

Abstract— JPEG2000 has become one of the most rewarding

image coding standards. It provides a practical set of features
which weren’t necessarily available in the previous still image
coding standards. The features were realized as a result of two
new techniques adopted in this standard, namely the Discrete
Wavelet Transform (DWT), and Embedded Block Coding with
Optimized Truncation (EBCOT). The generated coefficients by
DWT are entropy coded by EBCOT algorithm. EBCOT is a
two-tiered coder, where Tier-1 is a context-based adaptive
arithmetic coder, and Tier-2 is a rate control algorithm. The
complexity of EBCOT Tier-1 makes its hardware
implementations very difficult. A high speed hardware
implementation usually takes a large amount of space on the
die.

In this paper we propose a new simplified pipelined
architecture for the JPEG2000 MQ-Coder. The proposed
approach has resulted in a 20% decrease in hardware
requirements and 10% increase in clock frequency. Post
synthesis simulations indicate that the proposed architecture is
able to compress 4 CIF video (704×576 pixels) at a rate of 30
frames per second, making it a good candidate for high
resolution real time video coding, or high speed compression of
high resolution images.

Index Terms— Byte-out, CODELPS, CODEMPS, EBCOT,
flush, JPEG2000, MQ-Coder, Renormalization, Tile-
Component

I. INTRODUCTION
mage data compression has always been a necessary and
prominent issue due to boundaries of data bandwidth and

storage. JPEG [1][2], a traditional standard of coding, has
proved to be a suitable technique for compressing natural
images at high bit rates. Yet the imperfections due to the
blocking effect make this technique impractical especially
for low bit rates of image compression.

JPEG2000 [3]-[8] has recently been proposed as a new
high performance and multi-featured, yet complex standard
of digital image coding. JPEG2000 offers numerous
advantages over JPEG. These advantages include: ROI
(Region Of Interest) coding, quality vs. resolution
compression, lossless and lossy compression, progressive
image compression/transmission by resolution/quality,
random code-stream access and error resilience. Such
characteristics add to the functionality of a system that is

M. Ahmadvand is with the Department of Computer Engineering & IT,
Hamedan University of Technology, Hamedan, Iran (e-mail:
ahmadvand@hut.ac.ir).

A. Ezhdehakosh is with Department of Computer Engineering & IT,
Amirkabir University of Technology, Tehran, Iran (e-mail:
ezhdehakosh@aut.ac.ir).

employing JPEG2000 as an image compression technique.
The features and performance of JPEG2000 make this
standard superior to JPEG. Yet computational complexities
of JPEG2000 are much higher than that of JPEG. Such
complexities are due to EBCOT [9][10] as the most
important algorithm employed in JPEG2000. That is why
EBCOT algorithm plays a major role in hardware
implementation of JPEG2000 in different applications.

During the process of encoding, an image is partitioned
into data matrices called Tile-components. Each Tile-
component is then coded separately. The process of coding
is made up of different sections. These sections are depicted
in Figure 1 and each is described below.

Fig. 1. JPEG2000 encoder block diagram

A. Component Transform
This section is optional in JPEG2000 and is used to

improve compression efficiency [11]. The transform
converts the RGB data into another color representation,
with a luminance (or intensity) channel and two color
difference channels. This is used for taking advantage of
some of the redundancy between the original RGB
components. In particular color difference components
mostly account for less than 20% of the bits used to
compress a color image; therefore they are better
represented as individual components [4].

B. Discrete Wavelet Transform (DWT)
DWT [4] is a domain transform that transforms an image

Tile-component from special domain to frequency domain
and provides a special decorrelation. This transform can be
executed for as many levels as necessary. The output of
each level of DWT is categorized into four sub-bands. Each
sub-band contains the high/low frequency characteristics of
the input image.

C. Quantization
Quantization [3] is the process by which the sub-band

samples generated by the DWT are mapped onto
quantization indices for coding. This process is lossy unless
the quantization step is one and the coefficients are integer.

