program execution

time of application a when a shares processor
resources with applications in Ca
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