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Abstract: This paper investigates the problem of designing 
an integrated production-distribution system which supports 
strategic and tactical decision levels in supply chain 
management. An important aspect of this problem is 
consideration of volume flexibility to increase the system ability 
to change the level of aggregated output. The problem is 
formulated as a mixed integer linear programming. The 
objective functions are to minimize the total cost of production, 
location of DCs, transportation, inventory holding and 
backorders while maximizing flexibility level simultaneously. 
Since the problem under study is NP-hard, a multi-objective 
differential evolution (MOEM) framework is developed to 
solve this problem. To prove the efficiency and reliability of the 
proposed algorithm, the results obtained from extensive 
experiments are compared with the well-known multi-objective 
genetic algorithms in the literature, i.e. NSGA-II based on 
some comparison metrics. Computational experiments indicate 
the superiority of the MODE compared to this algorithm. 

 
 
Keywords: Supply chain network, Production-distribution 
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I. INTRODUCTION 

Supply chain management (SCM) is the systematic analysis and 
educated decision-making within the different business functions 
of an organization resulting in smooth and cost-effective flows of 
resources – material, information, and money. In other words, it is 
the coordination and synchronization of the flow of resources in 
the network of suppliers, manufacturing facilities, distribution 
centres’ and customers. These network elements form the different 
echelons of the supply chain. The supply chain (SC) is the network 
that sources raw material from suppliers, transforms it into finished 
products at the manufacturing facilities, and distributes the finished 
products to the final customers through the distribution centres’. 
These activities constitute the individual business functions of the 
company’s supply chain network. 

Decisions are made across the supply chain on three levels: 
strategic, tactical and operational. Strategic decisions are long term 
decisions where the time horizon may be anything from one year to 
several years i.e. it involves multiple planning horizons. These 
decisions may be made on   an organizational level or   the   supply 
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chain level with the aim for global optimization. Tactical decisions 
are taken over a shorter period of time, maybe a few months. These 
are more localized decisions taken to keep the organization on the 
track set at the strategic level. Operational decisions are similar to 
day-to-day decisions for planning a few days worth of operations. 
These take into consideration the most profitable way to carry out 
daily activities for satisfying immediate requirements. 

As the connection between markets and sources, demand and 
supply has increased the strategic relevance of SCM, in today’s 
competitive world maintaining an efficient and flexible supply 
chain became critical for every enterprise. In order to retain and 
strengthen their competitive edge in the market, organizations need 
to coordinate and integrate all their business operations with 
sustainability considerations. A focus on supply chain is a step 
towards the broader adoption and development of sustainability, 
since the supply chain considers the product from initial processing 
of raw materials to delivery to the customer. However, 
sustainability also must integrate issues and flows that extend 
beyond the core of supply chain management (Linton et al.  (1). 

Supply chains have been more or less integrated to some extent 
as a whole, or in parts. Integration, if done at all, has been mostly 
done in patches throughout the supply chain. In many cases, this 
has been driven more by the need to survive and improvise, than 
by the willingness to improve and advance further. For example, 
suppliers have been coordinating with manufacturers to implement 
quality assurance programs in order to meet the ever increasing 
stringent quality requirements. These quality standards are mostly 
driven by market conditions which would not allow the 
manufacturer to accept material from the supplier if it does not 
meet those standards, thus risking the supplier’s business. 

Therefore, efforts must be made to integrate suppliers, 
manufacturers, distributors, and customers, so that they will 
collaborate effectively with each other in the entire network. In 
other words, to fulfil the demand of the customer, the 
organizations, processes, and systems must be properly 
consolidated, not only between themselves but they must also be 
integrated with customers, competitors, and alliance partners. 

During the past few years, there have been significant attempts 
for providing integrated supply chain problems, which includes 
suppliers, manufacturers, distributors and retailers. The primary 
objective of an integrated supply chain is to optimize all cost 
components from converting raw materials into final products 
delivered to end users (Davis (2), Simchi-Levi et al. (3), Bilgen and 
Ozkarahan(4)). These conventional methods generally consider an 
overall production strategy, inventory strategy and flow of 
products through a facility over a single period to minimize total 
costs or maximize profits (Gen and Syarif (5)). 