D. EBCOT Tier-1
This section receives the quantized wavelet coefficients

and encodes them into bit-streams. These coefficients are
sliced into code-blocks before they are fed into the EBCOT
Tier-1 [9][10]. EBCOT Tier-1 is composed of two parts:

A New Pipelined Architecture for JPEG2000
MQ-Coder

M. Ahmadvand, and A. Ezhdehakosh

I

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Bit-Modeler and MQ-Coder [4]. Bit-Modeler is a bit-plane
(a matrix that contains all the bits of the same order of all
the coefficients of a code block) coder. A Bit-Modeler
exploits the symmetries and redundancies within and across
the bit-planes and generates corresponding contexts for each
bit. After the context is generated, the MQ-Coder will code
the bits (decisions) based on their associated contexts. The
MQ-Coder is a derivative of Q-Coder [12] and generates
compressed bit-streams for every code-block. The detail
functionality of MQ-Coder is explained in Section II.

E. EBCOT Tier-2
This tier is for rate allocation. The rate allocation is

responsible for acquiring the highest quality for the output
while maintaining a predetermined resolution, or acquiring
the highest resolution while maintaining a predetermined
image quality. At EBCOT Tier-2 [3] the bit-streams
generated by the Tier-1 is collected with their rate-distortion
information. Then different truncation points are set
according to the optimization diagram. Each truncation
point determines how many bits of a relevant bit-stream are
to be selected for the final bit-stream.

TABLE I

RUN TIME PERCENTAGE OF DIFFERENT MODULES IN JPEG2000 ENCODER

Operation Lossy Lossless
Component Transform 10.1 3.64
DWT 25.14 10.41
Quantization 6.4 N.A.
EBCOT Tier-1 44.86 67.35
EBCOT Tier-2 13.5 18.6

The execution time of different modules in the JPEG2000
algorithm is presented in Table I. It is noted from this table
that EBCOT algorithm, as one of the main modules in
JPEG2000 standard, occupies over half of the execution
time of the whole procedure. It is also noted that the
complexity weight of EBCOT lies within Tier-1. Therefore,
the architectures proposed to reduce hardware resources of
Tier-1 while maintaining a high throughput, are highly
valued.

In this paper we propose a novel pipelined architecture
for JPEG2000 MQ-Coder. In our proposed architecture we
have focused on reducing the hardware resources while
securing a high throughput for the design. Our main
contribution in this design is a special trade-off between
area and execution time.

This paper is organized at follows: in the next section a
deep analysis of the MQ-Coder will be presented. In section
III the proposed architecture for the MQ-Coder are
reviewed. Our proposed architecture is presented at section
IV. Synthesis results are depicted in section V followed by
conclusions and references.

II. MQ-CODER ALGORITHMS AND ANALYSIS
MQ-Coder is a module applied in JPEG2000 EBCOT

Tier-1 for generating output bit-streams [3][4][9]. MQ-
Coder is an adaptive Binary Arithmetic Coder (BAC). The
functionality of BAC is discussed in the following sub-
section.

A. Binary Arithmetic Coder (BAC)
In BAC [13], symbols (either logic '0' or logic '1') in a

code-stream are classified as either More Probable Symbol
(MPS) or Less Probable Symbol (LPS) [13]. The probability
of the occurrence of the MPS is called Pe and the
probability of the occurrence of LPS is called Qe. Either of
the symbols 0 or 1 can be MPS or LPS depending on the
probability of their occurrence. In BAC an interval is
considered in order to represent the probability of MPS and
LPS. The initial interval is [0,1) and is divided to
subintervals corresponding to the values of Qe and Pe.
When a symbol occurs (either MPS or LPS), the subinterval
associated with that symbol becomes the new interval.
When the last symbol has been received a code-word C will
be developed. The code-word C always points to the left
point (lower bound) of the interval and A denotes its width.

The BAC algorithm needs multiplication for the coding
of each symbol, which is an area and time consuming
operation for hardware implementation. Also, since a
compressed data will only be generated when the last
symbol of an input stream has been received by the encoder,
an implementation of this algorithm will be exposed to
serious loss of data at the times that the last bit of a stream is
not received. Finally, after each update the length of the
code-word and interval will be grown. This leads to a need
for a high number of bits for storing the code-word and
interval in hardware implementation of the algorithm. A
specific type of efficient BAC which has been adapted to
deal with the issues discussed above has been developed
and is called MQ-Coder.

B. MQ-Coder
This adaptive binary arithmetic coder is used in

JPEG2000 standard. In order to omit the multiplication
operations, the length of interval A is maintained in the
range [0.75,1.5). This means that the interval is always
approximately equal to 1, if rounding to one significant bit.
Therefore Qe ×A ≈ Qe and the following changes will be
made to step 3 of the encoding process of BAC. MPS
occurrence: C = C + Qe and A = A – Qe. LPS occurrence: A
= Qe. The value C is kept in a 32 bit code-word [3][4] as
shown in Figure 2.

0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx
 31…….28 27…...24 23…….20 19…....16 15…..12 11…….8 7…….4 3……..0

Fig. 2. Code-word partitions

In MQ-Coder, the last byte of the code-word is being sent
to the output at special times, therefore the problems
associated with the growing length of a code-word and
compressed data being generated only after receiving the
code-word's last bit is removed. The MQ-Coder can be
understood as a module illustrated in Figure 3, which maps
a sequence of input symbols (decisions) and associated
contexts, to a single compressed code-word.

The MQ-Coder utilizes a probability model for its
encoding process. This model is implemented as a Finite
State-Machine (FSM) of 47 states. In this state-machine,
each state contains coding information. Coding information
determines whether the current MPS (Most Probable
Symbol) is 0 or 1. If an MPS has occurred the CODEMPS

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

algorithm is performed, while if an LPS has occurred the
CODELPS algorithm is performed.

Probability
Estimator

Arithmetic
Unit

Decision

Context
Compressed

data

Fig. 3. MQ-Coder block diagram

1. CODEMPS Algorithm
If an MPS has occurred, the CODEMPS procedure [3] is

called. The length of interval A is updated to (A – Qe) and
code-word C is updated to (C + Qe). The value of A is
always checked after it has been updated to determine if it
has fallen below 0.75. If it does, it could mean that (A – Qe)
has fallen below the value of Qe meaning that the
subinterval associated with MPS is smaller than the
subinterval associated with LPS. Therefore the two
subintervals must be changed.

2. CODELPS Algorithm
If an LPS has occurred, the CODELPS procedure [3] is

called. The length of the interval A is updated to value Qe,
while the code-word C remains unchanged. If the LPS
occurs successively for many times, Qe would become
progressively larger and eventually (A – Qe) would become
less than Qe. Therefore the portion of interval A that
represents probability associated with LPS would become
larger than the portion representing the probability of MPS.
However, this does not occur since the CODELPS
procedure tests for this condition and swaps the intervals
associated with LPS and MPS when necessary.

3. Renormalization Algorithm
In order to ensure that the interval value A always

remains in the range of [0.75,1.5), a renormalization [3]
method is applied. The value A would fall below the value
of 0.75 at the times that so many MPS has occurred. This
case is also true for every time that an LPS occurs. This is
due the fact that the value Qe, which interval A is updated
to, is always less than 0.75. The renormalization algorithm
shifts the values of A and C every time it is applied. The
value of C code-word is sent to the output as compressed
data by the byte-out and flush algorithms. These algorithms
are discussed in the following sub-sections.

4. Byte-out Algorithm
The byte-out algorithm [3] generates the current byte-out

value regarding the value of the last byte-out and carry bit in
the code-word. As it was mentioned before the value of C is
added with the Qe value each time a new decision has been
received and value of C has been changed. If a carry bit (bit
'c' in C code-word) is generated from this addition, it must
be added to the last generated byte-out. If the last byte-out
becomes 0xFF, the carry bit is sent individually along with
the last byte-out in order to prevent further carry
propagation. This is called bit-stuffing.

5. Flush Algorithm
The flush algorithm is composed of different parts. At

first a set-bit algorithm is performed in order to detect the

best value of C, so that the lower two bytes of C contains 16
or 15 bits with the value of 1. After the set-bit algorithm [3],
the byte-out algorithm is called for two times. At the end,
the last compressed data is checked whether it is 0xFF or
not. If it is, nothing is sent to the output since the 0xFF are
not sent as the encoded data.