Production and distribution operations are two key business 
functions in SCM. To achieve optimal operational performance in 
a supply chain, it is critical to integrate these two functions and 
schedule them jointly in a coordinated manner. For the most part, 
these two functions have been studied independently of each other 
leading to globally sub-optimal decisions (Gebennini et al. (6)). 
More recently, a tremendous amount of research has been done on 
various integrated production-distribution models at the strategic 
and tactical planning levels, e.g. (Gebennini et al. (6), Thomas and 
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Griffin (7), Jayaraman and Pirkul (8), Liang and Cheng (9)). In this 
way, a good review is carried out by (Mula et al. (10)). 

Besides, nowadays, SC systems face to unpredictable and 
variable circumstances. If these systems want to be able to adjust 
or respond quickly and smoothly to changes with low investment, 
they should be considered more flexible which can only achieve 
the same change at great cost and/or organizational disruption. 
Preventing supply chain disruption is one of the most important 
aspects have not received much attention in the literature. Investing 
in system flexibility, excess inventory and purchasing large 
insurance policies are common ways to protect supply chains 
against such risks. Flexibility concept is one of the subjects that is 
applied in SC models rarely (Melo et al. (11)). Volume flexibility 
is the one of the flexibility types that is defined as the ability to 
change the level of aggregated output (Slack (12)). Face to 
unpredictable and variable circumstances of customer demands is 
the most important case of volume flexibility, because this is 
concern with capability to change the output level and there is a 
straight proportion between output level and customer 
responsibility. 

Due to these issues, in this paper an integrated production-
distribution model consisting multi periods and multi products for 
the location-allocation problem is presented. This model includes a 
plant, distribution centers (DCs) and customer zones while 
considering strategic and tactical decision levels in the system. 
Also, in order to measure of capacity slack and customer response 
capability in multi periods SC systems, volume flexibility will be 
handled in the model. The ε-constraint method, which introduced 
by (Goicoechea et al. (13)), is selected to determine the efficient 
value of flexibility because this method don’t require specific 
conditions to achieve the solutions. 

Moreover, the practical production and distribution problems in 
a supply chain generally have conflicting objectives in term of the 
use of organizational resources, and these conflicting objectives 
must be simultaneously optimized by the DM. Hence, this 
investigation develops a multi-objective mixed integer linear 
programming model to solve multiple product and multiple period 
production and distribution problems with multiple objectives in a 
supply chain. The proposed model attempts to simultaneously 
minimize total costs and maximize flexibility in relation to 
inventory levels, available machine capacity. 

The problem under consideration can be reduced to the well-
known p-median problem which is known to be NP-hard (Kariv 
and Hakimi (14)). Therefore, researchers have utilized heuristic 
and meta-heuristic approaches to solve this problem. Syarif et al. 
(15) have developed a spanning tree-based GA approach for the 
multi-source, single-product, multi-stage SCN design problem. 
Jayaraman and Ross (16)  have also proposed a heuristic approach 
based on simulated annealing for the designing of distribution 
network and management in supply chain environment. Yeh (17) 
has proposed a memetic algorithm (MA) which is a combination of 
GA, greedy heuristic, and local search methods for the same 
problem. The author has extensively investigated the performance 
of the MA on the randomly generated problems.  

Differential evolution (DE) is a novel evolutionary algorithm 
recently introduced by Storn and Price (18) for optimization 
problems over continuous spaces. Due to its ease of use, fast 
convergence and robustness, DE has gained much attention and a 
wide range of successful application such as digital PID controller 
design (Biswas, Das, Abraham, & Dasgupta, (19)), bankruptcy 
prediction in banks (Chauhan, Ravi, & Karthik Chandra, (20)), 
feed-forward neural networks training (Ilonen, Kamarainen, & 
Lampinen, (21)), digital filter design (R. Storn, (22)) and 
earthquake hypocenter location (Růžek & Kvasnička, (23)). Due to 
their evolutionary nature, DE algorithm can search for solutions 
without regard to the specific inner workings of the problem. 
Therefore, DE is possibly well suited to the multi-objective 
optimization problems.  

In this paper, we also investigate the application of DE 
algorithm to solve integrated production- distribution system. The 
main contributions of this paper can be summarized as follows: 
 Introducing a model to combine strategic and tactical 

decisions in SC network by integrating production and 
distribution planning activities into a multi-echelon, multi-
product, multi-level and multi-period SC network. 

 Considering flexibility into the proposed model as a second 
objective. 

 The application of meta-heuristic algorithms to solve the 
considered problem. 