The complexity of the different algorithms in MQ-Coder,
make its implementation very difficult. Some challenges
encountered in the implementation of these algorithms are
as follows:

1. The encoding procedures are serial processes with
high dependency. Therefore it is impossible to
employ parallel processing in the implementation
of these procedures.

2. Renormalization is a time consuming process, which
is due to the sequential shifts that are employed in
this algorithm. Therefore a novel technique for
reducing the execution time of this process is
necessary for hardware implementation.

3. A large number of calculations are applied for each
context-decision input. This leads to a long
execution time and too many resources in hardware
implementation.

In order to achieve a good hardware implementation of
the MQ-Coder, one must take the aforementioned
challenges into consideration.

III. PREVIOUSLY PROPOSED ARCHITECTURES
In this section the hardware implementation of different

architectures are compared. Several MQ-Coder
implementations have been introduced in the literature.
These implementations were using either pipelined or non-
pipelined architectures.

Non-pipelined architectures [14] suffer from a low clock
frequency and a very low throughput. Several buffers are
required for interfacing such architectures with the rest of
the components and in order to match their low throughput.
This not only affects the overall performance but also
increases the hardware resource requirements.

Pipelined architectures consist of a sequence of pipeline
stages. The architecture proposed in [15] consists of three
stages. The first stage calculates the new interval and code-
word results. In order to perform these operations the Qe
value and other necessary information such as NMPS will
be derived from FSM [3][4]. The renormalization algorithm
is also performed in this stage. The second stage is
dedicated to the bit-stuffing algorithm. At the third stage
four FIFO modules are used. The intricacy of the first stage
leads to a critical path that affects the clock frequency. In
this design there is no mechanism to prevent data hazards.
Since data hazards occur quite often during an adaptive
binary arithmetic coding process, the proposed architecture
suffers from a large number of pipeline stalls. The flush
algorithm is not supported in this design.

The proposed architecture in [16][17] has four pipeline
stages which are more balanced compared to the previous
architecture. The index and MPS sense of each context is
stored at the first stage. At stage two a probability
estimation model is implemented as a look-up table. At the
third stage calculations for updating the value of interval is

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

performed. The renormalization algorithm is also fulfilled in
this stage. Each shift applied in the renormalization
algorithm takes one clock cycle in this design. The
calculation and renormalization of code-word C is applied
in the last pipeline stage. The compressed data is issued
from this stage to the output.

In this design, a multi-port memory is used. This leads to
an implementation that occupies a large area, and has a slow
access time. Besides, as the renormalization algorithm is not
implemented with a barrel shifter, there is more chance for
pipeline stalls. The flush algorithm is not supported in this
design either.

The proposed architecture proposed in [18] is composed
of four pipeline stages. At the first stage the probability
model is implemented and the state of each context is
stored. The main function of stage two is to update the
interval value. The renormalization algorithm is also
performed in this stage. The update and renormalization of
the 16 lower bits of the C code-word, is done in this stage.
The rest of the bits in C is updated and renormalized at the
last stage. This is done in order to shorten the critical path.
The flush and byte-out algorithms are also performed at the
last stage.

This design suffers from the slow access time and large
area consumption caused by employing a multi-port
memory. The renormalization algorithm is not implemented
with a barrel shifter, which adds to the chance of receiving
pipeline stalls.

The architecture proposed in [19] is a five pipelined
stage. The states of contexts are stored at the first stage. The
probability model is implemented at stage. The update and
renormalization of interval value is performed at the third
stage. The code-word C is updated and renormalized at the
fourth stage. At the last stage the byte-out and bit-stuffing
algorithms are implemented.

The design has balanced stages and no stalls. But this has
consumed a lot of hardware resources which in turn has lead
to large area consumption. The complexity of this design is
mostly caused by the attempt to eliminate pipeline stalls.
The flush algorithm is not supported in this design either.