The remainder of paper is organized as follows. Section 2 
presents a literature review about production-distribution planning. 
In Section 3, we propose the formulation of multi-objecive 
integrated production-distribution model for dynamic location-
allocation problem considering volume flexibility and backorder 
costs. This is followed by a brief overview of DE in the section 4. 
Section 5 presents a multi-objective DE to solve the model. In 
section 6, we show the experimental results obtained by the 
proposed solution algorithm and then compare these results with 
multi-objective genetic algorithms, called NSGAII. Finally, the 
conclusions and suggestions for future research are presented in 
section 7. 

II. LITERATURE REVIEW 

There is a vast amount of literature available on supply chain 
management research dealing with the different aspects of the 
subject. Numerous models in the literature, conceptual as well as 
quantitative, refer to the planning and quantitative aspects of the 
different business functions: location, production, inventory and 
transportation. A number of quantitative models use mixed-integer 
programming (MIP) to solve the supply chain optimization 
problems. One of the first attempts was done by (Geoffrion and 
Graves, (24)), where a MIP model was formulated for the multiple 
commodity location problem. This seminal research involved the 
determination of distribution center (DC) locations, their 
capacities, customer zones and transportation flow patterns for all 
commodities. A solution to the location portion of the problem was 
presented, based on Bender’s Decomposition (BD). 

Cohen and Lee (Cohen and Lee (25)) develop an analytical 
model to establish materials requirements policy based on 
stochastic demand. They develop four different sub-models with a 
minimum-cost objective. A mathematical algorithm at the end 
decides the optimal ordering policies to minimize the costs. A MIP 
model for a production, transportation, and distribution problem 
has been developed by Pirkul and Jayaraman (8) to represent a 
multi-product tri-echelon capacitated plant and warehouse location 
problem. The model minimizes the sum of fixed costs of operating 
the plants and warehouses, and the variable costs of transporting 
multiple products from the plants to the warehouses and finally to 
the customers. 

Schmidt and Wilhelm (Schmidt and Wilhelm (26)) present a 
review of the work done on different decisional levels in the supply 
chain with respect to time frames – strategic, tactical and 
operational. Modelling issues are discussed at each level and a 
prototype formulation is provided as an extension of the 
discussion. Cordeau et al. (27) propose a static model considering a 
multi-commodity, multi-facility and single-country network. The 
decision variables concern the number of locations, the capacity 
and technology of manufacturing in plants and warehouses, 
selection of suppliers, selection of distribution channels, 
transportation modes and material flows. 

Vila et al. (28) propose a dynamic model in a much more 
specialized context. They consider an application in the lumber 
industry, but their model can be applied to other sectors. The 
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authors consider an international network, with deterministic 
demands. They consider external suppliers, capacitated plants and 
warehouses, the choice between a set of available technologies, the 
possibility of adding capacity options to the facilities, and a list of 
substitute products to replace standard ones. 
Another studies which address the SC coordination issues at 
different decision levels have been developed (De Matta and Miller 
(29), Park (30), Lei et al. (31), Rizk et al. (32), Tsiakis and 
Papageorgiou (33)).  

III. PROBLEM FORMULATION 

In this section, a mixed integer linear programming (MILP) 
model is proposed considering a 3-layer SC system: a plant, 
Multiple DCs and multiple customer zones in multiple periods with 
multiple products. In each planning horizon, the plant performs 
operations to produce finished products. Then the plant ships the 
finished goods to DCs. Finally, the finished products are 
distributed from DCs to customer zones. Note that optimum 
number of DCs and location of them are determined only in the 
first period for all of the remained periods. 

Likewise, specified capacities for plant and each DC are 
determined in the model, and demand of each customer zone can 
be satisfied from multiple DCs in the same time. Besides, the 
model determines assignment of each customer zone to DCs, 
quantity of each product produced in each period, inventory level 
of products which is held in each DC, Quantity of products 
delivered to DCs and Customer zones, and quantity of backorders 
in each period. Also, in order to increase the ability of responding 
to changes, volume flexibility is considered in the system based on 
ε-constraint method.  

The objective function of the model is to minimize 
transportation costs between plant to DCs and DCs to customer 
zones, inventory holding costs and backorder costs while satisfying 
all customer demands, plant capacity and DCs capacities. The 
mathematical model describing the characteristic of the problem 
can be formulated based on following variables and parameters: 

IV. NOTATION 

Sets and Indices: 

T: set of time periods. 

t: index for time periods. 