The observed imperfections in the proposed architectures
were: unbalanced pipeline stages, not supporting all the
algorithms present in the MQ-Coder, lack of solution for
removing data hazards, high area consumption and
inefficient implementation for the renormalization
algorithm. We must note that each one of the proposed
architectures has some of the defects mentioned above.

IV. PROPOSED ARCHITECTURE
Our proposed architecture consists of five pipeline stages

as shown in Figure 4. These stages are as follows: 1)
Context-Decision Fetch with data-Forwarding (CDFF), 2)
Probability Estimation (PE), 3) Interval Update (IU), 4)
Code-word Update (CU) and 5) Byte-Out (BO). Each stage
is described in details below.

A. Context-Decision Fetch with data-Forwarding (CDFF)
This is the first stage (Figure 4.a.) of our pipelined

architecture. The inputs of this stage are a 5-bit context
value (ctx-read) along with a single bit decision signal

(decision). The duty of this stage is to generate the state of
input value ctx-read. The state includes index of Qe table
(look-up table that represents the probability model) and
MPS sense [4]. This is done through a Context-Table
module that contains a state value for every context. These
state values are updated through a feedback context called
ctx-write. The current state of the signal ctx-write is updated
to new-state which is provided by the next stages. In case
that two similar context values are fed to this stage
consecutively, the new-state signal is saved and sent to the
state output of this stage directly, thus avoiding pipelined
stalls. Detecting such cases is done by a Data-Forward-
detector module that compares the values of two
consecutive contexts.

B. Probability Estimation (PE)
The main module of this stage (Figure 4.b.) is Qe-Table

[3] which in fact represents the probability model. Each
entry of this table contains probability value (Qe), new
index in the case of MPS or LPS occurrence (NMPS and
NLPS) and switch (SW) signal [3]. The normal practice in
pipeline architectures is to employ a multi-port memory in
order to implement the Qe-table. However, our design
utilizes a special technique in order to replace the multi-port
memory with a single port memory. In this technique the
NMPS and NLPS value corresponding to the last context
are always stored. In order to handle the data-hazard
situation, the index of the current context or the NMPS or
the NLPS of the last context is used as the correct index of
the current context. It must be noted that cases in which
data-hazard occurs are detected by the data-forward-
detector in the previous stage. Whether the index of the
current context or the NMPS/NLPS of the last context is
selected, is done by a module named index-selector. By
utilizing this technique the design has removed the pipeline
stalls of this stage with minimum hardware overhead.

C. Interval Update (IU)
The main task of this stage (Figure 4.c.) is to update the

interval length (A) of MQ-Coder. This interval is stored in a
16-bit register called A-Register. In order to update the A
value to A – Qe, a 16-bit subtractor is employed. The output
of the subtractor is multiplexed with Qe-value and is passed
to Zero-Detector and A-Barrel-Shifter as a new interval
length. The Zero-Detector module detects the number of
consecutive zero bits at most significant positions of this
new interval length (Zero-Num). The Zero-Num value is the
number of shifts required for the renormalization algorithm
and is passed to A-Barrel-Shifter and to the next stage. The
new interval length is shifted by the A-Barrel-Shifter in a
single clock cycle. The shifted value is stored in A-Register
as the renormalized interval length. The normal practice in
pipelined architectures is to implement hardware for a
maximum of 15 shifts and dedicate one clock cycle per each
shift. This results in pipeline stalls equal to the number of
shifts. In our architecture the shift is performed by A-Barrel-
Shifter and therefore avoiding extra clock cycles.

Besides, the renormalization of the A interval is

performed for 79% (as shown in Figure 5) of the times and

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

 Ctx-Read Ctx-Write
 Clk Context-Table
 Reset New-State
 Update Index-Out MPS-Out

Clk
Reset-MQ

Ctx1 Ctx2
Data-Forward

Forwarding

 Qe-Index
 Qe-Table
 Qe NMPS NLPS Switch

 Forwarding MPS-Coding A_Sub(15)
Index-Selector

Sel-Qe

 Qe
 Qe-Shifter
 2xQe MPS

 2xQe A-Value
 A-Comp-2xQe
 A >= 2xQe

 Clk Paralel-Out
 Reset A-Register
 Load Parallel-In

 A-Value Qe
 A-Subtractor
 Sub A[15:0]