P: Set of products. 

p: index for products. 

W: Set of Distribution Centers. 

w: index for distribution centers. 

 

 Parameters: 

 

:B  Time unit available for production in any given period 
Up: Processing time for producing one unit of product p 

:wF Fixed charge of DCw 

:ptPC Variable cost to produce a unit of product p 

:pwHC
 
Inventory holding cost per unit of product p at DCw 

:pwTC Cost of travel from plant to DCw per unit of product p 

:pwtTC Cost of travel from DCw to customer zone i per unit of 

product p 
:wH Holding capacity at DCw 

:pV Volume of product p 

:pitD Demand of product p at customer zone i in period t 

:M A sufficient large positive number 

:tFL Volume flexibility in period t 

: Volume flexibility performance index 

:, 21  Weight factor for capacity utilization [0,1] 

 
Decision Variables: 
 
Yw: if DCw should be open, 1; otherwise, 0. 

:ptq Quantity of product p produced in period t 

:pwtl Inventory level of product p at DCw in period t 

:pwtf Quantity of product p delivered from plant to DCw in period 

t 

:pwitg Quantity of product p delivered from DCw to customer 

zone i in period t 

V. MATHEMATICAL MODEL 
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The first objective function minimizes total costs of the system. 
Alternatively, phrase (1) states fixed charge costs of DCs that are 
opened. Phrase (2) includes variable costs of product p producing 
in period t. Phrase (3) is the holding inventory costs in DCs. 
Phrases (4),(5) state transportation costs from plant to DCs and 
DCs to customer zones respectively. The second objective 
maximizes the flexibility level in relation to inventory levels, 
available machine capacity. This analysis may be accomplished by 
varying ߝ to generate several non-dominated solutions. In order to 
achieve the efficient amount of ߝ, a suggested procedure will be 
proposed in the next section. 

Phrase (6) represents the volume flexibility in each period which 
is the sum of the following flexibility performance measures: 
 Plant volume flexibility, which is measured as the difference 

between plant capacity and plant capacity utilization and thus 
represents the available plant capacity. 

 Distribution volume flexibility, which is calculated as the 
difference between the available throughput and demand 
requirements, and thus represents the available distribution 
capacity. 

Constraints (8) state minimum flexibility level that DM expects 
to apply it for the system. Constraints (9) ensure that the plant 
capacity is respected. Constraints (10) express the capacity 
constraints of DCs. Constraints (11) assure the balance of 
inventory level in DCs.  

Constraints (12) ensure that the total quantity of product p 
delivered from the plant to DCw is equal to production quantity in a 
given period t. Constraints (13) state each customer zone demands 
are completely satisfied. Constraints (14) and (15) guarantee the 
assignment of customers and transportation to open DCs. Finally 
Constraints (16)-(19) state the types of decision variables. 

VI. OVERVIEW OF D.E 

Differential Evolution (DE) algorithm, introduced by Storn and 
Price is a powerful population-based evolutionary algorithm for 
optimization algorithm over continuous spaces. DE starts with an 
initial population vector, which is randomly generated when no 
preliminary knowledge about the solution space is available 
(Rainer Storn & Price, 1997). The basic scheme of DE, which is 
denoted as DE/rand/1/bin, can be summarized as follows: 

At every generation G, DE maintains a population P(G) of NP 
(population size) vectors of solutions which evolve through the 
optimization process to find global solution: 
ሺீሻࡼ ൌ ሾࢄଵ

ீ,… , ேࢄ
ீ ሿ (19) 

The population size, NP, is constant during the optimization 
process. The dimension of each vector of candidate solutions 
correspond to the number of the decision parameters, D, to be 
optimized. Therefore, 

ࢄ
ሺீሻ ൌ ቂ ଵܺ,

ሺீሻ, … , ܺ,
ሺீሻቃ , ݅ ൌ 1,2,… , ܰܲ (20) 

After that the initial population is created, it evolves through the 
operation of mutation, crossover and selection. At every generation 
G, each vector in the population has to serve once a target vector. 