MSB

 Data-In
Zero-Detector

Zero-Num

 Data-In Shift-Num
 A-Barrel-Shifter
 Output

 A[8] Zero-Num
 Hold-State
 Halt

A[8]

Clk
Reset

 clk Parallel-Out
 Reset C-Register
 Load Parallel-In

 Input1 Input2
 C-Adder
 Sum

 Data-In shift-Num
 C-Barrel-Shifter
 Output

Clk
Reset

C[31:0]

A[15:9]

 Decision NMPS NLPS Switch MPS

 Update-State
 New-State MPS-Coding

 Input1 Input2
 Init-Adder
 Sum

 clk Parallel-Out
 Reset CT-Register
 Load Parallel-Int

Clk Input1 Input2
 CT-Subtractor
 Sub

 Bit-Stuffing
 Init-CT Init-Val

 Carry-Bit

 Bit-Stuffing
 C-Reg-Correction
 Carry-Bit
 Counter-Out Zero-Signals

 Data-In shift-Num
 Flush-Shifter
 Output

 A-Value C-Value[15:0]
 Carry-Detector
 Carry-Detected

C[15:0]
C[31:0]

 clk Parallel-Out
 Reset C-Flush-Reg
 Load Parallel-In

Reset

C-Flush[34:19]

C[34:19]

7 8 CT

Carry-Bit

Sign

 Data-In_F Data-In_C
 Byte-Selector Sign-Bit
 Selected-Byte

 clk Parallel-In
 Initial B-Register
 Reset-7
 Load Parallel-Out

Clk
Reset

 Data-In
 All-One-Detector
 All-One

 Input1 Input2
 B-Adder
 Sum

 clk Parallel-In
 Reset All-One-Reg
 Load Parallel-Out

Clk
Reset

Compressed data

Clk

(b) PE

(c) IU

(d) CU

(e) BO

Context Decision

Stage 1
Stage 2

Stage 5
Stage 3

Stage 4

(a) CDFF

Fig. 4. Proposed pipelined architecture data path

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Renormalization
 occurrence

79%

Fig. 5. Renormalization occurrence probability

the maximum number of shifts applied for each
renormalization is equal to 15, yet as the simulations results
presented in Figure 6 indicate, the number of shifts is less
than 8 for more than 90% of the time. In our design in order
to reduce hardware resources and increase clock frequency,
we propose that a maximum of 7 shifts per clock cycle be
implemented. A Hold-State module is employed in order to
extend the shifting operations for one more clock cycle at
the times that the number of shifts is more than 7. This will
result in one clock stall in 7.9% of condition in total.

0

2

4

6

8

10

12

14

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255

Statistical Samples

Nu
m

be
r o

f S
hi

fts

Fig. 6. Number of shifts for various renormalizations

Another module in this stage is the Update-State unit
which is used to update new state of current context and
also determines if decision is MPS or LPS. The outputs of
this module are sent to the context-table of stage 1 as ctx-
write and new-state.

A. Code-word Update (CU)
The updating of code-word value is performed in this

stage (Figure 4.d.). The code-word value (C) is stored in a
32-bit register called C-Register. The number of shifts that
should be performed over the A value and C code-word
before every byte-out is stored in a 4-bit register called CT-
Register. It should be mentioned that every time the CT-
Register becomes zero a byte-out is sent to the next stage.
After every byte-out this register is initialized to the value
determined by the Init-CT. In order to update the CT-
Register a 4-bit subtractor called A-subtractor is used to
reduce the CT-Register by Zero-Num. Normally the output
of the A-subtractor is positive. Yet in some occasions when
CT-Register is less than Zero-Num the result becomes
negative. In order to correct this, a 4-bit adder called Init-
Adder is employed.

In order to generate the new code-word and therefore

perform the renormalization algorithm, the C + Qe value
and the current code-word are multiplexed and the result is
passed to the C-Barrel-Shifter. The number of shifts applied
in the C-Barrel-Shifter is equal to the number of shifts
applied to the A-value in the previous stage.

In the standard the shift operation for the code-word
value is introduced so that each shift is performed at every
clock cycle. The byte-out data is generated when enough
shifts have been performed over the C code-word. The rest
of the shift operations are applied after byte-out generation.
However, since the shift operations are performed with a
barrel shifter in our proposed architecture, the byte-out is
produced after all the shifts are applied together. A C-Reg-
Correction module is employed in order to recognize the
correct location of the byte-out data in the C code-word.

The flush algorithm [3] is performed parallel to the
updating and renormalization of the code-word. This
algorithm is responsible for sending the last value of C-
Register to the output in the end of coding. The suitable C
value for best compression is the one that contains the most
number of bits with the value 1. The Carry-Detector is
employed in order to choose the suitable C value. This value
is kept in a register called C-Flush-Reg. When the best
value for C is stored, it must be shifted out in order to
generate compressed data. This is done by the Flush-Shifter
module.

B. Byte-Out (BO)
This stage (Figure 4.e.) performs the byte-out and Bit-

stuffing algorithm [3]. An 8-bit register, B-Register, is used
to store the last byte of compressed data. The last byte-out
for the next clock is selected from the C-Register/C-Flush-
Reg by the Byte-Selector module.

In order to implement the Bit-stuffing algorithm two
modules are used: The All-One-Detector that determines
whether the last byte-out is 0xFF or not and the B-Adder
that adds the B–Register value with the value determined by
All-One-Detector, namely the carry bit (27th bit of the code-
word). The output of the B-Adder is sent to the output of
this stage as the compressed data.

V. EXPERIMENTAL RESULTS
The proposed architecture of MQ-Coder has been

simulated using VHDL. This architecture is implemented by
0.18 μm CMOS technology. The synthesis results of the
proposed architecture are shown in Table II. The gate count
and clock frequency of this architecture is compared to three
previous pipeline architectures with the same technology.
The execution time of our proposed architecture is
compared to other architectures at Table III using Lena,
Baboon and Jet images with the resolution of 256 × 256 and
24-bit RGB components.

As the results indicate, the design in [15] suffers from a
low clock frequency and consumes a large number of clock
cycles during the coding process, resulting in a very low
throughput. The design in [16] has a high clock frequency
and a low gate count. Yet the number of clock cycles
consumed for the coding process is very large, which has
resulted in a low throughput as well.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

TABLE II
COMPARISON OF IMPLEMENTATION RESULT

 [15] [16] [19] Proposed
Gate# 8459 7100 9156 7325
Clock Frequency
(MHz)

185.5 206.2 190.6 208.1

The architecture in [18][19] does not have a high clock
frequency, but since the number of clock cycles for the
encoding process is very low, therefore the coding time is
acceptable. The only shortcoming of this design is its high
number of gate count. In our proposed architecture although
the number of clock cycles for an encoding process is higher
than the architecture in [19], but due to its high clock
frequency it has the lowest coding time. In addition the gate
count of our proposed architecture is 20% lower than the
next fastest design.

TABLE III

EXECUTION TIME FOR THREE PICTURES

 Timing Lena Baboon Jet

 [15]
CLK # 1311233 1554195 1286333

Time (ms) 7.1 8.38 6.94

 [16]
CLK # 1297355 1605745 1276743

Time (ms) 6.29 7.79 6.19

 [19]
CLK # 998967 1224958 959033

Time (ms) 5.24 6.42 5.03

Our
CLK # 1077885 1321729 1034796

Time (ms) 5.18 6.35 4.98

Post synthesis simulations indicate that the proposed
architecture encodes precisely one context-decision pair
every 1.079 clock cycle and operates at 208 MHz. This
architecture is able to compress 4 CIF video (704×576
pixels) at a rate of 30 frames per second, making it a good
candidate for high resolution real time video coding, or high
speed compression of high resolution images.