For each target vector, a mutant vector ࢂ
ሺீሻ is defined by: 

ࢂ
ሺீሻ ൌ ࢄ

ሺீሻ  ܨ ቀࢄ
ሺீሻ െ ࢄ

ሺீሻቁ (21) 

With random indexes ܽ, ܾ, ܿ	 ∈ ሼ1,2,… , ܰܲሽ, integer, mutually 
different, and different to the target vector. F is a user defined 
constant (also known mutation scaling factor), which is typically 
chosen from the range (0,2] (Rainer Storn & Price (18)). Larger 
values for F result in higher diversity in the generated population 
and lower values cause faster convergence. 

DE utilizes the crossover operation to generate new solutions by 
shuffling competing vectors and also to increase the diversity of 

the population. To this end, the trial vector, i.e., ࢁ
ሺீሻ ൌ

ቂ ଵܷ,
ሺீሻ, … , ܷ,

ሺீሻቃ is formed, where 

In (22), randj is the jth evaluation of a uniform random number 
generator with outcome between 0 and 1. CR is the crossover rate 
constant and is a user-defined parameter within the range [0,1]. 
Large CR usually increases the convergence rate. K is a random 
parameter index chosen from the set {1, …, D}, which is used to 
make sure that at least one parameter is always selected from a 

ࢂ
ሺீሻ. The crossover procedure is illustrated in Figure 1. 
 

 
 

FIGURE 1 Crossover Process with an Example with 7 Jobs 
 (7-dimension) 

In order to decide which vector (ࢁ
ሺீሻ, ࢄ

ሺீሻ) should become a 
member of generation G+1, the trial vector is compared to the 
target vector using a greedy criterion. For a minimization problem, 
the vector with the lower value of objective function is chosen. As 
a result, all individuals of the next generation are as good as or 
better than the individuals of the current generation. 
Comprehensive history and development of DE is presented in the 
(Feoktistov, (34)). 

VII. MULTI-OBJECTIVE DE 

Supply chain network design is to provide an optimal platform 
for efficient and effective SCM. This is an important and strategic 
operations management problem in SCM. The design task involves 
the choice of facilities (plants and distribution centers (DCs)) to be 
opened and the distribution network design to satisfy the customer 
demand with minimum cost. It belongs to a production-distribution 
and facility location-allocation problem. Solution approaches for 
these problems are optimization algorithms within the framework 
of Benders’ decomposition (Geoffrion and Graves (24), Cohen and 
Moon (35)), heuristics based on branch-and-bound (Ro and Tcha 
(36)), and Lagrangian relaxation (Jayaraman and Pirkul (8)). 
However, these techniques consume extensive amounts of time and 
effort in finding optimal solutions for realistically sized problems. 
The problem under consideration can be reduced to the well-
known p-median problem which is known to be NP-hard (Kariv 
and Hakimi (14)). Therefore, researchers have utilized heuristic 
and meta-heuristic approaches to solve this problem.  

Syarif et al. (Syarif, Yun et al. (15)) have developed a spanning 
tree-based GA approach for the multi-source, single-product, 
multi-stage SCN design problem. Jayaraman and Ross (16) have 
also proposed a heuristic approach based on simulated annealing 
for the designing of distribution network and management in 
supply chain environment. Yeh (17) has proposed a memetic 
algorithm (MA) which is a combination of GA, greedy heuristic, 
and local search methods for the same problem. The author has 
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݅ ൌ 1,2,… , ܰܲ, ݇ ൌ 1,2,… ,  ܦ

(22) 
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extensively investigated the performance of the MA on the 
randomly generated problems. 

In this paper in order to solve the considered SC network, a 
multi-objective DE (MODE) algorithm is proposed. The proposed 
MODE algorithm to solve the candidate problem consists of 
following steps: 
 Step 1: In order to establish a starting point for the optimization 

process, each decision parameter in every vector of the 
initial population is assigned a randomly chosen value 
from within its corresponding feasible bounds. This 

initial population set ܲሺீሻ ൌ ቄ ܺ,ଵ
ሺீሻ, ܺ,ଶ

ሺீሻ, … , ܺ,ே
ሺீሻ ቅ 

consists of 2NP solutions, which are randomly generated. 
Step 2: The values of objective functions for each vector are 

evaluated: total cost (ܨଵ), total flexibility (ܨଶ) according 
to equations (1) and (2). Eliminate dominated solutions 
from the feasible set ܲሺ௧ሻ. 

Step 3: Compute average total cost (ܨതଵ) and average total 
flexibility (ܨതଶ) in the updated ܲሺீሻ. Then for each 
solution vector, compute the normalized distance (D) in a 
two-dimensional objective space from the origin 
according to equation (23). 