VI. CONCLUSION

A high-speed pipelined architecture with reduced area for

JPEG2000 MQ-Coder is proposed in this paper. In this
design the time consuming algorithms are divided into
different pipeline stages. Therefore the critical path has been
reduced considerably. All of the algorithms introduced in
the JPEG2000 MQ-Coder are supported in this design.
Special techniques employed in order to implement the
renormalization algorithm, has led to major reduction in
hardware recourse requirements and improving the clock
frequency while receiving a few pipeline stalls. The stalls
occur in 7.9% conditions in total. Therefore every context-
decision pair is encoded in 1.079 clock cycle.

The architecture is implemented by 0.18 μm CMOS
technology and is functional at 208 MHz clock frequency.
This architecture being able to code 4 CIF video (704 ×
567) at a rate of 30 frames per second is suitable for real

time image processing applications.

REFERENCES
[1] "Information Technology—JPEG—Digital Compression and Coding

of Continuous-Tone Still Image—Part 1: Requirement and
Guidelines", ISO/IEC 10918-1 and ITU-T Recommendation T.81,
(1994).

[2] W. B. Pennebaker and J. L. Mitchell, "JPEG Still Image Data
Compression Standard", New York: Van Nostrand Reinhold, (1992).

[3] "JPEG2000 part I final draft international standard," ISO/IEC
JTC1/SC29/WG1 N1890, (2000).

[4] D. S. Taubman and M. W. Marcellin, JPEG2000: image compression
fundamentals, standards and practice, MA: Kluwer, Norwell, (2002).

[5] M. D. Adams, H. Man, F. Kossentini, and T. Ebrahimi, “JPEG 2000:
The next generation still image compression standard,” Doc. ISO/IEC
JTC1/SC29/WG1 N1734.

[6] Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still
image compression standard,” IEEE Signal Processing Magazine,
(2001).

[7] M. J. Gormish, D. Lee, M. W. Marcellin, “JPEG 2000: overview,
architecture, and applications,” in Proc. IEEE Int. Conf. Image
Processing, 2, (2000).

[8] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An
overview of JPEG-2000,” in Proc. IEEE Data Compression Conf.
(DCC2000), (2000).

[9] D. Taubman, "High performance scalable image compression with
EBCOT", IEEE Transaction on Image Processing, 9, 7, (2000).

[10] D. Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, “Embedded
block coding in JPEG 2000,” Signal Processing: Image
Communication, 17, (2002).

[11] K.-F. Chen, C.-J. Lian, H.-H. Chen, and L.-G. Chen, “Analysis and
architecture design of EBCOT in JPEG2000,” in Proc. IEEE Int.
Symp. Circuits and Systems (ISCAS’01), (2001).

[12] B. Pemmebaker, J. Mitchell, G. Langdon, R. Arps, "An Overview of
the Basic Principles of the Q-Coder Adaptive Binary Arithmetic
Coder", IBM J. RES. DEVELOP, 32, (1988).

[13] G. G. Langdon Jr., "An Introduction to Arithmetic Coding", IBM
Journal of Research and Development, 28, (1984).

[14] K. Andra, C. Chakrabarti, T. Acharya, "A High-Performance
JPEG2000 Architecture", IEEE Trans. On Circuits and Systems for
Video Technology, (2003).

[15] K.K. Ong, W.H. Cahng, Y.C. Tseng, Y.S. Lee, C.Y. Lee, "A High
Throghput Context-Based Adaptive Arithmetic Coder for JPEG2000",
IEEE International Symposium on Circuits and Systems, (2007).

[16] M. Tarui, M. Oshita, T. Onoye, I. Shirakawa, "High-Speed
Implementation of JBIG Arithmetic Coder", Proceedings of the IEEE
Region 10 Conference, (2001).

[17] JBIG Bi-Level Image Compression Standard, ISO/IEC 11544 and
ITU-T Recommendation T.82, (2000).

[18] C. Lian, K. Chen, H. Chen, L. Chen, "Analysis and Architecture
Design of Block Coding Engine for EBCOT in JPEG2000", IEEE
Transaction on Circuits and Systems for Video Technology, 13,
(2003).

[19] M. Ahmadvand, A. Shahrokhi, O. Fatemi, "A High-Speed Pipelined
Architecture for MQ-Coder of JPEG2000 Standard", 27th Queen's
Biennial Symposium on communications, (2009).

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