ܦ ൌ	ටሺܨଵ ⁄തଵܨ ሻଶ  ሺܨଶ ⁄തଶܨ ሻଶ (23) 

Step 4: Order solution vectors in ܲሺீሻ in descendant order. Split the 
ordered population set into two solution subsets: lower-
half and upper-half. 

Step 5: Apply the mutation and crossover operators according to 
equations (21) and (22) to the current lower-half subset 
solutions.  

Step 6: the algorithm is repeated from Step (2) to Step (5) until the 
termination condition is met. The maximum number of 
generation is selected as a termination condition. 

VIII. COMPUTATIONAL RESULTS 

This section gives experimentation results on the performance of 
proposed MODE to solve the candidate problem. Also, the 
performance of the MODE using eight different examples, which 
are randomly generated, is compared with the well-known multi-
objective genetic algorithms in the literature, namely NSGA-II. All 
algorithms are coded in MATLAB 7 and executed on an Intel® 
Core 2 DuoE4500 at 2.20 GHz with 2.0GB of RAM. 

 
TABLE I.   The Results Of The Proposed MODE 

 
Problem T P W QM SM 

1 6 5 4 0.71 0.17 
2 12 5 4 0.69 0.22 
3 6 10 6 0.79 0.19 
4 12 10 6 0.86 0.09 
5 6 15 8 0.89 0.27 
6 12 15 8 0.88 0.12 

 
One of the most important issues in evaluating the performance 

of an algorithm is to have appropriate attributes. In this paper, to 
validate the reliability and performance of the proposed MODE, 
the following comparison metrics are used. 

Quality metrics (QM): This metric is simply measured by 
putting together the non-dominated solutions found by algorithm 
and the ratios between non-dominated solutions are achieved. 

Spacing metric (SM): we use spacing metric that provides a 
measure of uniformity of the spread of non-dominated solutions. 
This metric is given by equation (24). 

ܯܵ ൌ ඩ
1

݊ െ 1
ሺ݀̅ െ ݀ሻଶ


ୀଵ

 (24) 

where 

݀ ൌ min
∈ேௌ∧ஷ

หܨ
 െ ܨ

ห



ୀଵ

 (25) 

And ݀̅ is the mean of all di, n is the size of obtained non-
dominated solutions and ݂

 is the function value of the k-th 
objective function for solution i. The lower values of the SM are 
preferable. 

Tables 1 and 2 report the related computational results for large 
size problem instances. 

The comparison between the two presented methods (MODE, 
NSGA-II) shows that the MODE algorithm is better than NSGA-II. 
The results reveal that the proposed MODE can achieve a greater 
number of Pareto optimal solutions with higher qualities than 
NSGA-II. 

 
TABLE II.   The Results Of The NSGA-II 

 
Problem T P W QM SM 

1 6 5 4 0.29 0.29 
2 12 5 4 0.31 0.33 
3 6 10 6 0.21 0.24 
4 12 10 6 0.14 0.25 
5 6 15 8 0.11 0.17 
6 12 15 8 0.12 0.32 

IX. CONCLUSION 

The proposed integrated production-distribution model for the 
dynamic location-allocation problem considering volume 
flexibility is an effective response to the need of SCM considered 
to increase the ability of system against unpredictable conditions. 
This optimization process is based on a 3-layers SC system in 
multiple products and multiple periods’ perspective, which 
supports strategic and tactical decision levels, including volume 
flexibility, has not been proposed in the literature. The problem 
was modelled as a mixed integer linear programming formulation 
and determines location-allocation of DCs, production planning in 
plant, inventory level of products in each DC, and efficient volume 
flexibility in each period. The objective functions minimizes the 
costs of production, transportation and inventory holding while 
satisfying all customer demands, plant and DCs capacity and 
maximize flexibility level. 

Furthermore, we have proposed a multi-objective frame work 
for differential evolution algorithm, namely MODE, to solve this 
NP-hard problem. To investigate the effectiveness of our proposed 
approach, computational experiments were conducted and 
comparison results with the well-known multi-objective genetic 
algorithm, namely NSGA-II, were provided based on two 
comparison metrics. The results clearly show that our MODE 
significantly outperforms the NSGA-II algorithm. 

Future research is achieved on consideration of this modelling 
under uncertainty conditions with other critical SC problems such 
as vehicle routing, carriers loading, etc. 
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